kprobes.c 50.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 *  Kernel Probes (KProbes)
 *  kernel/kprobes.c
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) IBM Corporation, 2002, 2004
 *
 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
 *		Probes initial implementation (includes suggestions from
 *		Rusty Russell).
 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
 *		hlists and exceptions notifier as suggested by Andi Kleen.
 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
 *		interface to access function arguments.
 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
 *		exceptions notifier to be first on the priority list.
30 31 32
 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
 *		<prasanna@in.ibm.com> added function-return probes.
L
Linus Torvalds 已提交
33 34 35 36
 */
#include <linux/kprobes.h>
#include <linux/hash.h>
#include <linux/init.h>
T
Tim Schmielau 已提交
37
#include <linux/slab.h>
R
Randy Dunlap 已提交
38
#include <linux/stddef.h>
L
Linus Torvalds 已提交
39
#include <linux/module.h>
40
#include <linux/moduleloader.h>
41
#include <linux/kallsyms.h>
42
#include <linux/freezer.h>
43 44
#include <linux/seq_file.h>
#include <linux/debugfs.h>
45
#include <linux/sysctl.h>
46
#include <linux/kdebug.h>
47
#include <linux/memory.h>
48
#include <linux/ftrace.h>
49
#include <linux/cpu.h>
50
#include <linux/jump_label.h>
51

52
#include <asm-generic/sections.h>
L
Linus Torvalds 已提交
53 54
#include <asm/cacheflush.h>
#include <asm/errno.h>
55
#include <asm/uaccess.h>
L
Linus Torvalds 已提交
56 57 58 59

#define KPROBE_HASH_BITS 6
#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)

60 61 62 63 64 65 66 67 68 69

/*
 * Some oddball architectures like 64bit powerpc have function descriptors
 * so this must be overridable.
 */
#ifndef kprobe_lookup_name
#define kprobe_lookup_name(name, addr) \
	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
#endif

70
static int kprobes_initialized;
L
Linus Torvalds 已提交
71
static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72
static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
L
Linus Torvalds 已提交
73

74
/* NOTE: change this value only with kprobe_mutex held */
75
static bool kprobes_all_disarmed;
76

77
static DEFINE_MUTEX(kprobe_mutex);	/* Protects kprobe_table */
78
static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
79
static struct {
80
	spinlock_t lock ____cacheline_aligned_in_smp;
81 82 83 84 85 86
} kretprobe_table_locks[KPROBE_TABLE_SIZE];

static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
{
	return &(kretprobe_table_locks[hash].lock);
}
L
Linus Torvalds 已提交
87

88 89 90 91 92 93 94
/*
 * Normally, functions that we'd want to prohibit kprobes in, are marked
 * __kprobes. But, there are cases where such functions already belong to
 * a different section (__sched for preempt_schedule)
 *
 * For such cases, we now have a blacklist
 */
95
static struct kprobe_blackpoint kprobe_blacklist[] = {
96
	{"preempt_schedule",},
97
	{"native_get_debugreg",},
98 99
	{"irq_entries_start",},
	{"common_interrupt",},
100
	{"mcount",},	/* mcount can be called from everywhere */
101 102 103
	{NULL}    /* Terminator */
};

104
#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
105 106 107 108 109 110 111
/*
 * kprobe->ainsn.insn points to the copy of the instruction to be
 * single-stepped. x86_64, POWER4 and above have no-exec support and
 * stepping on the instruction on a vmalloced/kmalloced/data page
 * is a recipe for disaster
 */
struct kprobe_insn_page {
112
	struct list_head list;
113 114
	kprobe_opcode_t *insns;		/* Page of instruction slots */
	int nused;
115
	int ngarbage;
116
	char slot_used[];
117 118
};

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
#define KPROBE_INSN_PAGE_SIZE(slots)			\
	(offsetof(struct kprobe_insn_page, slot_used) +	\
	 (sizeof(char) * (slots)))

struct kprobe_insn_cache {
	struct list_head pages;	/* list of kprobe_insn_page */
	size_t insn_size;	/* size of instruction slot */
	int nr_garbage;
};

static int slots_per_page(struct kprobe_insn_cache *c)
{
	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
}

134 135 136 137 138 139
enum kprobe_slot_state {
	SLOT_CLEAN = 0,
	SLOT_DIRTY = 1,
	SLOT_USED = 2,
};

140 141 142 143 144 145 146
static DEFINE_MUTEX(kprobe_insn_mutex);	/* Protects kprobe_insn_slots */
static struct kprobe_insn_cache kprobe_insn_slots = {
	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
	.insn_size = MAX_INSN_SIZE,
	.nr_garbage = 0,
};
static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
147

148
/**
149
 * __get_insn_slot() - Find a slot on an executable page for an instruction.
150 151
 * We allocate an executable page if there's no room on existing ones.
 */
152
static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
153 154 155
{
	struct kprobe_insn_page *kip;

156
 retry:
157 158
	list_for_each_entry(kip, &c->pages, list) {
		if (kip->nused < slots_per_page(c)) {
159
			int i;
160
			for (i = 0; i < slots_per_page(c); i++) {
161 162
				if (kip->slot_used[i] == SLOT_CLEAN) {
					kip->slot_used[i] = SLOT_USED;
163
					kip->nused++;
164
					return kip->insns + (i * c->insn_size);
165 166
				}
			}
167 168 169
			/* kip->nused is broken. Fix it. */
			kip->nused = slots_per_page(c);
			WARN_ON(1);
170 171 172
		}
	}

173
	/* If there are any garbage slots, collect it and try again. */
174
	if (c->nr_garbage && collect_garbage_slots(c) == 0)
175
		goto retry;
176 177 178

	/* All out of space.  Need to allocate a new page. */
	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
179
	if (!kip)
180 181 182 183 184 185 186 187 188 189 190 191
		return NULL;

	/*
	 * Use module_alloc so this page is within +/- 2GB of where the
	 * kernel image and loaded module images reside. This is required
	 * so x86_64 can correctly handle the %rip-relative fixups.
	 */
	kip->insns = module_alloc(PAGE_SIZE);
	if (!kip->insns) {
		kfree(kip);
		return NULL;
	}
192
	INIT_LIST_HEAD(&kip->list);
193
	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
194
	kip->slot_used[0] = SLOT_USED;
195
	kip->nused = 1;
196
	kip->ngarbage = 0;
197
	list_add(&kip->list, &c->pages);
198 199 200
	return kip->insns;
}

201

202 203
kprobe_opcode_t __kprobes *get_insn_slot(void)
{
204 205
	kprobe_opcode_t *ret = NULL;

206
	mutex_lock(&kprobe_insn_mutex);
207
	ret = __get_insn_slot(&kprobe_insn_slots);
208
	mutex_unlock(&kprobe_insn_mutex);
209

210 211 212
	return ret;
}

213 214 215
/* Return 1 if all garbages are collected, otherwise 0. */
static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
{
216
	kip->slot_used[idx] = SLOT_CLEAN;
217 218 219 220 221 222 223 224
	kip->nused--;
	if (kip->nused == 0) {
		/*
		 * Page is no longer in use.  Free it unless
		 * it's the last one.  We keep the last one
		 * so as not to have to set it up again the
		 * next time somebody inserts a probe.
		 */
225
		if (!list_is_singular(&kip->list)) {
226
			list_del(&kip->list);
227 228 229 230 231 232 233 234
			module_free(NULL, kip->insns);
			kfree(kip);
		}
		return 1;
	}
	return 0;
}

235
static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
236
{
237
	struct kprobe_insn_page *kip, *next;
238

