mmu.c 113.7 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "cpuid.h"
A
Avi Kivity 已提交
26

27
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
28 29 30 31 32
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/module.h>
33
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
34
#include <linux/hugetlb.h>
35
#include <linux/compiler.h>
36
#include <linux/srcu.h>
37
#include <linux/slab.h>
38
#include <linux/uaccess.h>
A
Avi Kivity 已提交
39

A
Avi Kivity 已提交
40 41
#include <asm/page.h>
#include <asm/cmpxchg.h>
42
#include <asm/io.h>
43
#include <asm/vmx.h>
A
Avi Kivity 已提交
44

45 46 47 48 49 50 51
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
52
bool tdp_enabled = false;
53

54 55 56 57
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
58 59 60
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
61
};
62

63
#undef MMU_DEBUG
64 65 66 67 68 69 70 71 72 73 74 75 76

#ifdef MMU_DEBUG

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)

#else

#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)

#endif

77
#ifdef MMU_DEBUG
78
static bool dbg = 0;
79
module_param(dbg, bool, 0644);
80
#endif
A
Avi Kivity 已提交
81

82 83 84
#ifndef MMU_DEBUG
#define ASSERT(x) do { } while (0)
#else
A
Avi Kivity 已提交
85 86 87 88 89
#define ASSERT(x)							\
	if (!(x)) {							\
		printk(KERN_WARNING "assertion failed %s:%d: %s\n",	\
		       __FILE__, __LINE__, #x);				\
	}
90
#endif
A
Avi Kivity 已提交
91

92 93
#define PTE_PREFETCH_NUM		8

94
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
95 96 97 98 99
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
100
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
101 102 103 104 105 106 107 108

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
109
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
110

111 112 113
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
114 115 116 117 118

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


119
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
A
Avi Kivity 已提交
120 121
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
122 123 124 125 126 127
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
128 129 130 131

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 133 134
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
135

136 137
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
			| shadow_x_mask | shadow_nx_mask)
A
Avi Kivity 已提交
138

139 140 141 142 143
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

144 145
#include <trace/events/kvm.h>

146 147 148
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

149 150
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
151

152 153
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

154 155 156
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

157 158 159
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
160 161
};

162 163 164 165
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
166
	int level;
167 168 169 170 171 172 173 174
	unsigned index;
};

#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

175 176 177 178 179 180
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

181
static struct kmem_cache *pte_list_desc_cache;
182
static struct kmem_cache *mmu_page_header_cache;
183
static struct percpu_counter kvm_total_used_mmu_pages;
184

S
Sheng Yang 已提交
185 186 187 188 189
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
190 191 192
static u64 __read_mostly shadow_mmio_mask;

static void mmu_spte_set(u64 *sptep, u64 spte);
193
static void mmu_free_roots(struct kvm_vcpu *vcpu);
194 195 196 197 198 199 200

void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
{
	shadow_mmio_mask = mmio_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

201
/*
202 203 204 205 206 207 208
 * the low bit of the generation number is always presumed to be zero.
 * This disables mmio caching during memslot updates.  The concept is
 * similar to a seqcount but instead of retrying the access we just punt
 * and ignore the cache.
 *
 * spte bits 3-11 are used as bits 1-9 of the generation number,
 * the bits 52-61 are used as bits 10-19 of the generation number.
209
 */
210
#define MMIO_SPTE_GEN_LOW_SHIFT		2
211 212
#define MMIO_SPTE_GEN_HIGH_SHIFT	52

213 214 215
#define MMIO_GEN_SHIFT			20
#define MMIO_GEN_LOW_SHIFT		10
#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
216
#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
217 218 219 220 221

static u64 generation_mmio_spte_mask(unsigned int gen)
{
	u64 mask;

T
Tiejun Chen 已提交
222
	WARN_ON(gen & ~MMIO_GEN_MASK);
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
	return mask;
}

static unsigned int get_mmio_spte_generation(u64 spte)
{
	unsigned int gen;

	spte &= ~shadow_mmio_mask;

	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
	return gen;
}

240 241
static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
{
242
	return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
243 244
}

245 246
static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
			   unsigned access)
247
{
248 249
	unsigned int gen = kvm_current_mmio_generation(kvm);
	u64 mask = generation_mmio_spte_mask(gen);
250

251
	access &= ACC_WRITE_MASK | ACC_USER_MASK;
252 253
	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;

254
	trace_mark_mmio_spte(sptep, gfn, access, gen);
255
	mmu_spte_set(sptep, mask);
256 257 258 259 260 261 262 263 264
}

static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
T
Tiejun Chen 已提交
265
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
266
	return (spte & ~mask) >> PAGE_SHIFT;
267 268 269 270
}

static unsigned get_mmio_spte_access(u64 spte)
{
T
Tiejun Chen 已提交
271
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
272
	return (spte & ~mask) & ~PAGE_MASK;
273 274
}

275 276
static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
			  pfn_t pfn, unsigned access)
277 278
{
	if (unlikely(is_noslot_pfn(pfn))) {
279
		mark_mmio_spte(kvm, sptep, gfn, access);
280 281 282 283 284
		return true;
	}

	return false;
}
285

286 287
static bool check_mmio_spte(struct kvm *kvm, u64 spte)
{
288 289 290 291 292 293 294
	unsigned int kvm_gen, spte_gen;

	kvm_gen = kvm_current_mmio_generation(kvm);
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
295 296
}

S
Sheng Yang 已提交
297
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
298
		u64 dirty_mask, u64 nx_mask, u64 x_mask)
S
Sheng Yang 已提交
299 300 301 302 303 304 305 306 307
{
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

A
Avi Kivity 已提交
308 309 310 311 312
static int is_cpuid_PSE36(void)
{
	return 1;
}

313 314
static int is_nx(struct kvm_vcpu *vcpu)
{
315
	return vcpu->arch.efer & EFER_NX;
316 317
}

318 319
static int is_shadow_present_pte(u64 pte)
{
320
	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
321 322
}

M
Marcelo Tosatti 已提交
323 324 325 326 327
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

328
static int is_rmap_spte(u64 pte)
329
{
330
	return is_shadow_present_pte(pte);
331 332
}

333 334 335 336
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
337
	if (is_large_pte(pte))
338 339 340 341
		return 1;
	return 0;
}

342
static pfn_t spte_to_pfn(u64 pte)
343
{
344
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
345 346
}

347 348 349 350 351 352 353
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

354
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
355
static void __set_spte(u64 *sptep, u64 spte)
356
{
357
	*sptep = spte;
358 359
}

360
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
361
{
362 363 364 365 366 367 368
	*sptep = spte;
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
369 370 371 372 373

static u64 __get_spte_lockless(u64 *sptep)
{
	return ACCESS_ONCE(*sptep);
}
374 375 376 377 378 379

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	/* It is valid if the spte is zapped. */
	return spte == 0ull;
}
380
#else
381 382 383 384 385 386 387
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
388

389 390 391 392 393 394 395 396 397 398 399 400
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

401 402 403
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
404

405 406 407 408 409 410 411 412 413 414 415 416 417
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

	ssptep->spte_low = sspte.spte_low;
418 419
}

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_low = sspte.spte_low;

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
436
	count_spte_clear(sptep, spte);
437 438 439 440 441 442 443 444 445 446 447
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
448 449
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
450
	count_spte_clear(sptep, spte);
451 452 453

	return orig.spte;
}
454 455 456 457

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
458 459 460 461 462 463 464 465 466 467 468 469 470 471
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	union split_spte sspte = (union split_spte)spte;
	u32 high_mmio_mask = shadow_mmio_mask >> 32;

	/* It is valid if the spte is zapped. */
	if (spte == 0ull)
		return true;

	/* It is valid if the spte is being zapped. */
	if (sspte.spte_low == 0ull &&
	    (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
		return true;

	return false;
}
512 513
#endif

514 515
static bool spte_is_locklessly_modifiable(u64 spte)
{
516 517
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
518 519
}

520 521
static bool spte_has_volatile_bits(u64 spte)
{
522 523 524 525 526 527 528 529 530
	/*
	 * Always atomicly update spte if it can be updated
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
	if (spte_is_locklessly_modifiable(spte))
		return true;

531 532 533 534 535 536
	if (!shadow_accessed_mask)
		return false;

	if (!is_shadow_present_pte(spte))
		return false;

537 538
	if ((spte & shadow_accessed_mask) &&
	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
539 540 541 542 543
		return false;

	return true;
}

544 545 546 547 548
static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) && !(new_spte & bit_mask);
}

549 550 551 552 553 554 555 556 557 558 559 560 561 562
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changged.
563 564 565 566 567 568
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
569
 */
570
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
571
{
572
	u64 old_spte = *sptep;
573
	bool ret = false;
574 575

	WARN_ON(!is_rmap_spte(new_spte));
576

577 578 579 580
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
		return ret;
	}
581

582
	if (!spte_has_volatile_bits(old_spte))
583
		__update_clear_spte_fast(sptep, new_spte);
584
	else
585
		old_spte = __update_clear_spte_slow(sptep, new_spte);
586

587 588 589 590 591
	/*
	 * For the spte updated out of mmu-lock is safe, since
	 * we always atomicly update it, see the comments in
	 * spte_has_volatile_bits().
	 */
592 593
	if (spte_is_locklessly_modifiable(old_spte) &&
	      !is_writable_pte(new_spte))
594 595
		ret = true;

596
	if (!shadow_accessed_mask)
597
		return ret;
598 599 600 601 602

	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
603 604

	return ret;
605 606
}

607 608 609 610 611 612 613 614 615 616 617
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
	pfn_t pfn;
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
618
		__update_clear_spte_fast(sptep, 0ull);
619
	else
620
		old_spte = __update_clear_spte_slow(sptep, 0ull);
621 622 623 624 625

	if (!is_rmap_spte(old_spte))
		return 0;

	pfn = spte_to_pfn(old_spte);
626 627 628 629 630 631

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
632
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
633

634 635 636 637 638 639 640 641 642 643 644 645 646 647
	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
		kvm_set_pfn_accessed(pfn);
	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
		kvm_set_pfn_dirty(pfn);
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
648
	__update_clear_spte_fast(sptep, 0ull);
649 650
}

651 652 653 654 655 656 657
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
658 659 660 661 662 663 664 665 666 667 668
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
	vcpu->mode = READING_SHADOW_PAGE_TABLES;
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
	smp_mb();
669 670 671 672
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
673 674 675 676 677 678 679 680
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
	smp_mb();
	vcpu->mode = OUTSIDE_GUEST_MODE;
	local_irq_enable();
681 682
}

683
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
684
				  struct kmem_cache *base_cache, int min)
685 686 687 688
{
	void *obj;

	if (cache->nobjs >= min)
689
		return 0;
690
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
691
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
692
		if (!obj)
693
			return -ENOMEM;
694 695
		cache->objects[cache->nobjs++] = obj;
	}
696
	return 0;
697 698
}

699 700 701 702 703
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

704 705
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
706 707
{
	while (mc->nobjs)
708
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
709 710
}

A
Avi Kivity 已提交
711
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
712
				       int min)
A
Avi Kivity 已提交
713
{
714
	void *page;
A
Avi Kivity 已提交
715 716 717 718

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
719
		page = (void *)__get_free_page(GFP_KERNEL);
A
Avi Kivity 已提交
720 721
		if (!page)
			return -ENOMEM;
722
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
723 724 725 726 727 728 729
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
730
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
731 732
}

733
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
734
{
735 736
	int r;