239 240
	/* Ensure no-one is interrupted on the garbages */
	synchronize_sched();
241

242
	list_for_each_entry_safe(kip, next, &c->pages, list) {
243 244 245 246
		int i;
		if (kip->ngarbage == 0)
			continue;
		kip->ngarbage = 0;	/* we will collect all garbages */
247
		for (i = 0; i < slots_per_page(c); i++) {
248
			if (kip->slot_used[i] == SLOT_DIRTY &&
249 250 251 252
			    collect_one_slot(kip, i))
				break;
		}
	}
253
	c->nr_garbage = 0;
254 255 256
	return 0;
}

257 258
static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
				       kprobe_opcode_t *slot, int dirty)
259 260 261
{
	struct kprobe_insn_page *kip;

262
	list_for_each_entry(kip, &c->pages, list) {
263 264
		long idx = ((long)slot - (long)kip->insns) /
				(c->insn_size * sizeof(kprobe_opcode_t));
265 266
		if (idx >= 0 && idx < slots_per_page(c)) {
			WARN_ON(kip->slot_used[idx] != SLOT_USED);
267
			if (dirty) {
268
				kip->slot_used[idx] = SLOT_DIRTY;
269
				kip->ngarbage++;
270 271
				if (++c->nr_garbage > slots_per_page(c))
					collect_garbage_slots(c);
272
			} else
273 274
				collect_one_slot(kip, idx);
			return;
275 276
		}
	}
277 278 279
	/* Could not free this slot. */
	WARN_ON(1);
}
280

281 282 283 284
void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
{
	mutex_lock(&kprobe_insn_mutex);
	__free_insn_slot(&kprobe_insn_slots, slot, dirty);
285
	mutex_unlock(&kprobe_insn_mutex);
286
}
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
#ifdef CONFIG_OPTPROBES
/* For optimized_kprobe buffer */
static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
static struct kprobe_insn_cache kprobe_optinsn_slots = {
	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
	/* .insn_size is initialized later */
	.nr_garbage = 0,
};
/* Get a slot for optimized_kprobe buffer */
kprobe_opcode_t __kprobes *get_optinsn_slot(void)
{
	kprobe_opcode_t *ret = NULL;

	mutex_lock(&kprobe_optinsn_mutex);
	ret = __get_insn_slot(&kprobe_optinsn_slots);
	mutex_unlock(&kprobe_optinsn_mutex);

	return ret;
}

void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
{
	mutex_lock(&kprobe_optinsn_mutex);
	__free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
	mutex_unlock(&kprobe_optinsn_mutex);
}
#endif
314
#endif
315

316 317 318 319 320 321 322 323 324 325 326
/* We have preemption disabled.. so it is safe to use __ versions */
static inline void set_kprobe_instance(struct kprobe *kp)
{
	__get_cpu_var(kprobe_instance) = kp;
}

static inline void reset_kprobe_instance(void)
{
	__get_cpu_var(kprobe_instance) = NULL;
}

327 328
/*
 * This routine is called either:
329
 * 	- under the kprobe_mutex - during kprobe_[un]register()
330
 * 				OR
331
 * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
332
 */
333
struct kprobe __kprobes *get_kprobe(void *addr)
L
Linus Torvalds 已提交
334 335 336
{
	struct hlist_head *head;
	struct hlist_node *node;
337
	struct kprobe *p;
L
Linus Torvalds 已提交
338 339

	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
340
	hlist_for_each_entry_rcu(p, node, head, hlist) {
L
Linus Torvalds 已提交
341 342 343
		if (p->addr == addr)
			return p;
	}
344

L
Linus Torvalds 已提交
345 346 347
	return NULL;
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);

/* Return true if the kprobe is an aggregator */
static inline int kprobe_aggrprobe(struct kprobe *p)
{
	return p->pre_handler == aggr_pre_handler;
}

/*
 * Keep all fields in the kprobe consistent
 */
static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
{
	memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
	memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
}

#ifdef CONFIG_OPTPROBES
366 367 368
/* NOTE: change this value only with kprobe_mutex held */
static bool kprobes_allow_optimization;

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
/*
 * Call all pre_handler on the list, but ignores its return value.
 * This must be called from arch-dep optimized caller.
 */
void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
	struct kprobe *kp;

	list_for_each_entry_rcu(kp, &p->list, list) {
		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
			set_kprobe_instance(kp);
			kp->pre_handler(kp, regs);
		}
		reset_kprobe_instance();
	}
}

/* Return true(!0) if the kprobe is ready for optimization. */
static inline int kprobe_optready(struct kprobe *p)
{
	struct optimized_kprobe *op;

	if (kprobe_aggrprobe(p)) {
		op = container_of(p, struct optimized_kprobe, kp);
		return arch_prepared_optinsn(&op->optinsn);
	}

	return 0;
}

/*
 * Return an optimized kprobe whose optimizing code replaces
 * instructions including addr (exclude breakpoint).
 */
N
Namhyung Kim 已提交
403
static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
{
	int i;
	struct kprobe *p = NULL;
	struct optimized_kprobe *op;

	/* Don't check i == 0, since that is a breakpoint case. */
	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
		p = get_kprobe((void *)(addr - i));

	if (p && kprobe_optready(p)) {
		op = container_of(p, struct optimized_kprobe, kp);
		if (arch_within_optimized_kprobe(op, addr))
			return p;
	}

	return NULL;
}

/* Optimization staging list, protected by kprobe_mutex */
static LIST_HEAD(optimizing_list);

static void kprobe_optimizer(struct work_struct *work);
static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
#define OPTIMIZE_DELAY 5

/* Kprobe jump optimizer */
static __kprobes void kprobe_optimizer(struct work_struct *work)
{
	struct optimized_kprobe *op, *tmp;

	/* Lock modules while optimizing kprobes */
	mutex_lock(&module_mutex);
	mutex_lock(&kprobe_mutex);
437
	if (kprobes_all_disarmed || !kprobes_allow_optimization)
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
		goto end;

	/*
	 * Wait for quiesence period to ensure all running interrupts
	 * are done. Because optprobe may modify multiple instructions
	 * there is a chance that Nth instruction is interrupted. In that
	 * case, running interrupt can return to 2nd-Nth byte of jump
	 * instruction. This wait is for avoiding it.
	 */
	synchronize_sched();

	/*
	 * The optimization/unoptimization refers online_cpus via
	 * stop_machine() and cpu-hotplug modifies online_cpus.
	 * And same time, text_mutex will be held in cpu-hotplug and here.
	 * This combination can cause a deadlock (cpu-hotplug try to lock
	 * text_mutex but stop_machine can not be done because online_cpus
	 * has been changed)
	 * To avoid this deadlock, we need to call get_online_cpus()
	 * for preventing cpu-hotplug outside of text_mutex locking.
	 */
	get_online_cpus();
	mutex_lock(&text_mutex);
	list_for_each_entry_safe(op, tmp, &optimizing_list, list) {
		WARN_ON(kprobe_disabled(&op->kp));
		if (arch_optimize_kprobe(op) < 0)
			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
		list_del_init(&op->list);
	}
	mutex_unlock(&text_mutex);
	put_online_cpus();
end:
	mutex_unlock(&kprobe_mutex);
	mutex_unlock(&module_mutex);
}

/* Optimize kprobe if p is ready to be optimized */
static __kprobes void optimize_kprobe(struct kprobe *p)
{
	struct optimized_kprobe *op;

	/* Check if the kprobe is disabled or not ready for optimization. */
480
	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
	    (kprobe_disabled(p) || kprobes_all_disarmed))
		return;

	/* Both of break_handler and post_handler are not supported. */
	if (p->break_handler || p->post_handler)
		return;

	op = container_of(p, struct optimized_kprobe, kp);

	/* Check there is no other kprobes at the optimized instructions */
	if (arch_check_optimized_kprobe(op) < 0)
		return;

	/* Check if it is already optimized. */
	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
		return;

	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
	list_add(&op->list, &optimizing_list);
	if (!delayed_work_pending(&optimizing_work))
		schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
}

/* Unoptimize a kprobe if p is optimized */
static __kprobes void unoptimize_kprobe(struct kprobe *p)
{
	struct optimized_kprobe *op;

	if ((p->flags & KPROBE_FLAG_OPTIMIZED) && kprobe_aggrprobe(p)) {
		op = container_of(p, struct optimized_kprobe, kp);
		if (!list_empty(&op->list))
			/* Dequeue from the optimization queue */
			list_del_init(&op->list);
		else
			/* Replace jump with break */
			arch_unoptimize_kprobe(op);
		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
	}
}

/* Remove optimized instructions */
static void __kprobes kill_optimized_kprobe(struct kprobe *p)
{
	struct optimized_kprobe *op;

	op = container_of(p, struct optimized_kprobe, kp);
	if (!list_empty(&op->list)) {
		/* Dequeue from the optimization queue */
		list_del_init(&op->list);
		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
	}
	/* Don't unoptimize, because the target code will be freed. */
	arch_remove_optimized_kprobe(op);
}

/* Try to prepare optimized instructions */
static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
{
	struct optimized_kprobe *op;

	op = container_of(p, struct optimized_kprobe, kp);
	arch_prepare_optimized_kprobe(op);
}

/* Free optimized instructions and optimized_kprobe */
static __kprobes void free_aggr_kprobe(struct kprobe *p)
{
	struct optimized_kprobe *op;

	op = container_of(p, struct optimized_kprobe, kp);
	arch_remove_optimized_kprobe(op);
	kfree(op);
}

/* Allocate new optimized_kprobe and try to prepare optimized instructions */
static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
{
	struct optimized_kprobe *op;

	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
	if (!op)
		return NULL;

	INIT_LIST_HEAD(&op->list);
	op->kp.addr = p->addr;
	arch_prepare_optimized_kprobe(op);

	return &op->kp;
}

static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);

/*
 * Prepare an optimized_kprobe and optimize it
 * NOTE: p must be a normal registered kprobe
 */
static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
{
	struct kprobe *ap;
	struct optimized_kprobe *op;

	ap = alloc_aggr_kprobe(p);
	if (!ap)
		return;

	op = container_of(ap, struct optimized_kprobe, kp);
	if (!arch_prepared_optinsn(&op->optinsn)) {
		/* If failed to setup optimizing, fallback to kprobe */
		free_aggr_kprobe(ap);
		return;
	}

	init_aggr_kprobe(ap, p);
	optimize_kprobe(ap);
}

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
#ifdef CONFIG_SYSCTL
static void __kprobes optimize_all_kprobes(void)
{
	struct hlist_head *head;
	struct hlist_node *node;
	struct kprobe *p;
	unsigned int i;

	/* If optimization is already allowed, just return */
	if (kprobes_allow_optimization)
		return;

	kprobes_allow_optimization = true;
	mutex_lock(&text_mutex);
	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
		head = &kprobe_table[i];
		hlist_for_each_entry_rcu(p, node, head, hlist)
			if (!kprobe_disabled(p))
				optimize_kprobe(p);
	}
	mutex_unlock(&text_mutex);
	printk(KERN_INFO "Kprobes globally optimized\n");
}

static void __kprobes unoptimize_all_kprobes(void)
{
	struct hlist_head *head;
	struct hlist_node *node;
	struct kprobe *p;
	unsigned int i;

	/* If optimization is already prohibited, just return */
	if (!kprobes_allow_optimization)
		return;

	kprobes_allow_optimization = false;
	printk(KERN_INFO "Kprobes globally unoptimized\n");
	get_online_cpus();	/* For avoiding text_mutex deadlock */
	mutex_lock(&text_mutex);
	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
		head = &kprobe_table[i];
		hlist_for_each_entry_rcu(p, node, head, hlist) {
			if (!kprobe_disabled(p))
				unoptimize_kprobe(p);
		}
	}

	mutex_unlock(&text_mutex);
	put_online_cpus();
	/* Allow all currently running kprobes to complete */
	synchronize_sched();
}

int sysctl_kprobes_optimization;
int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
				      void __user *buffer, size_t *length,
				      loff_t *ppos)
{
	int ret;

	mutex_lock(&kprobe_mutex);
	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);

	if (sysctl_kprobes_optimization)
		optimize_all_kprobes();
	else
		unoptimize_all_kprobes();
	mutex_unlock(&kprobe_mutex);

	return ret;
}
#endif /* CONFIG_SYSCTL */

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
static void __kprobes __arm_kprobe(struct kprobe *p)
{
	struct kprobe *old_p;

	/* Check collision with other optimized kprobes */
	old_p = get_optimized_kprobe((unsigned long)p->addr);
	if (unlikely(old_p))
		unoptimize_kprobe(old_p); /* Fallback to unoptimized kprobe */

	arch_arm_kprobe(p);
	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
}

static void __kprobes __disarm_kprobe(struct kprobe *p)
{
	struct kprobe *old_p;

	unoptimize_kprobe(p);	/* Try to unoptimize */
	arch_disarm_kprobe(p);

	/* If another kprobe was blocked, optimize it. */
	old_p = get_optimized_kprobe((unsigned long)p->addr);
	if (unlikely(old_p))
		optimize_kprobe(old_p);
}

#else /* !CONFIG_OPTPROBES */

#define optimize_kprobe(p)			do {} while (0)
#define unoptimize_kprobe(p)			do {} while (0)
#define kill_optimized_kprobe(p)		do {} while (0)
#define prepare_optimized_kprobe(p)		do {} while (0)
#define try_to_optimize_kprobe(p)		do {} while (0)
#define __arm_kprobe(p)				arch_arm_kprobe(p)
#define __disarm_kprobe(p)			arch_disarm_kprobe(p)

static __kprobes void free_aggr_kprobe(struct kprobe *p)
{
	kfree(p);
}

static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
{
	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
}
#endif /* CONFIG_OPTPROBES */

718 719 720
/* Arm a kprobe with text_mutex */
static void __kprobes arm_kprobe(struct kprobe *kp)
{
721 722 723 724 725
	/*
	 * Here, since __arm_kprobe() doesn't use stop_machine(),
	 * this doesn't cause deadlock on text_mutex. So, we don't
	 * need get_online_cpus().
	 */
726
	mutex_lock(&text_mutex);
727
	__arm_kprobe(kp);
728 729 730 731 732 733
	mutex_unlock(&text_mutex);
}

/* Disarm a kprobe with text_mutex */
static void __kprobes disarm_kprobe(struct kprobe *kp)
{
734
	get_online_cpus();	/* For avoiding text_mutex deadlock */
735
	mutex_lock(&text_mutex);
736
	__disarm_kprobe(kp);
737
	mutex_unlock(&text_mutex);
738
	put_online_cpus();
739 740
}

741 742 743 744
/*
 * Aggregate handlers for multiple kprobes support - these handlers
 * take care of invoking the individual kprobe handlers on p->list
 */
745
static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
746 747 748
{
	struct kprobe *kp;