737
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
738
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
739 740
	if (r)
		goto out;
741
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
742 743
	if (r)
		goto out;
744
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
745
				   mmu_page_header_cache, 4);
746 747
out:
	return r;
748 749 750 751
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
752 753
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
754
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
755 756
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
757 758
}

759
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
760 761 762 763 764 765 766 767
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

768
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
769
{
770
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
771 772
}

773
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
774
{
775
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
776 777
}

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
794
/*
795 796
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
797
 */
798 799 800
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
801 802 803
{
	unsigned long idx;

804
	idx = gfn_to_index(gfn, slot->base_gfn, level);
805
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
806 807 808 809
}

static void account_shadowed(struct kvm *kvm, gfn_t gfn)
{
810
	struct kvm_memory_slot *slot;
811
	struct kvm_lpage_info *linfo;
812
	int i;
M
Marcelo Tosatti 已提交
813

A
Avi Kivity 已提交
814
	slot = gfn_to_memslot(kvm, gfn);
815 816
	for (i = PT_DIRECTORY_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
817 818
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count += 1;
819
	}
820
	kvm->arch.indirect_shadow_pages++;
M
Marcelo Tosatti 已提交
821 822 823 824
}

static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
{
825
	struct kvm_memory_slot *slot;
826
	struct kvm_lpage_info *linfo;
827
	int i;
M
Marcelo Tosatti 已提交
828

A
Avi Kivity 已提交
829
	slot = gfn_to_memslot(kvm, gfn);
830 831
	for (i = PT_DIRECTORY_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
832 833 834
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count -= 1;
		WARN_ON(linfo->write_count < 0);
835
	}
836
	kvm->arch.indirect_shadow_pages--;
M
Marcelo Tosatti 已提交
837 838
}

839 840 841
static int has_wrprotected_page(struct kvm *kvm,
				gfn_t gfn,
				int level)
M
Marcelo Tosatti 已提交
842
{
843
	struct kvm_memory_slot *slot;
844
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
845

A
Avi Kivity 已提交
846
	slot = gfn_to_memslot(kvm, gfn);
M
Marcelo Tosatti 已提交
847
	if (slot) {
848 849
		linfo = lpage_info_slot(gfn, slot, level);
		return linfo->write_count;
M
Marcelo Tosatti 已提交
850 851 852 853 854
	}

	return 1;
}

855
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
856
{
J
Joerg Roedel 已提交
857
	unsigned long page_size;
858
	int i, ret = 0;
M
Marcelo Tosatti 已提交
859

J
Joerg Roedel 已提交
860
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
861

862 863 864 865 866 867 868 869
	for (i = PT_PAGE_TABLE_LEVEL;
	     i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

870
	return ret;
M
Marcelo Tosatti 已提交
871 872
}

873 874 875
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
876 877
{
	struct kvm_memory_slot *slot;
878 879 880 881 882 883 884 885 886 887 888

	slot = gfn_to_memslot(vcpu->kvm, gfn);
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
	      (no_dirty_log && slot->dirty_bitmap))
		slot = NULL;

	return slot;
}

static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
889
	return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
890 891 892 893 894
}

static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
	int host_level, level, max_level;
M
Marcelo Tosatti 已提交
895

896 897 898 899 900
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
901
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
902 903

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
904 905 906 907
		if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
908 909
}

910
/*
911
 * Pte mapping structures:
912
 *
913
 * If pte_list bit zero is zero, then pte_list point to the spte.
914
 *
915 916
 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
 * pte_list_desc containing more mappings.
917
 *
918
 * Returns the number of pte entries before the spte was added or zero if
919 920
 * the spte was not added.
 *
921
 */
922 923
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
			unsigned long *pte_list)
924
{
925
	struct pte_list_desc *desc;
926
	int i, count = 0;
927

928 929 930 931 932 933 934
	if (!*pte_list) {
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
		*pte_list = (unsigned long)spte;
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
		desc->sptes[0] = (u64 *)*pte_list;
A
Avi Kivity 已提交
935
		desc->sptes[1] = spte;
936
		*pte_list = (unsigned long)desc | 1;
937
		++count;
938
	} else {
939 940 941
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
942
			desc = desc->more;
943
			count += PTE_LIST_EXT;
944
		}
945 946
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
947 948
			desc = desc->more;
		}
A
Avi Kivity 已提交
949
		for (i = 0; desc->sptes[i]; ++i)
950
			++count;
A
Avi Kivity 已提交
951
		desc->sptes[i] = spte;
952
	}
953
	return count;
954 955
}

956 957 958
static void
pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
			   int i, struct pte_list_desc *prev_desc)
959 960 961
{
	int j;

962
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
963
		;
A
Avi Kivity 已提交
964 965
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
966 967 968
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
969
		*pte_list = (unsigned long)desc->sptes[0];
970 971 972 973
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
974 975
			*pte_list = (unsigned long)desc->more | 1;
	mmu_free_pte_list_desc(desc);
976 977
}

978
static void pte_list_remove(u64 *spte, unsigned long *pte_list)
979
{
980 981
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
982 983
	int i;

984 985
	if (!*pte_list) {
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
986
		BUG();
987 988 989 990
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
		if ((u64 *)*pte_list != spte) {
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
991 992
			BUG();
		}
993
		*pte_list = 0;
994
	} else {
995 996
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
997 998
		prev_desc = NULL;
		while (desc) {
999
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
A
Avi Kivity 已提交
1000
				if (desc->sptes[i] == spte) {
1001
					pte_list_desc_remove_entry(pte_list,
1002
							       desc, i,
1003 1004 1005 1006 1007 1008
							       prev_desc);
					return;
				}
			prev_desc = desc;
			desc = desc->more;
		}
1009
		pr_err("pte_list_remove: %p many->many\n", spte);
1010 1011 1012 1013
		BUG();
	}
}

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
typedef void (*pte_list_walk_fn) (u64 *spte);
static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
{
	struct pte_list_desc *desc;
	int i;

	if (!*pte_list)
		return;

	if (!(*pte_list & 1))
		return fn((u64 *)*pte_list);

	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
	while (desc) {
		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
			fn(desc->sptes[i]);
		desc = desc->more;
	}
}

1034
static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1035
				    struct kvm_memory_slot *slot)
1036
{
1037
	unsigned long idx;
1038

1039
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1040
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1041 1042
}

1043 1044 1045 1046 1047 1048 1049 1050
/*
 * Take gfn and return the reverse mapping to it.
 */
static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
{
	struct kvm_memory_slot *slot;

	slot = gfn_to_memslot(kvm, gfn);
1051
	return __gfn_to_rmap(gfn, level, slot);
1052 1053
}

1054 1055 1056 1057 1058 1059 1060 1061
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
	return pte_list_add(vcpu, spte, rmapp);
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
	rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
	pte_list_remove(spte, rmapp);
}

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
{
	if (!rmap)
		return NULL;

	if (!(rmap & 1)) {
		iter->desc = NULL;
		return (u64 *)rmap;
	}

	iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
	iter->pos = 0;
	return iter->desc->sptes[iter->pos];
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			u64 *sptep;

			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
				return sptep;
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
			return iter->desc->sptes[iter->pos];
		}
	}

	return NULL;
}

1146
static void drop_spte(struct kvm *kvm, u64 *sptep)
1147
{
1148
	if (mmu_spte_clear_track_bits(sptep))
1149
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1150 1151
}

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1173
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1174
 * spte write-protection is caused by protecting shadow page table.
1175
 *
T
Tiejun Chen 已提交
1176
 * Note: write protection is difference between dirty logging and spte
1177 1178 1179 1180 1181
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1182
 *
1183
 * Return true if tlb need be flushed.
1184
 */
1185
static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1186 1187 1188
{
	u64 spte = *sptep;

1189 1190
	if (!is_writable_pte(spte) &&
	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1191 1192 1193 1194
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1195 1196
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1197
	spte = spte & ~PT_WRITABLE_MASK;
1198

1199
	return mmu_spte_update(sptep, spte);
1200 1201
}

1202
static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1203
				 bool pt_protect)
1204
{
1205 1206
	u64 *sptep;
	struct rmap_iterator iter;
1207
	bool flush = false;
1208

1209 1210
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1211

1212
		flush |= spte_write_protect(kvm, sptep, pt_protect);
1213
		sptep = rmap_get_next(&iter);
1214
	}
1215

1216
	return flush;
1217 1218
}

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
/**
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1232 1233 1234
{
	unsigned long *rmapp;

1235
	while (mask) {
1236 1237
		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
				      PT_PAGE_TABLE_LEVEL, slot);
1238
		__rmap_write_protect(kvm, rmapp, false);
M
Marcelo Tosatti 已提交
1239

1240 1241 1242
		/* clear the first set bit */
		mask &= mask - 1;
	}
1243 1244
}

1245
static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1246 1247
{
	struct kvm_memory_slot *slot;
1248 1249
	unsigned long *rmapp;
	int i;
1250
	bool write_protected = false;
1251 1252

	slot = gfn_to_memslot(kvm, gfn);
1253 1254 1255 1256

	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		rmapp = __gfn_to_rmap(gfn, i, slot);
1257
		write_protected |= __rmap_write_protect(kvm, rmapp, true);
1258 1259 1260
	}

	return write_protected;
1261 1262
}

F
Frederik Deweerdt 已提交
1263
static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1264 1265
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
1266
{
1267 1268
	u64 *sptep;
	struct rmap_iterator iter;
1269 1270
	int need_tlb_flush = 0;

1271 1272
	while ((sptep = rmap_get_first(*rmapp, &iter))) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1273 1274
		rmap_printk("kvm_rmap_unmap_hva: spte %p %llx gfn %llx (%d)\n",
			     sptep, *sptep, gfn, level);
1275 1276

		drop_spte(kvm, sptep);
1277 1278
		need_tlb_flush = 1;
	}
1279

1280 1281 1282
	return need_tlb_flush;
}

F
Frederik Deweerdt 已提交
1283
static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1284 1285
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1286
{
1287 1288
	u64 *sptep;
	struct rmap_iterator iter;
1289
	int need_flush = 0;
1290
	u64 new_spte;
1291 1292 1293 1294 1295
	pte_t *ptep = (pte_t *)data;
	pfn_t new_pfn;

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1296 1297 1298

	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!is_shadow_present_pte(*sptep));
1299 1300
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
			     sptep, *sptep, gfn, level);
1301

1302
		need_flush = 1;
1303

1304
		if (pte_write(*ptep)) {
1305 1306
			drop_spte(kvm, sptep);
			sptep = rmap_get_first(*rmapp, &iter);
1307
		} else {
1308
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1309 1310 1311 1312
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1313
			new_spte &= ~shadow_accessed_mask;
1314 1315 1316 1317

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
			sptep = rmap_get_next(&iter);
1318 1319
		}
	}
1320

1321 1322 1323 1324 1325 1326
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1327 1328 1329 1330 1331 1332
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
					       unsigned long *rmapp,
1333
					       struct kvm_memory_slot *slot,
1334 1335
					       gfn_t gfn,
					       int level,
1336
					       unsigned long data))
1337
{
1338
	int j;
1339
	int ret = 0;
1340
	struct kvm_memslots *slots;
1341
	struct kvm_memory_slot *memslot;
1342

1343
	slots = kvm_memslots(kvm);
1344

1345
	kvm_for_each_memslot(memslot, slots) {
1346
		unsigned long hva_start, hva_end;
1347
		gfn_t gfn_start, gfn_end;
1348