749
	list_for_each_entry_rcu(kp, &p->list, list) {
750
		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
751
			set_kprobe_instance(kp);
752 753
			if (kp->pre_handler(kp, regs))
				return 1;
754
		}
755
		reset_kprobe_instance();
756 757 758 759
	}
	return 0;
}

760 761
static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
					unsigned long flags)
762 763 764
{
	struct kprobe *kp;

765
	list_for_each_entry_rcu(kp, &p->list, list) {
766
		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
767
			set_kprobe_instance(kp);
768
			kp->post_handler(kp, regs, flags);
769
			reset_kprobe_instance();
770 771 772 773
		}
	}
}

774 775
static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
					int trapnr)
776
{
777 778
	struct kprobe *cur = __get_cpu_var(kprobe_instance);

779 780 781 782
	/*
	 * if we faulted "during" the execution of a user specified
	 * probe handler, invoke just that probe's fault handler
	 */
783 784
	if (cur && cur->fault_handler) {
		if (cur->fault_handler(cur, regs, trapnr))
785 786 787 788 789
			return 1;
	}
	return 0;
}

790
static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
791
{
792 793 794 795 796 797
	struct kprobe *cur = __get_cpu_var(kprobe_instance);
	int ret = 0;

	if (cur && cur->break_handler) {
		if (cur->break_handler(cur, regs))
			ret = 1;
798
	}
799 800
	reset_kprobe_instance();
	return ret;
801 802
}

803 804 805 806
/* Walks the list and increments nmissed count for multiprobe case */
void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
{
	struct kprobe *kp;
807
	if (!kprobe_aggrprobe(p)) {
808 809 810 811 812 813 814 815
		p->nmissed++;
	} else {
		list_for_each_entry_rcu(kp, &p->list, list)
			kp->nmissed++;
	}
	return;
}

816 817
void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
				struct hlist_head *head)
818
{
819 820
	struct kretprobe *rp = ri->rp;

821 822
	/* remove rp inst off the rprobe_inst_table */
	hlist_del(&ri->hlist);
823 824 825 826 827
	INIT_HLIST_NODE(&ri->hlist);
	if (likely(rp)) {
		spin_lock(&rp->lock);
		hlist_add_head(&ri->hlist, &rp->free_instances);
		spin_unlock(&rp->lock);
828 829
	} else
		/* Unregistering */
830
		hlist_add_head(&ri->hlist, head);
831 832
}

833
void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
834
			 struct hlist_head **head, unsigned long *flags)
835
__acquires(hlist_lock)
836 837 838 839 840 841 842 843 844
{
	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
	spinlock_t *hlist_lock;

	*head = &kretprobe_inst_table[hash];
	hlist_lock = kretprobe_table_lock_ptr(hash);
	spin_lock_irqsave(hlist_lock, *flags);
}

845 846
static void __kprobes kretprobe_table_lock(unsigned long hash,
	unsigned long *flags)
847
__acquires(hlist_lock)
848
{
849 850 851 852
	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
	spin_lock_irqsave(hlist_lock, *flags);
}

853 854
void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
	unsigned long *flags)
855
__releases(hlist_lock)
856 857 858 859 860 861 862 863
{
	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
	spinlock_t *hlist_lock;

	hlist_lock = kretprobe_table_lock_ptr(hash);
	spin_unlock_irqrestore(hlist_lock, *flags);
}

N
Namhyung Kim 已提交
864 865
static void __kprobes kretprobe_table_unlock(unsigned long hash,
       unsigned long *flags)
866
__releases(hlist_lock)
867 868 869
{
	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
	spin_unlock_irqrestore(hlist_lock, *flags);
870 871 872
}

/*
873 874 875 876
 * This function is called from finish_task_switch when task tk becomes dead,
 * so that we can recycle any function-return probe instances associated
 * with this task. These left over instances represent probed functions
 * that have been called but will never return.
877
 */
878
void __kprobes kprobe_flush_task(struct task_struct *tk)
879
{
B
bibo,mao 已提交
880
	struct kretprobe_instance *ri;
881
	struct hlist_head *head, empty_rp;
882
	struct hlist_node *node, *tmp;
883
	unsigned long hash, flags = 0;
884

885 886 887 888 889 890 891
	if (unlikely(!kprobes_initialized))
		/* Early boot.  kretprobe_table_locks not yet initialized. */
		return;

	hash = hash_ptr(tk, KPROBE_HASH_BITS);
	head = &kretprobe_inst_table[hash];
	kretprobe_table_lock(hash, &flags);
B
bibo,mao 已提交
892 893
	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
		if (ri->task == tk)
894
			recycle_rp_inst(ri, &empty_rp);
B
bibo,mao 已提交
895
	}
896 897
	kretprobe_table_unlock(hash, &flags);
	INIT_HLIST_HEAD(&empty_rp);
898 899 900 901
	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
		hlist_del(&ri->hlist);
		kfree(ri);
	}
902 903 904 905 906
}

static inline void free_rp_inst(struct kretprobe *rp)
{
	struct kretprobe_instance *ri;
907 908
	struct hlist_node *pos, *next;

909 910
	hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
		hlist_del(&ri->hlist);
911 912 913 914
		kfree(ri);
	}
}

915 916
static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
{
917
	unsigned long flags, hash;
918 919
	struct kretprobe_instance *ri;
	struct hlist_node *pos, *next;
920 921
	struct hlist_head *head;

922
	/* No race here */
923 924 925 926 927 928 929 930
	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
		kretprobe_table_lock(hash, &flags);
		head = &kretprobe_inst_table[hash];
		hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
			if (ri->rp == rp)
				ri->rp = NULL;
		}
		kretprobe_table_unlock(hash, &flags);
931 932 933 934
	}
	free_rp_inst(rp);
}

935
/*
936
* Add the new probe to ap->list. Fail if this is the
937 938
* second jprobe at the address - two jprobes can't coexist
*/
939
static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
940
{
941
	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
942 943 944 945

	if (p->break_handler || p->post_handler)
		unoptimize_kprobe(ap);	/* Fall back to normal kprobe */

946
	if (p->break_handler) {
947
		if (ap->break_handler)
948
			return -EEXIST;
949 950
		list_add_tail_rcu(&p->list, &ap->list);
		ap->break_handler = aggr_break_handler;
951
	} else
952 953 954
		list_add_rcu(&p->list, &ap->list);
	if (p->post_handler && !ap->post_handler)
		ap->post_handler = aggr_post_handler;
955 956 957 958 959

	if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
		ap->flags &= ~KPROBE_FLAG_DISABLED;
		if (!kprobes_all_disarmed)
			/* Arm the breakpoint again. */
960
			__arm_kprobe(ap);
961
	}
962 963 964
	return 0;
}

965 966 967 968
/*
 * Fill in the required fields of the "manager kprobe". Replace the
 * earlier kprobe in the hlist with the manager kprobe
 */
969
static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
970
{
971
	/* Copy p's insn slot to ap */
972
	copy_kprobe(p, ap);
973
	flush_insn_slot(ap);
974
	ap->addr = p->addr;
975
	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
976 977
	ap->pre_handler = aggr_pre_handler;
	ap->fault_handler = aggr_fault_handler;
978 979
	/* We don't care the kprobe which has gone. */
	if (p->post_handler && !kprobe_gone(p))
980
		ap->post_handler = aggr_post_handler;
981
	if (p->break_handler && !kprobe_gone(p))
982
		ap->break_handler = aggr_break_handler;
983 984

	INIT_LIST_HEAD(&ap->list);
985
	INIT_HLIST_NODE(&ap->hlist);
986

987
	list_add_rcu(&p->list, &ap->list);
988
	hlist_replace_rcu(&p->hlist, &ap->hlist);
989 990 991 992 993 994
}

/*
 * This is the second or subsequent kprobe at the address - handle
 * the intricacies
 */
995 996
static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
					  struct kprobe *p)
997 998
{
	int ret = 0;
999
	struct kprobe *ap = old_p;
1000

1001 1002 1003
	if (!kprobe_aggrprobe(old_p)) {
		/* If old_p is not an aggr_kprobe, create new aggr_kprobe. */
		ap = alloc_aggr_kprobe(old_p);
1004 1005
		if (!ap)
			return -ENOMEM;
1006
		init_aggr_kprobe(ap, old_p);
1007 1008 1009
	}

	if (kprobe_gone(ap)) {
1010 1011 1012 1013 1014 1015
		/*
		 * Attempting to insert new probe at the same location that
		 * had a probe in the module vaddr area which already
		 * freed. So, the instruction slot has already been
		 * released. We need a new slot for the new probe.
		 */
1016
		ret = arch_prepare_kprobe(ap);
1017
		if (ret)
1018 1019 1020 1021 1022
			/*
			 * Even if fail to allocate new slot, don't need to
			 * free aggr_probe. It will be used next time, or
			 * freed by unregister_kprobe.
			 */
1023
			return ret;
1024

1025 1026 1027
		/* Prepare optimized instructions if possible. */
		prepare_optimized_kprobe(ap);

1028
		/*
1029 1030
		 * Clear gone flag to prevent allocating new slot again, and
		 * set disabled flag because it is not armed yet.
1031
		 */
1032 1033
		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
			    | KPROBE_FLAG_DISABLED;
1034
	}
1035

1036
	/* Copy ap's insn slot to p */
1037 1038
	copy_kprobe(ap, p);
	return add_new_kprobe(ap, p);
1039 1040
}

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
/* Try to disable aggr_kprobe, and return 1 if succeeded.*/
static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p)
{
	struct kprobe *kp;

	list_for_each_entry_rcu(kp, &p->list, list) {
		if (!kprobe_disabled(kp))
			/*
			 * There is an active probe on the list.
			 * We can't disable aggr_kprobe.
			 */
			return 0;
	}
	p->flags |= KPROBE_FLAG_DISABLED;
	return 1;
}

1058 1059
static int __kprobes in_kprobes_functions(unsigned long addr)
{
1060 1061
	struct kprobe_blackpoint *kb;

1062 1063
	if (addr >= (unsigned long)__kprobes_text_start &&
	    addr < (unsigned long)__kprobes_text_end)
1064
		return -EINVAL;
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
	/*
	 * If there exists a kprobe_blacklist, verify and
	 * fail any probe registration in the prohibited area
	 */
	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
		if (kb->start_addr) {
			if (addr >= kb->start_addr &&
			    addr < (kb->start_addr + kb->range))
				return -EINVAL;
		}
	}
1076 1077 1078
	return 0;
}

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
/*
 * If we have a symbol_name argument, look it up and add the offset field
 * to it. This way, we can specify a relative address to a symbol.
 */
static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
{
	kprobe_opcode_t *addr = p->addr;
	if (p->symbol_name) {
		if (addr)
			return NULL;
		kprobe_lookup_name(p->symbol_name, addr);
	}

	if (!addr)
		return NULL;
	return (kprobe_opcode_t *)(((char *)addr) + p->offset);
}

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
/* Check passed kprobe is valid and return kprobe in kprobe_table. */
static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
{
	struct kprobe *old_p, *list_p;

	old_p = get_kprobe(p->addr);
	if (unlikely(!old_p))
		return NULL;

	if (p != old_p) {
		list_for_each_entry_rcu(list_p, &old_p->list, list)
			if (list_p == p)
			/* kprobe p is a valid probe */
				goto valid;
		return NULL;
	}
valid:
	return old_p;
}

/* Return error if the kprobe is being re-registered */
static inline int check_kprobe_rereg(struct kprobe *p)
{
	int ret = 0;
	struct kprobe *old_p;

	mutex_lock(&kprobe_mutex);
	old_p = __get_valid_kprobe(p);
	if (old_p)
		ret = -EINVAL;
	mutex_unlock(&kprobe_mutex);
	return ret;
}

1131
int __kprobes register_kprobe(struct kprobe *p)
L
Linus Torvalds 已提交
1132 1133
{
	int ret = 0;
1134
	struct kprobe *old_p;
1135
	struct module *probed_mod;
1136
	kprobe_opcode_t *addr;
1137

1138 1139
	addr = kprobe_addr(p);
	if (!addr)
1140
		return -EINVAL;
1141
	p->addr = addr;
1142

1143 1144 1145 1146
	ret = check_kprobe_rereg(p);
	if (ret)
		return ret;

1147
	preempt_disable();
1148
	if (!kernel_text_address((unsigned long) p->addr) ||
1149 1150
	    in_kprobes_functions((unsigned long) p->addr) ||
	    ftrace_text_reserved(p->addr, p->addr)) {
1151
		preempt_enable();
1152
		return -EINVAL;
1153
	}
1154

1155 1156 1157
	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
	p->flags &= KPROBE_FLAG_DISABLED;

1158 1159 1160
	/*
	 * Check if are we probing a module.
	 */
1161
	probed_mod = __module_text_address((unsigned long) p->addr);
1162 1163
	if (probed_mod) {
		/*
1164 1165
		 * We must hold a refcount of the probed module while updating
		 * its code to prohibit unexpected unloading.
1166
		 */
1167 1168 1169 1170
		if (unlikely(!try_module_get(probed_mod))) {
			preempt_enable();
			return -EINVAL;
		}
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
		/*
		 * If the module freed .init.text, we couldn't insert
		 * kprobes in there.
		 */
		if (within_module_init((unsigned long)p->addr, probed_mod) &&
		    probed_mod->state != MODULE_STATE_COMING) {
			module_put(probed_mod);
			preempt_enable();
			return -EINVAL;
		}
1181
	}
1182
	preempt_enable();
L
Linus Torvalds 已提交
1183

1184
	p->nmissed = 0;
1185
	INIT_LIST_HEAD(&p->list);
I
Ingo Molnar 已提交
1186
	mutex_lock(&kprobe_mutex);
1187 1188 1189 1190

	get_online_cpus();	/* For avoiding text_mutex deadlock. */
	mutex_lock(&text_mutex);

1191 1192
	old_p = get_kprobe(p->addr);
	if (old_p) {
1193
		/* Since this may unoptimize old_p, locking text_mutex. */
1194
		ret = register_aggr_kprobe(old_p, p);
L
Linus Torvalds 已提交
1195 1196 1197
		goto out;
	}

1198 1199
	ret = arch_prepare_kprobe(p);
	if (ret)
1200
		goto out;
1201

1202
	INIT_HLIST_NODE(&p->hlist);
1203
	hlist_add_head_rcu(&p->hlist,
L
Linus Torvalds 已提交
1204 1205
		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);

1206
	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1207 1208 1209 1210
		__arm_kprobe(p);

	/* Try to optimize kprobe */
	try_to_optimize_kprobe(p);
1211

L
Linus Torvalds 已提交
1212
out:
1213 1214
	mutex_unlock(&text_mutex);
	put_online_cpus();
I
Ingo Molnar 已提交
1215
	mutex_unlock(&kprobe_mutex);
1216