1349 1350 1351 1352 1353 1354 1355
		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1356
		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1357
		 */
1358
		gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1359
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1360

1361 1362 1363 1364
		for (j = PT_PAGE_TABLE_LEVEL;
		     j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
			unsigned long idx, idx_end;
			unsigned long *rmapp;
1365
			gfn_t gfn = gfn_start;
1366

1367 1368 1369 1370 1371 1372
			/*
			 * {idx(page_j) | page_j intersects with
			 *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
			 */
			idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
			idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1373

1374
			rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1375

1376 1377 1378 1379
			for (; idx <= idx_end;
			       ++idx, gfn += (1UL << KVM_HPAGE_GFN_SHIFT(j)))
				ret |= handler(kvm, rmapp++, memslot,
					       gfn, j, data);
1380 1381 1382
		}
	}

1383
	return ret;
1384 1385
}

1386 1387 1388
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1389
					 struct kvm_memory_slot *slot,
1390
					 gfn_t gfn, int level,
1391 1392 1393
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1394 1395 1396 1397
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
1398 1399 1400
	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}

1401 1402 1403 1404 1405
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1406 1407
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1408
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1409 1410
}

F
Frederik Deweerdt 已提交
1411
static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1412 1413
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1414
{
1415
	u64 *sptep;
1416
	struct rmap_iterator uninitialized_var(iter);
1417 1418
	int young = 0;

A
Andres Lagar-Cavilla 已提交
1419
	BUG_ON(!shadow_accessed_mask);
1420

1421 1422
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
	     sptep = rmap_get_next(&iter)) {
1423
		BUG_ON(!is_shadow_present_pte(*sptep));
1424

1425
		if (*sptep & shadow_accessed_mask) {
1426
			young = 1;
1427 1428
			clear_bit((ffs(shadow_accessed_mask) - 1),
				 (unsigned long *)sptep);
1429 1430
		}
	}
1431
	trace_kvm_age_page(gfn, level, slot, young);
1432 1433 1434
	return young;
}

A
Andrea Arcangeli 已提交
1435
static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1436 1437
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1438
{
1439 1440
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	int young = 0;

	/*
	 * If there's no access bit in the secondary pte set by the
	 * hardware it's up to gup-fast/gup to set the access bit in
	 * the primary pte or in the page structure.
	 */
	if (!shadow_accessed_mask)
		goto out;

1451 1452
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
	     sptep = rmap_get_next(&iter)) {
1453
		BUG_ON(!is_shadow_present_pte(*sptep));
1454

1455
		if (*sptep & shadow_accessed_mask) {
A
Andrea Arcangeli 已提交
1456 1457 1458 1459 1460 1461 1462 1463
			young = 1;
			break;
		}
	}
out:
	return young;
}

1464 1465
#define RMAP_RECYCLE_THRESHOLD 1000

1466
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1467 1468
{
	unsigned long *rmapp;
1469 1470 1471
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1472

1473
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1474

1475
	kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
1476 1477 1478
	kvm_flush_remote_tlbs(vcpu->kvm);
}

A
Andres Lagar-Cavilla 已提交
1479
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1480
{
A
Andres Lagar-Cavilla 已提交
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	/*
	 * In case of absence of EPT Access and Dirty Bits supports,
	 * emulate the accessed bit for EPT, by checking if this page has
	 * an EPT mapping, and clearing it if it does. On the next access,
	 * a new EPT mapping will be established.
	 * This has some overhead, but not as much as the cost of swapping
	 * out actively used pages or breaking up actively used hugepages.
	 */
	if (!shadow_accessed_mask) {
		/*
		 * We are holding the kvm->mmu_lock, and we are blowing up
		 * shadow PTEs. MMU notifier consumers need to be kept at bay.
		 * This is correct as long as we don't decouple the mmu_lock
		 * protected regions (like invalidate_range_start|end does).
		 */
		kvm->mmu_notifier_seq++;
		return kvm_handle_hva_range(kvm, start, end, 0,
					    kvm_unmap_rmapp);
	}

	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1502 1503
}

A
Andrea Arcangeli 已提交
1504 1505 1506 1507 1508
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1509
#ifdef MMU_DEBUG
1510
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1511
{
1512 1513 1514
	u64 *pos;
	u64 *end;

1515
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1516
		if (is_shadow_present_pte(*pos)) {
1517
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1518
			       pos, *pos);
A
Avi Kivity 已提交
1519
			return 0;
1520
		}
A
Avi Kivity 已提交
1521 1522
	return 1;
}
1523
#endif
A
Avi Kivity 已提交
1524

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1537
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1538
{
1539
	ASSERT(is_empty_shadow_page(sp->spt));
1540
	hlist_del(&sp->hash_link);
1541 1542
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1543 1544
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1545
	kmem_cache_free(mmu_page_header_cache, sp);
1546 1547
}

1548 1549
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1550
	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1551 1552
}

1553
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1554
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1555 1556 1557 1558
{
	if (!parent_pte)
		return;

1559
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1560 1561
}

1562
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1563 1564
				       u64 *parent_pte)
{
1565
	pte_list_remove(parent_pte, &sp->parent_ptes);
1566 1567
}

1568 1569 1570 1571
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1572
	mmu_spte_clear_no_track(parent_pte);
1573 1574
}

1575 1576
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
					       u64 *parent_pte, int direct)
M
Marcelo Tosatti 已提交
1577
{
1578
	struct kvm_mmu_page *sp;
1579

1580 1581
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1582
	if (!direct)
1583
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1584
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1585 1586 1587 1588 1589 1590

	/*
	 * The active_mmu_pages list is the FIFO list, do not move the
	 * page until it is zapped. kvm_zap_obsolete_pages depends on
	 * this feature. See the comments in kvm_zap_obsolete_pages().
	 */
1591 1592 1593 1594 1595
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	sp->parent_ptes = 0;
	mmu_page_add_parent_pte(vcpu, sp, parent_pte);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1596 1597
}

1598
static void mark_unsync(u64 *spte);
1599
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1600
{
1601
	pte_list_walk(&sp->parent_ptes, mark_unsync);
1602 1603
}

1604
static void mark_unsync(u64 *spte)
1605
{
1606
	struct kvm_mmu_page *sp;
1607
	unsigned int index;
1608

1609
	sp = page_header(__pa(spte));
1610 1611
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1612
		return;
1613
	if (sp->unsync_children++)
1614
		return;
1615
	kvm_mmu_mark_parents_unsync(sp);
1616 1617
}

1618
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1619
			       struct kvm_mmu_page *sp)
1620 1621 1622 1623
{
	return 1;
}

M
Marcelo Tosatti 已提交
1624 1625 1626 1627
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
}

1628 1629
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1630
				 const void *pte)
1631 1632 1633 1634
{
	WARN_ON(1);
}

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1645 1646
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1647
{
1648
	int i;
1649

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1665

1666
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1667
		struct kvm_mmu_page *child;
1668 1669
		u64 ent = sp->spt[i];

1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
		if (!is_shadow_present_pte(ent) || is_large_pte(ent))
			goto clear_child_bitmap;

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
			if (!ret)
				goto clear_child_bitmap;
			else if (ret > 0)
				nr_unsync_leaf += ret;
			else
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
			 goto clear_child_bitmap;

		continue;

clear_child_bitmap:
		__clear_bit(i, sp->unsync_child_bitmap);
		sp->unsync_children--;
		WARN_ON((int)sp->unsync_children < 0);
1699 1700 1701
	}


1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
	return nr_unsync_leaf;
}

static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	if (!sp->unsync_children)
		return 0;

	mmu_pages_add(pvec, sp, 0);
	return __mmu_unsync_walk(sp, pvec);
1713 1714 1715 1716 1717
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1718
	trace_kvm_mmu_sync_page(sp);
1719 1720 1721 1722
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1723 1724 1725 1726
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1727

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
/*
 * NOTE: we should pay more attention on the zapped-obsolete page
 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 * since it has been deleted from active_mmu_pages but still can be found
 * at hast list.
 *
 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
 * all the obsolete pages.
 */
1738 1739 1740 1741 1742 1743 1744 1745
#define for_each_gfn_sp(_kvm, _sp, _gfn)				\
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
		if ((_sp)->gfn != (_gfn)) {} else

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
	for_each_gfn_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1746

1747
/* @sp->gfn should be write-protected at the call site */
1748
static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1749
			   struct list_head *invalid_list, bool clear_unsync)
1750
{
1751
	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1752
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1753 1754 1755
		return 1;
	}

1756
	if (clear_unsync)
1757 1758
		kvm_unlink_unsync_page(vcpu->kvm, sp);

1759
	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1760
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1761 1762 1763
		return 1;
	}

1764
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1765 1766 1767
	return 0;
}

1768 1769 1770
static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_page *sp)
{
1771
	LIST_HEAD(invalid_list);
1772 1773
	int ret;

1774
	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1775
	if (ret)
1776 1777
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

1778 1779 1780
	return ret;
}

1781 1782 1783 1784 1785 1786 1787
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1788 1789
static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1790
{
1791
	return __kvm_sync_page(vcpu, sp, invalid_list, true);
1792 1793
}

1794 1795 1796 1797
/* @gfn should be write-protected at the call site */
static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
{
	struct kvm_mmu_page *s;
1798
	LIST_HEAD(invalid_list);
1799 1800
	bool flush = false;

1801
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1802
		if (!s->unsync)
1803 1804 1805
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1806
		kvm_unlink_unsync_page(vcpu->kvm, s);
1807
		if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1808
			(vcpu->arch.mmu.sync_page(vcpu, s))) {
1809
			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1810 1811 1812 1813 1814
			continue;
		}
		flush = true;
	}

1815
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1816
	if (flush)
1817
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1818 1819
}

1820 1821 1822
struct mmu_page_path {
	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
	unsigned int idx[PT64_ROOT_LEVEL-1];
1823 1824
};

1825 1826 1827 1828 1829 1830
#define for_each_sp(pvec, sp, parents, i)			\
		for (i = mmu_pages_next(&pvec, &parents, -1),	\
			sp = pvec.page[i].sp;			\
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1831 1832 1833
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;

		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
			parents->idx[0] = pvec->page[n].idx;
			return n;
		}

		parents->parent[sp->role.level-2] = sp;
		parents->idx[sp->role.level-1] = pvec->page[n].idx;
	}

	return n;
}

1852
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1853
{
1854 1855 1856 1857 1858
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
1859

1860 1861 1862 1863 1864 1865 1866 1867 1868
		sp = parents->parent[level];
		if (!sp)
			return;

		--sp->unsync_children;
		WARN_ON((int)sp->unsync_children < 0);
		__clear_bit(idx, sp->unsync_child_bitmap);
		level++;
	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1869 1870
}

1871 1872 1873
static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
			       struct mmu_page_path *parents,
			       struct kvm_mmu_pages *pvec)
1874
{
1875 1876 1877
	parents->parent[parent->role.level-1] = NULL;
	pvec->nr = 0;
}
1878

1879 1880 1881 1882 1883 1884 1885
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1886
	LIST_HEAD(invalid_list);
1887 1888 1889

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
1890
		bool protected = false;
1891 1892 1893 1894 1895 1896 1897

		for_each_sp(pages, sp, parents, i)
			protected |= rmap_write_protect(vcpu->kvm, sp->gfn);

		if (protected)
			kvm_flush_remote_tlbs(vcpu->kvm);