1217
	if (probed_mod)
1218
		module_put(probed_mod);
1219

L
Linus Torvalds 已提交
1220 1221
	return ret;
}
1222
EXPORT_SYMBOL_GPL(register_kprobe);
L
Linus Torvalds 已提交
1223

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
/*
 * Unregister a kprobe without a scheduler synchronization.
 */
static int __kprobes __unregister_kprobe_top(struct kprobe *p)
{
	struct kprobe *old_p, *list_p;

	old_p = __get_valid_kprobe(p);
	if (old_p == NULL)
		return -EINVAL;

1235
	if (old_p == p ||
1236
	    (kprobe_aggrprobe(old_p) &&
1237
	     list_is_singular(&old_p->list))) {
1238 1239
		/*
		 * Only probe on the hash list. Disarm only if kprobes are
1240 1241
		 * enabled and not gone - otherwise, the breakpoint would
		 * already have been removed. We save on flushing icache.
1242
		 */
1243
		if (!kprobes_all_disarmed && !kprobe_disabled(old_p))
1244
			disarm_kprobe(old_p);
1245 1246
		hlist_del_rcu(&old_p->hlist);
	} else {
1247
		if (p->break_handler && !kprobe_gone(p))
1248
			old_p->break_handler = NULL;
1249
		if (p->post_handler && !kprobe_gone(p)) {
1250 1251 1252 1253 1254 1255 1256
			list_for_each_entry_rcu(list_p, &old_p->list, list) {
				if ((list_p != p) && (list_p->post_handler))
					goto noclean;
			}
			old_p->post_handler = NULL;
		}
noclean:
1257
		list_del_rcu(&p->list);
1258 1259
		if (!kprobe_disabled(old_p)) {
			try_to_disable_aggr_kprobe(old_p);
1260 1261 1262 1263 1264 1265 1266
			if (!kprobes_all_disarmed) {
				if (kprobe_disabled(old_p))
					disarm_kprobe(old_p);
				else
					/* Try to optimize this probe again */
					optimize_kprobe(old_p);
			}
1267
		}
1268
	}
1269 1270
	return 0;
}
1271

1272 1273 1274
static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
{
	struct kprobe *old_p;
1275

1276
	if (list_empty(&p->list))
1277
		arch_remove_kprobe(p);
1278 1279 1280 1281 1282
	else if (list_is_singular(&p->list)) {
		/* "p" is the last child of an aggr_kprobe */
		old_p = list_entry(p->list.next, struct kprobe, list);
		list_del(&p->list);
		arch_remove_kprobe(old_p);
1283
		free_aggr_kprobe(old_p);
1284 1285 1286
	}
}

1287
int __kprobes register_kprobes(struct kprobe **kps, int num)
1288 1289 1290 1291 1292 1293
{
	int i, ret = 0;

	if (num <= 0)
		return -EINVAL;
	for (i = 0; i < num; i++) {
1294
		ret = register_kprobe(kps[i]);
1295 1296 1297
		if (ret < 0) {
			if (i > 0)
				unregister_kprobes(kps, i);
1298
			break;
1299
		}
1300
	}
1301 1302
	return ret;
}
1303
EXPORT_SYMBOL_GPL(register_kprobes);
1304 1305 1306 1307 1308

void __kprobes unregister_kprobe(struct kprobe *p)
{
	unregister_kprobes(&p, 1);
}
1309
EXPORT_SYMBOL_GPL(unregister_kprobe);
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326

void __kprobes unregister_kprobes(struct kprobe **kps, int num)
{
	int i;

	if (num <= 0)
		return;
	mutex_lock(&kprobe_mutex);
	for (i = 0; i < num; i++)
		if (__unregister_kprobe_top(kps[i]) < 0)
			kps[i]->addr = NULL;
	mutex_unlock(&kprobe_mutex);

	synchronize_sched();
	for (i = 0; i < num; i++)
		if (kps[i]->addr)
			__unregister_kprobe_bottom(kps[i]);
L
Linus Torvalds 已提交
1327
}
1328
EXPORT_SYMBOL_GPL(unregister_kprobes);
L
Linus Torvalds 已提交
1329 1330

static struct notifier_block kprobe_exceptions_nb = {
1331 1332 1333 1334
	.notifier_call = kprobe_exceptions_notify,
	.priority = 0x7fffffff /* we need to be notified first */
};

1335 1336 1337 1338
unsigned long __weak arch_deref_entry_point(void *entry)
{
	return (unsigned long)entry;
}
L
Linus Torvalds 已提交
1339

1340
int __kprobes register_jprobes(struct jprobe **jps, int num)
L
Linus Torvalds 已提交
1341
{
1342 1343
	struct jprobe *jp;
	int ret = 0, i;
1344

1345
	if (num <= 0)
1346
		return -EINVAL;
1347
	for (i = 0; i < num; i++) {
1348
		unsigned long addr, offset;
1349 1350 1351
		jp = jps[i];
		addr = arch_deref_entry_point(jp->entry);

1352 1353 1354 1355 1356 1357 1358 1359
		/* Verify probepoint is a function entry point */
		if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
		    offset == 0) {
			jp->kp.pre_handler = setjmp_pre_handler;
			jp->kp.break_handler = longjmp_break_handler;
			ret = register_kprobe(&jp->kp);
		} else
			ret = -EINVAL;
1360

1361 1362 1363
		if (ret < 0) {
			if (i > 0)
				unregister_jprobes(jps, i);
1364 1365 1366 1367 1368
			break;
		}
	}
	return ret;
}
1369
EXPORT_SYMBOL_GPL(register_jprobes);
1370

1371 1372
int __kprobes register_jprobe(struct jprobe *jp)
{
1373
	return register_jprobes(&jp, 1);
L
Linus Torvalds 已提交
1374
}
1375
EXPORT_SYMBOL_GPL(register_jprobe);
L
Linus Torvalds 已提交
1376

1377
void __kprobes unregister_jprobe(struct jprobe *jp)
L
Linus Torvalds 已提交
1378
{
1379 1380
	unregister_jprobes(&jp, 1);
}
1381
EXPORT_SYMBOL_GPL(unregister_jprobe);
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399

void __kprobes unregister_jprobes(struct jprobe **jps, int num)
{
	int i;

	if (num <= 0)
		return;
	mutex_lock(&kprobe_mutex);
	for (i = 0; i < num; i++)
		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
			jps[i]->kp.addr = NULL;
	mutex_unlock(&kprobe_mutex);

	synchronize_sched();
	for (i = 0; i < num; i++) {
		if (jps[i]->kp.addr)
			__unregister_kprobe_bottom(&jps[i]->kp);
	}
L
Linus Torvalds 已提交
1400
}
1401
EXPORT_SYMBOL_GPL(unregister_jprobes);
L
Linus Torvalds 已提交
1402

1403
#ifdef CONFIG_KRETPROBES
1404 1405 1406 1407 1408 1409 1410 1411
/*
 * This kprobe pre_handler is registered with every kretprobe. When probe
 * hits it will set up the return probe.
 */
static int __kprobes pre_handler_kretprobe(struct kprobe *p,
					   struct pt_regs *regs)
{
	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1412 1413
	unsigned long hash, flags = 0;
	struct kretprobe_instance *ri;
1414 1415

	/*TODO: consider to only swap the RA after the last pre_handler fired */
1416 1417
	hash = hash_ptr(current, KPROBE_HASH_BITS);
	spin_lock_irqsave(&rp->lock, flags);
1418 1419
	if (!hlist_empty(&rp->free_instances)) {
		ri = hlist_entry(rp->free_instances.first,
1420 1421 1422 1423
				struct kretprobe_instance, hlist);
		hlist_del(&ri->hlist);
		spin_unlock_irqrestore(&rp->lock, flags);

1424 1425
		ri->rp = rp;
		ri->task = current;
1426

1427
		if (rp->entry_handler && rp->entry_handler(ri, regs))
1428 1429
			return 0;

1430 1431 1432
		arch_prepare_kretprobe(ri, regs);

		/* XXX(hch): why is there no hlist_move_head? */
1433 1434 1435 1436 1437
		INIT_HLIST_NODE(&ri->hlist);
		kretprobe_table_lock(hash, &flags);
		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
		kretprobe_table_unlock(hash, &flags);
	} else {
1438
		rp->nmissed++;
1439 1440
		spin_unlock_irqrestore(&rp->lock, flags);
	}
1441 1442 1443
	return 0;
}

1444
int __kprobes register_kretprobe(struct kretprobe *rp)
1445 1446 1447 1448
{
	int ret = 0;
	struct kretprobe_instance *inst;
	int i;
1449
	void *addr;
1450 1451

	if (kretprobe_blacklist_size) {
1452 1453 1454
		addr = kprobe_addr(&rp->kp);
		if (!addr)
			return -EINVAL;
1455 1456 1457 1458 1459 1460

		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
			if (kretprobe_blacklist[i].addr == addr)
				return -EINVAL;
		}
	}
1461 1462

	rp->kp.pre_handler = pre_handler_kretprobe;
1463 1464 1465
	rp->kp.post_handler = NULL;
	rp->kp.fault_handler = NULL;
	rp->kp.break_handler = NULL;
1466 1467 1468 1469

	/* Pre-allocate memory for max kretprobe instances */
	if (rp->maxactive <= 0) {
#ifdef CONFIG_PREEMPT
1470
		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1471
#else
1472
		rp->maxactive = num_possible_cpus();
1473 1474
#endif
	}
1475
	spin_lock_init(&rp->lock);
1476 1477
	INIT_HLIST_HEAD(&rp->free_instances);
	for (i = 0; i < rp->maxactive; i++) {
1478 1479
		inst = kmalloc(sizeof(struct kretprobe_instance) +
			       rp->data_size, GFP_KERNEL);
1480 1481 1482 1483
		if (inst == NULL) {
			free_rp_inst(rp);
			return -ENOMEM;
		}
1484 1485
		INIT_HLIST_NODE(&inst->hlist);
		hlist_add_head(&inst->hlist, &rp->free_instances);
1486 1487 1488 1489
	}

	rp->nmissed = 0;
	/* Establish function entry probe point */
1490
	ret = register_kprobe(&rp->kp);
1491
	if (ret != 0)
1492 1493 1494
		free_rp_inst(rp);
	return ret;
}
1495
EXPORT_SYMBOL_GPL(register_kretprobe);
1496

1497
int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1498 1499 1500 1501 1502 1503
{
	int ret = 0, i;

	if (num <= 0)
		return -EINVAL;
	for (i = 0; i < num; i++) {
1504
		ret = register_kretprobe(rps[i]);
1505 1506 1507
		if (ret < 0) {
			if (i > 0)
				unregister_kretprobes(rps, i);
1508 1509 1510 1511 1512
			break;
		}
	}
	return ret;
}
1513
EXPORT_SYMBOL_GPL(register_kretprobes);
1514 1515 1516 1517 1518

void __kprobes unregister_kretprobe(struct kretprobe *rp)
{
	unregister_kretprobes(&rp, 1);
}
1519
EXPORT_SYMBOL_GPL(unregister_kretprobe);
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540

void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
{
	int i;

	if (num <= 0)
		return;
	mutex_lock(&kprobe_mutex);
	for (i = 0; i < num; i++)
		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
			rps[i]->kp.addr = NULL;
	mutex_unlock(&kprobe_mutex);

	synchronize_sched();
	for (i = 0; i < num; i++) {
		if (rps[i]->kp.addr) {
			__unregister_kprobe_bottom(&rps[i]->kp);
			cleanup_rp_inst(rps[i]);
		}
	}
}
1541
EXPORT_SYMBOL_GPL(unregister_kretprobes);
1542

1543
#else /* CONFIG_KRETPROBES */
1544
int __kprobes register_kretprobe(struct kretprobe *rp)
1545 1546 1547
{
	return -ENOSYS;
}
1548
EXPORT_SYMBOL_GPL(register_kretprobe);
1549

1550
int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1551
{
1552
	return -ENOSYS;
1553
}
1554 1555
EXPORT_SYMBOL_GPL(register_kretprobes);

1556
void __kprobes unregister_kretprobe(struct kretprobe *rp)
1557
{
1558
}
1559
EXPORT_SYMBOL_GPL(unregister_kretprobe);
1560

1561 1562 1563
void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
{
}
1564
EXPORT_SYMBOL_GPL(unregister_kretprobes);
1565

1566 1567 1568 1569
static int __kprobes pre_handler_kretprobe(struct kprobe *p,
					   struct pt_regs *regs)
{
	return 0;
1570 1571
}

1572 1573
#endif /* CONFIG_KRETPROBES */

1574 1575 1576 1577
/* Set the kprobe gone and remove its instruction buffer. */
static void __kprobes kill_kprobe(struct kprobe *p)
{
	struct kprobe *kp;
1578

1579
	p->flags |= KPROBE_FLAG_GONE;
1580
	if (kprobe_aggrprobe(p)) {
1581 1582 1583 1584 1585 1586 1587 1588
		/*
		 * If this is an aggr_kprobe, we have to list all the
		 * chained probes and mark them GONE.
		 */
		list_for_each_entry_rcu(kp, &p->list, list)
			kp->flags |= KPROBE_FLAG_GONE;
		p->post_handler = NULL;
		p->break_handler = NULL;
1589
		kill_optimized_kprobe(p);
1590 1591 1592 1593 1594 1595 1596 1597
	}
	/*
	 * Here, we can remove insn_slot safely, because no thread calls
	 * the original probed function (which will be freed soon) any more.
	 */
	arch_remove_kprobe(p);
}

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
/* Disable one kprobe */
int __kprobes disable_kprobe(struct kprobe *kp)
{
	int ret = 0;
	struct kprobe *p;

	mutex_lock(&kprobe_mutex);

	/* Check whether specified probe is valid. */
	p = __get_valid_kprobe(kp);
	if (unlikely(p == NULL)) {
		ret = -EINVAL;
		goto out;
	}

	/* If the probe is already disabled (or gone), just return */
	if (kprobe_disabled(kp))
		goto out;

	kp->flags |= KPROBE_FLAG_DISABLED;
	if (p != kp)
		/* When kp != p, p is always enabled. */
		try_to_disable_aggr_kprobe(p);

	if (!kprobes_all_disarmed && kprobe_disabled(p))
		disarm_kprobe(p);
out:
	mutex_unlock(&kprobe_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(disable_kprobe);

/* Enable one kprobe */
int __kprobes enable_kprobe(struct kprobe *kp)
{
	int ret = 0;
	struct kprobe *p;

	mutex_lock(&kprobe_mutex);

	/* Check whether specified probe is valid. */
	p = __get_valid_kprobe(kp);
	if (unlikely(p == NULL)) {
		ret = -EINVAL;
		goto out;
	}

	if (kprobe_gone(kp)) {
		/* This kprobe has gone, we couldn't enable it. */
		ret = -EINVAL;
		goto out;
	}

	if (p != kp)
		kp->flags &= ~KPROBE_FLAG_DISABLED;