1898
		for_each_sp(pages, sp, parents, i) {
1899
			kvm_sync_page(vcpu, sp, &invalid_list);
1900 1901
			mmu_pages_clear_parents(&parents);
		}
1902
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1903
		cond_resched_lock(&vcpu->kvm->mmu_lock);
1904 1905
		kvm_mmu_pages_init(parent, &parents, &pages);
	}
1906 1907
}

1908 1909 1910 1911 1912 1913 1914 1915
static void init_shadow_page_table(struct kvm_mmu_page *sp)
{
	int i;

	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		sp->spt[i] = 0ull;
}

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
	sp->write_flooding_count = 0;
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

1928 1929 1930 1931 1932
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}

1933 1934 1935 1936
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
1937
					     int direct,
1938
					     unsigned access,
1939
					     u64 *parent_pte)
1940 1941 1942
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
1943 1944
	struct kvm_mmu_page *sp;
	bool need_sync = false;
1945

1946
	role = vcpu->arch.mmu.base_role;
1947
	role.level = level;
1948
	role.direct = direct;
1949
	if (role.direct)
1950
		role.cr4_pae = 0;
1951
	role.access = access;
1952 1953
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1954 1955 1956 1957
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
1958
	for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1959 1960 1961
		if (is_obsolete_sp(vcpu->kvm, sp))
			continue;

1962 1963
		if (!need_sync && sp->unsync)
			need_sync = true;
1964

1965 1966
		if (sp->role.word != role.word)
			continue;
1967

1968 1969
		if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
			break;
1970

1971 1972
		mmu_page_add_parent_pte(vcpu, sp, parent_pte);
		if (sp->unsync_children) {
1973
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1974 1975 1976
			kvm_mmu_mark_parents_unsync(sp);
		} else if (sp->unsync)
			kvm_mmu_mark_parents_unsync(sp);
1977

1978
		__clear_sp_write_flooding_count(sp);
1979 1980 1981
		trace_kvm_mmu_get_page(sp, false);
		return sp;
	}
A
Avi Kivity 已提交
1982
	++vcpu->kvm->stat.mmu_cache_miss;
1983
	sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1984 1985 1986 1987
	if (!sp)
		return sp;
	sp->gfn = gfn;
	sp->role = role;
1988 1989
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1990
	if (!direct) {
1991 1992
		if (rmap_write_protect(vcpu->kvm, gfn))
			kvm_flush_remote_tlbs(vcpu->kvm);
1993 1994 1995
		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
			kvm_sync_pages(vcpu, gfn);

1996 1997
		account_shadowed(vcpu->kvm, gfn);
	}
1998
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1999
	init_shadow_page_table(sp);
A
Avi Kivity 已提交
2000
	trace_kvm_mmu_get_page(sp, true);
2001
	return sp;
2002 2003
}

2004 2005 2006 2007 2008 2009
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	iterator->addr = addr;
	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
	iterator->level = vcpu->arch.mmu.shadow_root_level;
2010 2011 2012 2013 2014 2015

	if (iterator->level == PT64_ROOT_LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
	if (iterator->level == PT32E_ROOT_LEVEL) {
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2030

2031 2032 2033 2034 2035
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2036 2037
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2038
{
2039
	if (is_last_spte(spte, iterator->level)) {
2040 2041 2042 2043
		iterator->level = 0;
		return;
	}

2044
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2045 2046 2047
	--iterator->level;
}

2048 2049 2050 2051 2052
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
	return __shadow_walk_next(iterator, *iterator->sptep);
}

2053
static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2054 2055 2056
{
	u64 spte;

2057 2058 2059
	BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
			VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

X
Xiao Guangrong 已提交
2060
	spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2061 2062 2063 2064
	       shadow_user_mask | shadow_x_mask;

	if (accessed)
		spte |= shadow_accessed_mask;
X
Xiao Guangrong 已提交
2065

2066
	mmu_spte_set(sptep, spte);
2067 2068
}

2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2086
		drop_parent_pte(child, sptep);
2087 2088 2089 2090
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2091
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2092 2093 2094 2095 2096 2097 2098
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2099
		if (is_last_spte(pte, sp->role.level)) {
2100
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2101 2102 2103
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2104
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2105
			drop_parent_pte(child, spte);
2106
		}
X
Xiao Guangrong 已提交
2107 2108 2109 2110
		return true;
	}

	if (is_mmio_spte(pte))
2111
		mmu_spte_clear_no_track(spte);
2112

X
Xiao Guangrong 已提交
2113
	return false;
2114 2115
}

2116
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2117
					 struct kvm_mmu_page *sp)
2118
{
2119 2120
	unsigned i;

2121 2122
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2123 2124
}

2125
static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2126
{
2127
	mmu_page_remove_parent_pte(sp, parent_pte);
2128 2129
}

2130
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2131
{
2132 2133
	u64 *sptep;
	struct rmap_iterator iter;
2134

2135 2136
	while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
		drop_parent_pte(sp, sptep);
2137 2138
}

2139
static int mmu_zap_unsync_children(struct kvm *kvm,
2140 2141
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2142
{
2143 2144 2145
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2146

2147
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2148
		return 0;
2149 2150 2151 2152 2153 2154

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2155
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2156
			mmu_pages_clear_parents(&parents);
2157
			zapped++;
2158 2159 2160 2161 2162
		}
		kvm_mmu_pages_init(parent, &parents, &pages);
	}

	return zapped;
2163 2164
}

2165 2166
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2167
{
2168
	int ret;
A
Avi Kivity 已提交
2169

2170
	trace_kvm_mmu_prepare_zap_page(sp);
2171
	++kvm->stat.mmu_shadow_zapped;
2172
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2173
	kvm_mmu_page_unlink_children(kvm, sp);
2174
	kvm_mmu_unlink_parents(kvm, sp);
2175

2176
	if (!sp->role.invalid && !sp->role.direct)
A
Avi Kivity 已提交
2177
		unaccount_shadowed(kvm, sp->gfn);
2178

2179 2180
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2181
	if (!sp->root_count) {
2182 2183
		/* Count self */
		ret++;
2184
		list_move(&sp->link, invalid_list);
2185
		kvm_mod_used_mmu_pages(kvm, -1);
2186
	} else {
A
Avi Kivity 已提交
2187
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2188 2189 2190 2191 2192 2193 2194

		/*
		 * The obsolete pages can not be used on any vcpus.
		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
		 */
		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
			kvm_reload_remote_mmus(kvm);
2195
	}
2196 2197

	sp->role.invalid = 1;
2198
	return ret;
2199 2200
}

2201 2202 2203
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2204
	struct kvm_mmu_page *sp, *nsp;
2205 2206 2207 2208

	if (list_empty(invalid_list))
		return;

2209 2210 2211 2212 2213
	/*
	 * wmb: make sure everyone sees our modifications to the page tables
	 * rmb: make sure we see changes to vcpu->mode
	 */
	smp_mb();
X
Xiao Guangrong 已提交
2214

2215 2216 2217 2218 2219
	/*
	 * Wait for all vcpus to exit guest mode and/or lockless shadow
	 * page table walks.
	 */
	kvm_flush_remote_tlbs(kvm);
2220

2221
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2222
		WARN_ON(!sp->role.invalid || sp->root_count);
2223
		kvm_mmu_free_page(sp);
2224
	}
2225 2226
}

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

	sp = list_entry(kvm->arch.active_mmu_pages.prev,
			struct kvm_mmu_page, link);
	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);

	return true;
}

2242 2243
/*
 * Changing the number of mmu pages allocated to the vm
2244
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2245
 */
2246
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2247
{
2248
	LIST_HEAD(invalid_list);
2249

2250 2251
	spin_lock(&kvm->mmu_lock);

2252
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2253 2254 2255 2256
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2257

2258
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2259
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2260 2261
	}

2262
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2263 2264

	spin_unlock(&kvm->mmu_lock);
2265 2266
}

2267
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2268
{
2269
	struct kvm_mmu_page *sp;
2270
	LIST_HEAD(invalid_list);
2271 2272
	int r;

2273
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2274
	r = 0;
2275
	spin_lock(&kvm->mmu_lock);
2276
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2277
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2278 2279
			 sp->role.word);
		r = 1;
2280
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2281
	}
2282
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2283 2284
	spin_unlock(&kvm->mmu_lock);

2285
	return r;
2286
}
2287
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2288

2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
/*
 * The function is based on mtrr_type_lookup() in
 * arch/x86/kernel/cpu/mtrr/generic.c
 */
static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
			 u64 start, u64 end)
{
	int i;
	u64 base, mask;
	u8 prev_match, curr_match;
	int num_var_ranges = KVM_NR_VAR_MTRR;

	if (!mtrr_state->enabled)
		return 0xFF;

	/* Make end inclusive end, instead of exclusive */
	end--;

	/* Look in fixed ranges. Just return the type as per start */
	if (mtrr_state->have_fixed && (start < 0x100000)) {
		int idx;

		if (start < 0x80000) {
			idx = 0;
			idx += (start >> 16);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0xC0000) {
			idx = 1 * 8;
			idx += ((start - 0x80000) >> 14);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0x1000000) {
			idx = 3 * 8;
			idx += ((start - 0xC0000) >> 12);
			return mtrr_state->fixed_ranges[idx];
		}
	}

	/*
	 * Look in variable ranges
	 * Look of multiple ranges matching this address and pick type
	 * as per MTRR precedence
	 */
	if (!(mtrr_state->enabled & 2))
		return mtrr_state->def_type;

	prev_match = 0xFF;
	for (i = 0; i < num_var_ranges; ++i) {
		unsigned short start_state, end_state;

		if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
			continue;

		base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
		       (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
		mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
		       (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);

		start_state = ((start & mask) == (base & mask));
		end_state = ((end & mask) == (base & mask));
		if (start_state != end_state)
			return 0xFE;

		if ((start & mask) != (base & mask))
			continue;

		curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
		if (prev_match == 0xFF) {
			prev_match = curr_match;
			continue;
		}

		if (prev_match == MTRR_TYPE_UNCACHABLE ||
		    curr_match == MTRR_TYPE_UNCACHABLE)
			return MTRR_TYPE_UNCACHABLE;

		if ((prev_match == MTRR_TYPE_WRBACK &&
		     curr_match == MTRR_TYPE_WRTHROUGH) ||
		    (prev_match == MTRR_TYPE_WRTHROUGH &&
		     curr_match == MTRR_TYPE_WRBACK)) {
			prev_match = MTRR_TYPE_WRTHROUGH;
			curr_match = MTRR_TYPE_WRTHROUGH;
		}

		if (prev_match != curr_match)
			return MTRR_TYPE_UNCACHABLE;
	}

	if (prev_match != 0xFF)
		return prev_match;

	return mtrr_state->def_type;
}

2382
u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2383 2384 2385 2386 2387 2388 2389 2390 2391
{
	u8 mtrr;

	mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
			     (gfn << PAGE_SHIFT) + PAGE_SIZE);
	if (mtrr == 0xfe || mtrr == 0xff)
		mtrr = MTRR_TYPE_WRBACK;
	return mtrr;
}
2392
EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2393

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2404 2405
{
	struct kvm_mmu_page *s;
2406

2407
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2408
		if (s->unsync)
2409
			continue;
2410 2411
		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
		__kvm_unsync_page(vcpu, s);
2412 2413 2414 2415 2416 2417
	}
}

static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				  bool can_unsync)
{
2418 2419 2420
	struct kvm_mmu_page *s;
	bool need_unsync = false;

2421
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2422 2423 2424
		if (!can_unsync)
			return 1;

2425
		if (s->role.level != PT_PAGE_TABLE_LEVEL)
2426
			return 1;
2427

G
Gleb Natapov 已提交
2428
		if (!s->unsync)
2429
			need_unsync = true;
2430
	}
2431 2432
	if (need_unsync)
		kvm_unsync_pages(vcpu, gfn);
2433 2434 2435
	return 0;
}

A
Avi Kivity 已提交
2436
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2437
		    unsigned pte_access, int level,
2438
		    gfn_t gfn, pfn_t pfn, bool speculative,
2439
		    bool can_unsync, bool host_writable)
2440
{
2441
	u64 spte;
M
Marcelo Tosatti 已提交
2442
	int ret = 0;
S
Sheng Yang 已提交
2443

2444
	if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2445 2446
		return 0;

2447
	spte = PT_PRESENT_MASK;
2448
	if (!speculative)
2449
		spte |= shadow_accessed_mask;
2450

S
Sheng Yang 已提交
2451 2452 2453 2454
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2455

2456
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2457
		spte |= shadow_user_mask;
2458

2459
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2460
		spte |= PT_PAGE_SIZE_MASK;
2461
	if (tdp_enabled)
2462
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2463
			kvm_is_reserved_pfn(pfn));
2464

2465
	if (host_writable)
2466
		spte |= SPTE_HOST_WRITEABLE;
2467 2468
	else
		pte_access &= ~ACC_WRITE_MASK;
2469

2470
	spte |= (u64)pfn << PAGE_SHIFT;
2471

2472
	if (pte_access & ACC_WRITE_MASK) {
2473

X
Xiao Guangrong 已提交
2474
		/*
2475 2476 2477 2478
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2479
		 */
2480
		if (level > PT_PAGE_TABLE_LEVEL &&
X
Xiao Guangrong 已提交
2481
		    has_wrprotected_page(vcpu->kvm, gfn, level))
A
Avi Kivity 已提交
2482
			goto done;
2483

2484
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2485

2486 2487 2488 2489 2490 2491
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2492
		if (!can_unsync && is_writable_pte(*sptep))
2493 2494
			goto set_pte;

2495
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2496
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2497
				 __func__, gfn);
M
Marcelo Tosatti 已提交
2498
			ret = 1;
2499
			pte_access &= ~ACC_WRITE_MASK;
2500
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2501 2502 2503 2504 2505 2506
		}
	}

	if (pte_access & ACC_WRITE_MASK)
		mark_page_dirty(vcpu->kvm, gfn);

2507
set_pte:
2508
	if (mmu_spte_update(sptep, spte))
2509
		kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2510
done:
M
Marcelo Tosatti 已提交
2511 2512 2513
	return ret;
}

A
Avi Kivity 已提交
2514
static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2515 2516 2517
			 unsigned pte_access, int write_fault, int *emulate,
			 int level, gfn_t gfn, pfn_t pfn, bool speculative,
			 bool host_writable)
M
Marcelo Tosatti 已提交
2518 2519
{
	int was_rmapped = 0;
2520
	int rmap_count;
M
Marcelo Tosatti 已提交
2521

2522 2523
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2524

A
Avi Kivity 已提交
2525
	if (is_rmap_spte(*sptep)) {
M
Marcelo Tosatti 已提交
2526 2527 2528 2529
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2530 2531
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2532
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2533
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2534 2535

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2536
			drop_parent_pte(child, sptep);
2537
			kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2538
		} else if (pfn != spte_to_pfn(*sptep)) {
2539
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2540
				 spte_to_pfn(*sptep), pfn);
2541
			drop_spte(vcpu->kvm, sptep);
2542
			kvm_flush_remote_tlbs(vcpu->kvm);
2543 2544
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2545
	}
2546

2547 2548
	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
	      true, host_writable)) {
M
Marcelo Tosatti 已提交
2549
		if (write_fault)
2550
			*emulate = 1;
2551
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2552
	}
M
Marcelo Tosatti 已提交
2553

2554 2555 2556
	if (unlikely(is_mmio_spte(*sptep) && emulate))
		*emulate = 1;

A
Avi Kivity 已提交
2557
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2558
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2559
		 is_large_pte(*sptep)? "2MB" : "4kB",
2560 2561
		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
		 *sptep, sptep);
A
Avi Kivity 已提交
2562
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2563 2564
		++vcpu->kvm->stat.lpages;

2565 2566 2567 2568 2569 2570
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2571
	}
2572

X
Xiao Guangrong 已提交
2573
	kvm_release_pfn_clean(pfn);
2574 2575
}

2576 2577 2578 2579 2580
static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2581
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2582
	if (!slot)
2583
		return KVM_PFN_ERR_FAULT;
2584

2585
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2598
	if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2599 2600 2601 2602 2603 2604 2605
		return -1;

	ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
2606
		mmu_set_spte(vcpu, start, access, 0, NULL,
2607 2608
			     sp->role.level, gfn, page_to_pfn(pages[i]),
			     true, true);
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2625
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

	/*
	 * Since it's no accessed bit on EPT, it's no way to
	 * distinguish between actually accessed translations
	 * and prefetched, so disable pte prefetch if EPT is
	 * enabled.
	 */
	if (!shadow_accessed_mask)
		return;

	sp = page_header(__pa(sptep));
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2656
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2657 2658
			int map_writable, int level, gfn_t gfn, pfn_t pfn,
			bool prefault)
2659
{
2660
	struct kvm_shadow_walk_iterator iterator;
2661
	struct kvm_mmu_page *sp;
2662
	int emulate = 0;
2663
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
2664

2665 2666 2667
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return 0;

2668
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2669
		if (iterator.level == level) {
2670
			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2671 2672
				     write, &emulate, level, gfn, pfn,
				     prefault, map_writable);
2673
			direct_pte_prefetch(vcpu, iterator.sptep);
2674 2675
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
2676 2677
		}

2678
		drop_large_spte(vcpu, iterator.sptep);
2679
		if (!is_shadow_present_pte(*iterator.sptep)) {
2680 2681 2682 2683
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
2684 2685 2686
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
					      iterator.level - 1,
					      1, ACC_ALL, iterator.sptep);
2687

2688
			link_shadow_page(iterator.sptep, sp, true);
2689 2690
		}
	}
2691
	return emulate;
A
Avi Kivity 已提交
2692 2693
}

H
Huang Ying 已提交
2694
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2695
{
H
Huang Ying 已提交
2696 2697 2698 2699 2700 2701 2702
	siginfo_t info;

	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
2703

H
Huang Ying 已提交
2704
	send_sig_info(SIGBUS, &info, tsk);
2705 2706
}

2707
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2708
{
X
Xiao Guangrong 已提交
2709 2710 2711 2712 2713 2714 2715 2716 2717
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 * Return 1 to tell kvm to emulate it.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
		return 1;

2718
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2719
		kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2720
		return 0;
2721
	}
2722

2723
	return -EFAULT;
2724 2725
}

2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
					gfn_t *gfnp, pfn_t *pfnp, int *levelp)
{
	pfn_t pfn = *pfnp;
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
2739
	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
	    level == PT_PAGE_TABLE_LEVEL &&
	    PageTransCompound(pfn_to_page(pfn)) &&
	    !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
2761
			kvm_get_pfn(pfn);
2762 2763 2764 2765 2766
			*pfnp = pfn;
		}
	}
}

2767 2768 2769 2770 2771 2772
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
				pfn_t pfn, unsigned access, int *ret_val)
{
	bool ret = true;

	/* The pfn is invalid, report the error! */
2773
	if (unlikely(is_error_pfn(pfn))) {
2774 2775 2776 2777
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
		goto exit;
	}

2778
	if (unlikely(is_noslot_pfn(pfn)))
2779 2780 2781 2782 2783 2784 2785
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

	ret = false;
exit:
	return ret;
}

2786
static bool page_fault_can_be_fast(u32 error_code)
2787
{
2788 2789 2790 2791 2792 2793 2794
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
	/*
	 * #PF can be fast only if the shadow page table is present and it
	 * is caused by write-protect, that means we just need change the
	 * W bit of the spte which can be done out of mmu-lock.
	 */
	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	return true;
}

static bool
2808 2809
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			u64 *sptep, u64 spte)
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

	/*
	 * The gfn of direct spte is stable since it is calculated
	 * by sp->gfn.
	 */
	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);

	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
		mark_page_dirty(vcpu->kvm, gfn);

	return true;
}

/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
2836
	struct kvm_mmu_page *sp;
2837 2838 2839
	bool ret = false;
	u64 spte = 0ull;

2840 2841 2842
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return false;

2843
	if (!page_fault_can_be_fast(error_code))
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
		return false;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
		if (!is_shadow_present_pte(spte) || iterator.level < level)
			break;

	/*
	 * If the mapping has been changed, let the vcpu fault on the
	 * same address again.
	 */
	if (!is_rmap_spte(spte)) {
		ret = true;
		goto exit;
	}

2860 2861
	sp = page_header(__pa(iterator.sptep));
	if (!is_last_spte(spte, sp->role.level))
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
		goto exit;

	/*
	 * Check if it is a spurious fault caused by TLB lazily flushed.
	 *
	 * Need not check the access of upper level table entries since
	 * they are always ACC_ALL.
	 */
	 if (is_writable_pte(spte)) {
		ret = true;
		goto exit;
	}

	/*
	 * Currently, to simplify the code, only the spte write-protected
	 * by dirty-log can be fast fixed.
	 */
	if (!spte_is_locklessly_modifiable(spte))
		goto exit;

2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
	/*
	 * Do not fix write-permission on the large spte since we only dirty
	 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
	 * that means other pages are missed if its slot is dirty-logged.
	 *
	 * Instead, we let the slow page fault path create a normal spte to
	 * fix the access.
	 *
	 * See the comments in kvm_arch_commit_memory_region().
	 */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		goto exit;

2895 2896 2897 2898 2899
	/*
	 * Currently, fast page fault only works for direct mapping since
	 * the gfn is not stable for indirect shadow page.
	 * See Documentation/virtual/kvm/locking.txt to get more detail.
	 */
2900
	ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2901
exit:
X
Xiao Guangrong 已提交
2902 2903
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
			      spte, ret);
2904 2905 2906 2907 2908
	walk_shadow_page_lockless_end(vcpu);

	return ret;
}

2909
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2910
			 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2911
static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2912

2913 2914
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
2915 2916
{
	int r;
2917
	int level;
2918
	int force_pt_level;
2919
	pfn_t pfn;
2920
	unsigned long mmu_seq;
2921
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
2922

2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
2933

2934 2935 2936
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
2937

2938 2939 2940
	if (fast_page_fault(vcpu, v, level, error_code))
		return 0;

2941
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
2942
	smp_rmb();
2943

2944
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2945
		return 0;
2946

2947 2948
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
2949

2950
	spin_lock(&vcpu->kvm->mmu_lock);
2951
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2952
		goto out_unlock;
2953
	make_mmu_pages_available(vcpu);
2954 2955
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2956 2957
	r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
			 prefault);
2958 2959 2960
	spin_unlock(&vcpu->kvm->mmu_lock);


2961
	return r;
2962 2963 2964 2965 2966

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
2967 2968 2969
}


2970 2971 2972
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
	int i;
2973
	struct kvm_mmu_page *sp;
2974
	LIST_HEAD(invalid_list);
2975

2976
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
A
Avi Kivity 已提交
2977
		return;
2978

2979 2980 2981
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
	     vcpu->arch.mmu.direct_map)) {
2982
		hpa_t root = vcpu->arch.mmu.root_hpa;
2983

2984
		spin_lock(&vcpu->kvm->mmu_lock);
2985 2986
		sp = page_header(root);
		--sp->root_count;
2987 2988 2989 2990
		if (!sp->root_count && sp->role.invalid) {
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
		}
2991
		spin_unlock(&vcpu->kvm->mmu_lock);
2992
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2993 2994
		return;
	}
2995 2996

	spin_lock(&vcpu->kvm->mmu_lock);
2997
	for (i = 0; i < 4; ++i) {
2998
		hpa_t root = vcpu->arch.mmu.pae_root[i];
2999

A
Avi Kivity 已提交
3000 3001
		if (root) {
			root &= PT64_BASE_ADDR_MASK;
3002 3003
			sp = page_header(root);
			--sp->root_count;
3004
			if (!sp->root_count && sp->role.invalid)
3005 3006
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
A
Avi Kivity 已提交
3007
		}
3008
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3009
	}
3010
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3011
	spin_unlock(&vcpu->kvm->mmu_lock);
3012
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3013 3014
}

3015 3016 3017 3018 3019
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3020
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3021 3022 3023 3024 3025 3026
		ret = 1;
	}

	return ret;
}

3027 3028 3029
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3030
	unsigned i;
3031 3032 3033

	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		spin_lock(&vcpu->kvm->mmu_lock);
3034
		make_mmu_pages_available(vcpu);
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
				      1, ACC_ALL, NULL);
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

			ASSERT(!VALID_PAGE(root));
			spin_lock(&vcpu->kvm->mmu_lock);
3046
			make_mmu_pages_available(vcpu);
3047 3048
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30,
3049 3050 3051 3052 3053 3054 3055
					      PT32_ROOT_LEVEL, 1, ACC_ALL,
					      NULL);
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
3056
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3057 3058 3059 3060 3061 3062 3063
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3064
{
3065
	struct kvm_mmu_page *sp;
3066 3067 3068
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
3069

3070
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3071

3072 3073 3074 3075 3076 3077 3078 3079
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3080
		hpa_t root = vcpu->arch.mmu.root_hpa;
3081 3082

		ASSERT(!VALID_PAGE(root));
3083

3084
		spin_lock(&vcpu->kvm->mmu_lock);
3085
		make_mmu_pages_available(vcpu);
3086 3087
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
				      0, ACC_ALL, NULL);
3088 3089
		root = __pa(sp->spt);
		++sp->root_count;
3090
		spin_unlock(&vcpu->kvm->mmu_lock);
3091
		vcpu->arch.mmu.root_hpa = root;
3092
		return 0;
3093
	}
3094

3095 3096
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3097 3098
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3099
	 */
3100 3101 3102 3103
	pm_mask = PT_PRESENT_MASK;
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3104
	for (i = 0; i < 4; ++i) {
3105
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3106 3107

		ASSERT(!VALID_PAGE(root));
3108
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3109
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3110
			if (!is_present_gpte(pdptr)) {
3111
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3112 3113
				continue;
			}
A
Avi Kivity 已提交
3114
			root_gfn = pdptr >> PAGE_SHIFT;
3115 3116
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3117
		}
3118
		spin_lock(&vcpu->kvm->mmu_lock);
3119
		make_mmu_pages_available(vcpu);
3120
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3121
				      PT32_ROOT_LEVEL, 0,
3122
				      ACC_ALL, NULL);
3123 3124
		root = __pa(sp->spt);
		++sp->root_count;
3125 3126
		spin_unlock(&vcpu->kvm->mmu_lock);

3127
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3128
	}
3129
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3156
	return 0;
3157 3158
}

3159 3160 3161 3162 3163 3164 3165 3166
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3167 3168 3169 3170 3171
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_mmu_page *sp;

3172 3173 3174
	if (vcpu->arch.mmu.direct_map)
		return;

3175 3176
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3177

3178
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3179
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3180
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3181 3182 3183
		hpa_t root = vcpu->arch.mmu.root_hpa;
		sp = page_header(root);
		mmu_sync_children(vcpu, sp);
3184
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3185 3186 3187 3188 3189
		return;
	}
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3190
		if (root && VALID_PAGE(root)) {
3191 3192 3193 3194 3195
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}
3196
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3197 3198 3199 3200 3201 3202
}

void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->kvm->mmu_lock);
	mmu_sync_roots(vcpu);
3203
	spin_unlock(&vcpu->kvm->mmu_lock);
3204
}
N
Nadav Har'El 已提交
3205
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3206

3207
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3208
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3209
{
3210 3211
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3212 3213 3214
	return vaddr;
}

3215
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3216 3217
					 u32 access,
					 struct x86_exception *exception)
3218
{
3219 3220
	if (exception)
		exception->error_code = 0;
3221
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3222 3223
}

3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}


/*
 * On direct hosts, the last spte is only allows two states
 * for mmio page fault:
 *   - It is the mmio spte
 *   - It is zapped or it is being zapped.
 *
 * This function completely checks the spte when the last spte
 * is not the mmio spte.
 */
static bool check_direct_spte_mmio_pf(u64 spte)
{
	return __check_direct_spte_mmio_pf(spte);
}

static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte = 0ull;

3252 3253 3254
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return spte;

3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
		if (!is_shadow_present_pte(spte))
			break;
	walk_shadow_page_lockless_end(vcpu);

	return spte;
}

int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	u64 spte;

	if (quickly_check_mmio_pf(vcpu, addr, direct))
3269
		return RET_MMIO_PF_EMULATE;
3270 3271 3272 3273 3274 3275 3276

	spte = walk_shadow_page_get_mmio_spte(vcpu, addr);

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

3277 3278 3279
		if (!check_mmio_spte(vcpu->kvm, spte))
			return RET_MMIO_PF_INVALID;

3280 3281
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3282 3283

		trace_handle_mmio_page_fault(addr, gfn, access);
3284
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3285
		return RET_MMIO_PF_EMULATE;
3286 3287 3288 3289 3290 3291 3292
	}

	/*
	 * It's ok if the gva is remapped by other cpus on shadow guest,
	 * it's a BUG if the gfn is not a mmio page.
	 */
	if (direct && !check_direct_spte_mmio_pf(spte))
3293
		return RET_MMIO_PF_BUG;
3294 3295 3296 3297 3298

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3299
	return RET_MMIO_PF_RETRY;
3300 3301 3302 3303 3304 3305 3306 3307 3308
}
EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);

static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
				  u32 error_code, bool direct)
{
	int ret;

	ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3309
	WARN_ON(ret == RET_MMIO_PF_BUG);
3310 3311 3312
	return ret;
}

A
Avi Kivity 已提交
3313
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3314
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3315
{
3316
	gfn_t gfn;
3317
	int r;
A
Avi Kivity 已提交
3318

3319
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3320

3321 3322 3323 3324 3325 3326
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gva, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3327

3328 3329 3330
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3331

A
Avi Kivity 已提交
3332
	ASSERT(vcpu);
3333
	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3334

3335
	gfn = gva >> PAGE_SHIFT;
A
Avi Kivity 已提交
3336

3337
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3338
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3339 3340
}

3341
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3342 3343
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3344

3345
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3346
	arch.gfn = gfn;
3347
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3348
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3349

3350
	return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
}

static bool can_do_async_pf(struct kvm_vcpu *vcpu)
{
	if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
		     kvm_event_needs_reinjection(vcpu)))
		return false;

	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3362
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3363
			 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3364 3365 3366
{
	bool async;

3367
	*pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3368 3369 3370 3371

	if (!async)
		return false; /* *pfn has correct page already */

3372
	if (!prefault && can_do_async_pf(vcpu)) {
3373
		trace_kvm_try_async_get_page(gva, gfn);
3374 3375 3376 3377 3378 3379 3380 3381
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3382
	*pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3383 3384 3385 3386

	return false;
}

G
Gleb Natapov 已提交
3387
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3388
			  bool prefault)
3389
{
3390
	pfn_t pfn;
3391
	int r;
3392
	int level;
3393
	int force_pt_level;
M
Marcelo Tosatti 已提交
3394
	gfn_t gfn = gpa >> PAGE_SHIFT;
3395
	unsigned long mmu_seq;
3396 3397
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
3398 3399 3400 3401

	ASSERT(vcpu);
	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));

3402 3403 3404 3405 3406 3407
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gpa, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3408

3409 3410 3411 3412
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

3413 3414 3415 3416 3417 3418
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
3419

3420 3421 3422
	if (fast_page_fault(vcpu, gpa, level, error_code))
		return 0;

3423
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3424
	smp_rmb();
3425

3426
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3427 3428
		return 0;

3429 3430 3431
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

3432
	spin_lock(&vcpu->kvm->mmu_lock);
3433
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3434
		goto out_unlock;
3435
	make_mmu_pages_available(vcpu);
3436 3437
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3438
	r = __direct_map(vcpu, gpa, write, map_writable,
3439
			 level, gfn, pfn, prefault);
3440 3441 3442
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
3443 3444 3445 3446 3447

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3448 3449
}

3450 3451
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3452 3453 3454
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3455
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3456
	context->invlpg = nonpaging_invlpg;
3457
	context->update_pte = nonpaging_update_pte;
3458
	context->root_level = 0;
A
Avi Kivity 已提交
3459
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3460
	context->root_hpa = INVALID_PAGE;
3461
	context->direct_map = true;
3462
	context->nx = false;
A
Avi Kivity 已提交
3463 3464
}

3465
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3466
{
3467
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3468 3469
}

3470 3471
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3472
	return kvm_read_cr3(vcpu);
3473 3474
}

3475 3476
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
3477
{
3478
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
3479 3480
}

3481 3482
static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
			   unsigned access, int *nr_present)
3483 3484 3485 3486 3487 3488 3489 3490
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3491
		mark_mmio_spte(kvm, sptep, gfn, access);
3492 3493 3494 3495 3496 3497
		return true;
	}

	return false;
}

A
Avi Kivity 已提交
3498 3499 3500 3501 3502 3503 3504 3505 3506
static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
{
	unsigned index;

	index = level - 1;
	index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
	return mmu->last_pte_bitmap & (1 << index);
}

3507 3508 3509 3510 3511
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
3512 3513 3514 3515 3516 3517 3518 3519
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

3520
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3521
				  struct kvm_mmu *context)
3522 3523 3524
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	u64 exb_bit_rsvd = 0;
3525
	u64 gbpages_bit_rsvd = 0;
3526
	u64 nonleaf_bit8_rsvd = 0;
3527

3528 3529
	context->bad_mt_xwr = 0;

3530
	if (!context->nx)
3531
		exb_bit_rsvd = rsvd_bits(63, 63);
3532 3533
	if (!guest_cpuid_has_gbpages(vcpu))
		gbpages_bit_rsvd = rsvd_bits(7, 7);
3534 3535 3536 3537 3538 3539 3540 3541

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
	if (guest_cpuid_is_amd(vcpu))
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

3542
	switch (context->root_level) {
3543 3544 3545 3546
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
		context->rsvd_bits_mask[0][1] = 0;
		context->rsvd_bits_mask[0][0] = 0;
3547 3548 3549 3550 3551 3552 3553
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

		if (!is_pse(vcpu)) {
			context->rsvd_bits_mask[1][1] = 0;
			break;
		}

3554 3555 3556 3557 3558 3559 3560 3561
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
		else
			/* 32 bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
		break;
	case PT32E_ROOT_LEVEL:
3562 3563
		context->rsvd_bits_mask[0][2] =
			rsvd_bits(maxphyaddr, 63) |
3564
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
3565
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3566
			rsvd_bits(maxphyaddr, 62);	/* PDE */
3567 3568 3569 3570 3571
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
3572
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3573 3574 3575
		break;
	case PT64_ROOT_LEVEL:
		context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3576
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
3577
		context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3578
			nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
3579
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3580
			rsvd_bits(maxphyaddr, 51);
3581 3582 3583
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3584
		context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3585
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3586
			rsvd_bits(13, 29);
3587
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3588 3589
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
3590
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3591 3592 3593 3594
		break;
	}
}

3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	int pte;

	context->rsvd_bits_mask[0][3] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
	context->rsvd_bits_mask[0][2] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
	context->rsvd_bits_mask[0][1] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
	context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);

	/* large page */
	context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
	context->rsvd_bits_mask[1][2] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
	context->rsvd_bits_mask[1][1] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
	context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

	for (pte = 0; pte < 64; pte++) {
		int rwx_bits = pte & 7;
		int mt = pte >> 3;
		if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
				rwx_bits == 0x2 || rwx_bits == 0x6 ||
				(rwx_bits == 0x4 && !execonly))
			context->bad_mt_xwr |= (1ull << pte);
	}
}

F
Feng Wu 已提交
3627
void update_permission_bitmask(struct kvm_vcpu *vcpu,
3628
		struct kvm_mmu *mmu, bool ept)
3629 3630 3631
{
	unsigned bit, byte, pfec;
	u8 map;
F
Feng Wu 已提交
3632
	bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3633

F
Feng Wu 已提交
3634
	cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
F
Feng Wu 已提交
3635
	cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3636 3637 3638 3639 3640 3641
	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
		pfec = byte << 1;
		map = 0;
		wf = pfec & PFERR_WRITE_MASK;
		uf = pfec & PFERR_USER_MASK;
		ff = pfec & PFERR_FETCH_MASK;
F
Feng Wu 已提交
3642 3643 3644 3645 3646 3647
		/*
		 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
		 * subject to SMAP restrictions, and cleared otherwise. The
		 * bit is only meaningful if the SMAP bit is set in CR4.
		 */
		smapf = !(pfec & PFERR_RSVD_MASK);
3648 3649 3650 3651 3652
		for (bit = 0; bit < 8; ++bit) {
			x = bit & ACC_EXEC_MASK;
			w = bit & ACC_WRITE_MASK;
			u = bit & ACC_USER_MASK;

3653 3654 3655 3656 3657 3658
			if (!ept) {
				/* Not really needed: !nx will cause pte.nx to fault */
				x |= !mmu->nx;
				/* Allow supervisor writes if !cr0.wp */
				w |= !is_write_protection(vcpu) && !uf;
				/* Disallow supervisor fetches of user code if cr4.smep */
F
Feng Wu 已提交
3659
				x &= !(cr4_smep && u && !uf);
F
Feng Wu 已提交
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679

				/*
				 * SMAP:kernel-mode data accesses from user-mode
				 * mappings should fault. A fault is considered
				 * as a SMAP violation if all of the following
				 * conditions are ture:
				 *   - X86_CR4_SMAP is set in CR4
				 *   - An user page is accessed
				 *   - Page fault in kernel mode
				 *   - if CPL = 3 or X86_EFLAGS_AC is clear
				 *
				 *   Here, we cover the first three conditions.
				 *   The fourth is computed dynamically in
				 *   permission_fault() and is in smapf.
				 *
				 *   Also, SMAP does not affect instruction
				 *   fetches, add the !ff check here to make it
				 *   clearer.
				 */
				smap = cr4_smap && u && !uf && !ff;
3680 3681 3682
			} else
				/* Not really needed: no U/S accesses on ept  */
				u = 1;
3683

F
Feng Wu 已提交
3684 3685
			fault = (ff && !x) || (uf && !u) || (wf && !w) ||
				(smapf && smap);
3686 3687 3688 3689 3690 3691
			map |= fault << bit;
		}
		mmu->permissions[byte] = map;
	}
}

A
Avi Kivity 已提交
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	u8 map;
	unsigned level, root_level = mmu->root_level;
	const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */

	if (root_level == PT32E_ROOT_LEVEL)
		--root_level;
	/* PT_PAGE_TABLE_LEVEL always terminates */
	map = 1 | (1 << ps_set_index);
	for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
		if (level <= PT_PDPE_LEVEL
		    && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
			map |= 1 << (ps_set_index | (level - 1));
	}
	mmu->last_pte_bitmap = map;
}

3710 3711 3712
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
3713
{
3714
	context->nx = is_nx(vcpu);
3715
	context->root_level = level;
3716

3717
	reset_rsvds_bits_mask(vcpu, context);
3718
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3719
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3720 3721 3722 3723

	ASSERT(is_pae(vcpu));
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
3724
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
3725
	context->invlpg = paging64_invlpg;
3726
	context->update_pte = paging64_update_pte;
3727
	context->shadow_root_level = level;
A
Avi Kivity 已提交
3728
	context->root_hpa = INVALID_PAGE;
3729
	context->direct_map = false;
A
Avi Kivity 已提交
3730 3731
}

3732 3733
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
3734
{
3735
	paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3736 3737
}

3738 3739
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
3740
{
3741
	context->nx = false;
3742
	context->root_level = PT32_ROOT_LEVEL;
3743

3744
	reset_rsvds_bits_mask(vcpu, context);
3745
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3746
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3747 3748 3749

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
3750
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
3751
	context->invlpg = paging32_invlpg;
3752
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
3753
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3754
	context->root_hpa = INVALID_PAGE;
3755
	context->direct_map = false;
A
Avi Kivity 已提交
3756 3757
}

3758 3759
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3760
{
3761
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
3762 3763
}

3764
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3765
{
3766
	struct kvm_mmu *context = vcpu->arch.walk_mmu;
3767

3768
	context->base_role.word = 0;
3769
	context->page_fault = tdp_page_fault;
3770
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3771
	context->invlpg = nonpaging_invlpg;
3772
	context->update_pte = nonpaging_update_pte;
3773
	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3774
	context->root_hpa = INVALID_PAGE;
3775
	context->direct_map = true;
3776
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3777
	context->get_cr3 = get_cr3;
3778
	context->get_pdptr = kvm_pdptr_read;
3779
	context->inject_page_fault = kvm_inject_page_fault;
3780 3781

	if (!is_paging(vcpu)) {
3782
		context->nx = false;
3783 3784 3785
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
3786
		context->nx = is_nx(vcpu);
3787
		context->root_level = PT64_ROOT_LEVEL;
3788 3789
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3790
	} else if (is_pae(vcpu)) {
3791
		context->nx = is_nx(vcpu);
3792
		context->root_level = PT32E_ROOT_LEVEL;
3793 3794
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3795
	} else {
3796
		context->nx = false;
3797
		context->root_level = PT32_ROOT_LEVEL;
3798 3799
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
3800 3801
	}

3802
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3803
	update_last_pte_bitmap(vcpu, context);
3804 3805
}

3806
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
A
Avi Kivity 已提交
3807
{
3808
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
A
Avi Kivity 已提交
3809
	ASSERT(vcpu);
3810
	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3811 3812

	if (!is_paging(vcpu))
3813
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
3814
	else if (is_long_mode(vcpu))
3815
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
3816
	else if (is_pae(vcpu))
3817
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
3818
	else
3819
		paging32_init_context(vcpu, context);
3820

3821
	vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3822
	vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3823
	vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3824 3825
	vcpu->arch.mmu.base_role.smep_andnot_wp
		= smep && !is_write_protection(vcpu);
3826 3827 3828
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

3829
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
N
Nadav Har'El 已提交
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
		bool execonly)
{
	ASSERT(vcpu);
	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));

	context->shadow_root_level = kvm_x86_ops->get_tdp_level();

	context->nx = true;
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
	context->root_level = context->shadow_root_level;
	context->root_hpa = INVALID_PAGE;
	context->direct_map = false;

	update_permission_bitmask(vcpu, context, true);
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

3852
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
3853
{
3854
	kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3855 3856
	vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
	vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3857
	vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3858
	vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
3859 3860
}

3861
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3862 3863 3864 3865
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
3866
	g_context->get_pdptr         = kvm_pdptr_read;
3867 3868 3869 3870 3871 3872 3873 3874 3875
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
	 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
	 * translation of l2_gpa to l1_gpa addresses is done using the
	 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
	 * functions between mmu and nested_mmu are swapped.
	 */
	if (!is_paging(vcpu)) {
3876
		g_context->nx = false;
3877 3878 3879
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
3880
		g_context->nx = is_nx(vcpu);
3881
		g_context->root_level = PT64_ROOT_LEVEL;
3882
		reset_rsvds_bits_mask(vcpu, g_context);
3883 3884
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
3885
		g_context->nx = is_nx(vcpu);
3886
		g_context->root_level = PT32E_ROOT_LEVEL;
3887
		reset_rsvds_bits_mask(vcpu, g_context);
3888 3889
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
3890
		g_context->nx = false;
3891
		g_context->root_level = PT32_ROOT_LEVEL;
3892
		reset_rsvds_bits_mask(vcpu, g_context);
3893 3894 3895
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

3896
	update_permission_bitmask(vcpu, g_context, false);
A
Avi Kivity 已提交
3897
	update_last_pte_bitmap(vcpu, g_context);
3898 3899
}

3900
static void init_kvm_mmu(struct kvm_vcpu *vcpu)
3901
{
3902
	if (mmu_is_nested(vcpu))
3903
		init_kvm_nested_mmu(vcpu);
3904
	else if (tdp_enabled)
3905
		init_kvm_tdp_mmu(vcpu);
3906
	else
3907
		init_kvm_softmmu(vcpu);
3908 3909
}

3910
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3911 3912 3913
{
	ASSERT(vcpu);

3914
	kvm_mmu_unload(vcpu);
3915
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
3916
}
3917
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
3918 3919

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3920
{
3921 3922
	int r;

3923
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
3924 3925
	if (r)
		goto out;
3926
	r = mmu_alloc_roots(vcpu);
3927
	kvm_mmu_sync_roots(vcpu);
3928 3929
	if (r)
		goto out;
3930
	/* set_cr3() should ensure TLB has been flushed */
3931
	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3932 3933
out:
	return r;
A
Avi Kivity 已提交
3934
}
A
Avi Kivity 已提交
3935 3936 3937 3938 3939
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
	mmu_free_roots(vcpu);
3940
	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3941
}
3942
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
3943

3944
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3945 3946
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
3947
{
3948
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3949 3950
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
3951
        }
3952

A
Avi Kivity 已提交
3953
	++vcpu->kvm->stat.mmu_pte_updated;
3954
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3955 3956
}

3957 3958 3959 3960 3961 3962 3963 3964
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
3965 3966
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
3967 3968 3969
	return (old & ~new & PT64_PERM_MASK) != 0;
}

3970 3971
static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
				    bool remote_flush, bool local_flush)
3972
{
3973 3974 3975 3976
	if (zap_page)
		return;

	if (remote_flush)
3977
		kvm_flush_remote_tlbs(vcpu->kvm);
3978
	else if (local_flush)
3979
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3980 3981
}

3982 3983
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
				    const u8 *new, int *bytes)
3984
{
3985 3986
	u64 gentry;
	int r;
3987 3988 3989

	/*
	 * Assume that the pte write on a page table of the same type
3990 3991
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
3992
	 */
3993
	if (is_pae(vcpu) && *bytes == 4) {
3994
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3995 3996
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
3997
		r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3998 3999
		if (r)
			gentry = 0;
4000 4001 4002
		new = (const u8 *)&gentry;
	}

4003
	switch (*bytes) {
4004 4005 4006 4007 4008 4009 4010 4011 4012
	case 4:
		gentry = *(const u32 *)new;
		break;
	case 8:
		gentry = *(const u64 *)new;
		break;
	default:
		gentry = 0;
		break;
4013 4014
	}

4015 4016 4017 4018 4019 4020 4021
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4022
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4023
{
4024 4025 4026 4027
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4028
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4029
		return false;
4030

4031
	return ++sp->write_flooding_count >= 3;
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
4048 4049 4050 4051 4052 4053 4054 4055

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
		       const u8 *new, int bytes)
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	union kvm_mmu_page_role mask = { .word = 0 };
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4102
	bool remote_flush, local_flush, zap_page;
4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
		return;

	zap_page = remote_flush = local_flush = false;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
	++vcpu->kvm->stat.mmu_pte_write;
4126
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4127

4128
	mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4129
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4130
		if (detect_write_misaligned(sp, gpa, bytes) ||
4131
		      detect_write_flooding(sp)) {
4132
			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4133
						     &invalid_list);
A
Avi Kivity 已提交
4134
			++vcpu->kvm->stat.mmu_flooded;
4135 4136
			continue;
		}
4137 4138 4139 4140 4141

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4142
		local_flush = true;
4143
		while (npte--) {
4144
			entry = *spte;
4145
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4146 4147
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4148
			      & mask.word) && rmap_can_add(vcpu))
4149
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
4150
			if (need_remote_flush(entry, *spte))
4151
				remote_flush = true;
4152
			++spte;
4153 4154
		}
	}
4155
	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4156
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4157
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4158
	spin_unlock(&vcpu->kvm->mmu_lock);
4159 4160
}

4161 4162
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
4163 4164
	gpa_t gpa;
	int r;
4165

4166
	if (vcpu->arch.mmu.direct_map)
4167 4168
		return 0;

4169
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4170 4171

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4172

4173
	return r;
4174
}
4175
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4176

4177
static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4178
{
4179
	LIST_HEAD(invalid_list);
4180

4181 4182 4183
	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return;

4184 4185 4186
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;
A
Avi Kivity 已提交
4187

A
Avi Kivity 已提交
4188
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
4189
	}
4190
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
A
Avi Kivity 已提交
4191 4192
}

4193 4194 4195 4196 4197 4198 4199 4200
static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
{
	if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

4201 4202
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
		       void *insn, int insn_len)
4203
{
4204
	int r, emulation_type = EMULTYPE_RETRY;
4205 4206
	enum emulation_result er;

G
Gleb Natapov 已提交
4207
	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4208 4209 4210 4211 4212 4213 4214 4215
	if (r < 0)
		goto out;

	if (!r) {
		r = 1;
		goto out;
	}

4216 4217 4218 4219
	if (is_mmio_page_fault(vcpu, cr2))
		emulation_type = 0;

	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4220 4221 4222 4223

	switch (er) {
	case EMULATE_DONE:
		return 1;
P
Paolo Bonzini 已提交
4224
	case EMULATE_USER_EXIT:
4225
		++vcpu->stat.mmio_exits;
4226
		/* fall through */
4227
	case EMULATE_FAIL:
4228
		return 0;
4229 4230 4231 4232 4233 4234 4235 4236
	default:
		BUG();
	}
out:
	return r;
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
4237 4238 4239
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	vcpu->arch.mmu.invlpg(vcpu, gva);
4240
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
M
Marcelo Tosatti 已提交
4241 4242 4243 4244
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

4245 4246 4247 4248 4249 4250
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

4251 4252 4253 4254 4255 4256
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
4257 4258
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
4259
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4260 4261
	if (vcpu->arch.mmu.lm_root != NULL)
		free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
4262 4263 4264 4265
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
4266
	struct page *page;
A
Avi Kivity 已提交
4267 4268 4269 4270
	int i;

	ASSERT(vcpu);

4271 4272 4273 4274 4275 4276 4277
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
4278 4279
		return -ENOMEM;

4280
	vcpu->arch.mmu.pae_root = page_address(page);
4281
	for (i = 0; i < 4; ++i)
4282
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4283

A
Avi Kivity 已提交
4284 4285 4286
	return 0;
}

4287
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4288 4289
{
	ASSERT(vcpu);
4290 4291 4292 4293 4294

	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
4295

4296 4297
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
4298

4299
void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4300 4301
{
	ASSERT(vcpu);
4302
	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4303

4304
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4305 4306
}

4307
void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
A
Avi Kivity 已提交
4308
{
4309 4310 4311
	struct kvm_memory_slot *memslot;
	gfn_t last_gfn;
	int i;
A
Avi Kivity 已提交
4312

4313 4314
	memslot = id_to_memslot(kvm->memslots, slot);
	last_gfn = memslot->base_gfn + memslot->npages - 1;
A
Avi Kivity 已提交
4315

4316 4317
	spin_lock(&kvm->mmu_lock);

4318 4319 4320 4321
	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		unsigned long *rmapp;
		unsigned long last_index, index;
A
Avi Kivity 已提交
4322

4323 4324
		rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
		last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4325

4326 4327 4328
		for (index = 0; index <= last_index; ++index, ++rmapp) {
			if (*rmapp)
				__rmap_write_protect(kvm, rmapp, false);
4329

4330
			if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4331
				cond_resched_lock(&kvm->mmu_lock);
4332
		}
A
Avi Kivity 已提交
4333
	}
4334

4335
	spin_unlock(&kvm->mmu_lock);
4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355

	/*
	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
	 * which do tlb flush out of mmu-lock should be serialized by
	 * kvm->slots_lock otherwise tlb flush would be missed.
	 */
	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
	kvm_flush_remote_tlbs(kvm);
A
Avi Kivity 已提交
4356
}
4357

X
Xiao Guangrong 已提交
4358
#define BATCH_ZAP_PAGES	10
4359 4360 4361
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
X
Xiao Guangrong 已提交
4362
	int batch = 0;
4363 4364 4365 4366

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
X
Xiao Guangrong 已提交
4367 4368
		int ret;

4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
		/*
		 * No obsolete page exists before new created page since
		 * active_mmu_pages is the FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
		 * Since we are reversely walking the list and the invalid
		 * list will be moved to the head, skip the invalid page
		 * can help us to avoid the infinity list walking.
		 */
		if (sp->role.invalid)
			continue;

4384 4385 4386 4387
		/*
		 * Need not flush tlb since we only zap the sp with invalid
		 * generation number.
		 */
X
Xiao Guangrong 已提交
4388
		if (batch >= BATCH_ZAP_PAGES &&
4389
		      cond_resched_lock(&kvm->mmu_lock)) {
X
Xiao Guangrong 已提交
4390
			batch = 0;
4391 4392 4393
			goto restart;
		}

4394 4395
		ret = kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages);
X
Xiao Guangrong 已提交
4396 4397 4398
		batch += ret;

		if (ret)
4399 4400 4401
			goto restart;
	}

4402 4403 4404 4405
	/*
	 * Should flush tlb before free page tables since lockless-walking
	 * may use the pages.
	 */
4406
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
{
	spin_lock(&kvm->mmu_lock);
4421
	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4422 4423
	kvm->arch.mmu_valid_gen++;

4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434
	/*
	 * Notify all vcpus to reload its shadow page table
	 * and flush TLB. Then all vcpus will switch to new
	 * shadow page table with the new mmu_valid_gen.
	 *
	 * Note: we should do this under the protection of
	 * mmu-lock, otherwise, vcpu would purge shadow page
	 * but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

4435 4436 4437 4438
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

4439 4440 4441 4442 4443
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

4444 4445 4446 4447 4448 4449
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
{
	/*
	 * The very rare case: if the generation-number is round,
	 * zap all shadow pages.
	 */
4450
	if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
4451
		printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4452
		kvm_mmu_invalidate_zap_all_pages(kvm);
4453
	}
4454 4455
}

4456 4457
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4458 4459
{
	struct kvm *kvm;
4460
	int nr_to_scan = sc->nr_to_scan;
4461
	unsigned long freed = 0;
4462

4463
	spin_lock(&kvm_lock);
4464 4465

	list_for_each_entry(kvm, &vm_list, vm_list) {
4466
		int idx;
4467
		LIST_HEAD(invalid_list);
4468

4469 4470 4471 4472 4473 4474 4475 4476
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
4477 4478 4479 4480 4481 4482
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
4483 4484
		if (!kvm->arch.n_used_mmu_pages &&
		      !kvm_has_zapped_obsolete_pages(kvm))
4485 4486
			continue;

4487
		idx = srcu_read_lock(&kvm->srcu);
4488 4489
		spin_lock(&kvm->mmu_lock);

4490 4491 4492 4493 4494 4495
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

4496 4497
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
4498
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
4499

4500
unlock:
4501
		spin_unlock(&kvm->mmu_lock);
4502
		srcu_read_unlock(&kvm->srcu, idx);
4503

4504 4505 4506 4507 4508
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
4509 4510
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
4511 4512
	}

4513
	spin_unlock(&kvm_lock);
4514 4515 4516 4517 4518 4519
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
4520
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4521 4522 4523
}

static struct shrinker mmu_shrinker = {
4524 4525
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
4526 4527 4528
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
4529
static void mmu_destroy_caches(void)
4530
{
4531 4532
	if (pte_list_desc_cache)
		kmem_cache_destroy(pte_list_desc_cache);
4533 4534
	if (mmu_page_header_cache)
		kmem_cache_destroy(mmu_page_header_cache);
4535 4536 4537 4538
}

int kvm_mmu_module_init(void)
{
4539 4540
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
4541
					    0, 0, NULL);
4542
	if (!pte_list_desc_cache)
4543 4544
		goto nomem;

4545 4546
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
4547
						  0, 0, NULL);
4548 4549 4550
	if (!mmu_page_header_cache)
		goto nomem;

4551
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4552 4553
		goto nomem;

4554 4555
	register_shrinker(&mmu_shrinker);

4556 4557 4558
	return 0;

nomem:
4559
	mmu_destroy_caches();
4560 4561 4562
	return -ENOMEM;
}

4563 4564 4565 4566 4567 4568 4569
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
4570
	struct kvm_memslots *slots;
4571
	struct kvm_memory_slot *memslot;
4572

4573 4574
	slots = kvm_memslots(kvm);

4575 4576
	kvm_for_each_memslot(memslot, slots)
		nr_pages += memslot->npages;
4577 4578 4579 4580 4581 4582 4583 4584

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
			(unsigned int) KVM_MIN_ALLOC_MMU_PAGES);

	return nr_mmu_pages;
}

4585 4586 4587
int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
{
	struct kvm_shadow_walk_iterator iterator;
4588
	u64 spte;
4589 4590
	int nr_sptes = 0;

4591 4592 4593
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return nr_sptes;

4594 4595 4596
	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		sptes[iterator.level-1] = spte;
4597
		nr_sptes++;
4598
		if (!is_shadow_present_pte(spte))
4599 4600
			break;
	}
4601
	walk_shadow_page_lockless_end(vcpu);
4602 4603 4604 4605 4606

	return nr_sptes;
}
EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);

4607 4608 4609 4610
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
	ASSERT(vcpu);

4611
	kvm_mmu_unload(vcpu);
4612 4613
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
4614 4615 4616 4617 4618 4619 4620
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
4621 4622
	mmu_audit_disable();
}