	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
		p->flags &= ~KPROBE_FLAG_DISABLED;
		arm_kprobe(p);
	}
out:
	mutex_unlock(&kprobe_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(enable_kprobe);

1664 1665 1666 1667 1668 1669 1670
void __kprobes dump_kprobe(struct kprobe *kp)
{
	printk(KERN_WARNING "Dumping kprobe:\n");
	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
	       kp->symbol_name, kp->addr, kp->offset);
}

1671 1672 1673 1674 1675 1676 1677 1678 1679
/* Module notifier call back, checking kprobes on the module */
static int __kprobes kprobes_module_callback(struct notifier_block *nb,
					     unsigned long val, void *data)
{
	struct module *mod = data;
	struct hlist_head *head;
	struct hlist_node *node;
	struct kprobe *p;
	unsigned int i;
1680
	int checkcore = (val == MODULE_STATE_GOING);
1681

1682
	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1683 1684 1685
		return NOTIFY_DONE;

	/*
1686 1687 1688 1689
	 * When MODULE_STATE_GOING was notified, both of module .text and
	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
	 * notified, only .init.text section would be freed. We need to
	 * disable kprobes which have been inserted in the sections.
1690 1691 1692 1693 1694
	 */
	mutex_lock(&kprobe_mutex);
	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
		head = &kprobe_table[i];
		hlist_for_each_entry_rcu(p, node, head, hlist)
1695 1696 1697
			if (within_module_init((unsigned long)p->addr, mod) ||
			    (checkcore &&
			     within_module_core((unsigned long)p->addr, mod))) {
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
				/*
				 * The vaddr this probe is installed will soon
				 * be vfreed buy not synced to disk. Hence,
				 * disarming the breakpoint isn't needed.
				 */
				kill_kprobe(p);
			}
	}
	mutex_unlock(&kprobe_mutex);
	return NOTIFY_DONE;
}

static struct notifier_block kprobe_module_nb = {
	.notifier_call = kprobes_module_callback,
	.priority = 0
};

L
Linus Torvalds 已提交
1715 1716 1717
static int __init init_kprobes(void)
{
	int i, err = 0;
1718 1719 1720 1721 1722
	unsigned long offset = 0, size = 0;
	char *modname, namebuf[128];
	const char *symbol_name;
	void *addr;
	struct kprobe_blackpoint *kb;
L
Linus Torvalds 已提交
1723 1724 1725

	/* FIXME allocate the probe table, currently defined statically */
	/* initialize all list heads */
1726
	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
L
Linus Torvalds 已提交
1727
		INIT_HLIST_HEAD(&kprobe_table[i]);
1728
		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1729
		spin_lock_init(&(kretprobe_table_locks[i].lock));
1730
	}
L
Linus Torvalds 已提交
1731

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
	/*
	 * Lookup and populate the kprobe_blacklist.
	 *
	 * Unlike the kretprobe blacklist, we'll need to determine
	 * the range of addresses that belong to the said functions,
	 * since a kprobe need not necessarily be at the beginning
	 * of a function.
	 */
	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
		kprobe_lookup_name(kb->name, addr);
		if (!addr)
			continue;

		kb->start_addr = (unsigned long)addr;
		symbol_name = kallsyms_lookup(kb->start_addr,
				&size, &offset, &modname, namebuf);
		if (!symbol_name)
			kb->range = 0;
		else
			kb->range = size;
	}

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
	if (kretprobe_blacklist_size) {
		/* lookup the function address from its name */
		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
			kprobe_lookup_name(kretprobe_blacklist[i].name,
					   kretprobe_blacklist[i].addr);
			if (!kretprobe_blacklist[i].addr)
				printk("kretprobe: lookup failed: %s\n",
				       kretprobe_blacklist[i].name);
		}
	}

1765 1766
#if defined(CONFIG_OPTPROBES)
#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
1767 1768 1769
	/* Init kprobe_optinsn_slots */
	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
#endif
1770 1771 1772
	/* By default, kprobes can be optimized */
	kprobes_allow_optimization = true;
#endif
1773

1774 1775
	/* By default, kprobes are armed */
	kprobes_all_disarmed = false;
1776

1777
	err = arch_init_kprobes();
1778 1779
	if (!err)
		err = register_die_notifier(&kprobe_exceptions_nb);
1780 1781 1782
	if (!err)
		err = register_module_notifier(&kprobe_module_nb);

1783
	kprobes_initialized = (err == 0);
1784

1785 1786
	if (!err)
		init_test_probes();
L
Linus Torvalds 已提交
1787 1788 1789
	return err;
}

1790 1791
#ifdef CONFIG_DEBUG_FS
static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1792
		const char *sym, int offset, char *modname, struct kprobe *pp)
1793 1794 1795 1796 1797 1798 1799 1800 1801
{
	char *kprobe_type;

	if (p->pre_handler == pre_handler_kretprobe)
		kprobe_type = "r";
	else if (p->pre_handler == setjmp_pre_handler)
		kprobe_type = "j";
	else
		kprobe_type = "k";
1802

1803
	if (sym)
1804
		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
1805
			p->addr, kprobe_type, sym, offset,
1806
			(modname ? modname : " "));
1807
	else
1808 1809 1810 1811 1812 1813 1814 1815 1816
		seq_printf(pi, "%p  %s  %p ",
			p->addr, kprobe_type, p->addr);

	if (!pp)
		pp = p;
	seq_printf(pi, "%s%s%s\n",
		(kprobe_gone(p) ? "[GONE]" : ""),
		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""));
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
}

static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
{
	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
}

static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
{
	(*pos)++;
	if (*pos >= KPROBE_TABLE_SIZE)
		return NULL;
	return pos;
}

static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
{
	/* Nothing to do */
}

static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
{
	struct hlist_head *head;
	struct hlist_node *node;
	struct kprobe *p, *kp;
	const char *sym = NULL;
	unsigned int i = *(loff_t *) v;
A
Alexey Dobriyan 已提交
1844
	unsigned long offset = 0;
1845 1846 1847 1848 1849
	char *modname, namebuf[128];

	head = &kprobe_table[i];
	preempt_disable();
	hlist_for_each_entry_rcu(p, node, head, hlist) {
A
Alexey Dobriyan 已提交
1850
		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1851
					&offset, &modname, namebuf);
1852
		if (kprobe_aggrprobe(p)) {
1853
			list_for_each_entry_rcu(kp, &p->list, list)
1854
				report_probe(pi, kp, sym, offset, modname, p);
1855
		} else
1856
			report_probe(pi, p, sym, offset, modname, NULL);
1857 1858 1859 1860 1861
	}
	preempt_enable();
	return 0;
}

J
James Morris 已提交
1862
static const struct seq_operations kprobes_seq_ops = {
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
	.start = kprobe_seq_start,
	.next  = kprobe_seq_next,
	.stop  = kprobe_seq_stop,
	.show  = show_kprobe_addr
};

static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
{
	return seq_open(filp, &kprobes_seq_ops);
}

1874
static const struct file_operations debugfs_kprobes_operations = {
1875 1876 1877 1878 1879 1880
	.open           = kprobes_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release        = seq_release,
};

1881
static void __kprobes arm_all_kprobes(void)
1882 1883 1884 1885 1886 1887 1888 1889
{
	struct hlist_head *head;
	struct hlist_node *node;
	struct kprobe *p;
	unsigned int i;

	mutex_lock(&kprobe_mutex);

1890 1891
	/* If kprobes are armed, just return */
	if (!kprobes_all_disarmed)
1892 1893
		goto already_enabled;

1894
	/* Arming kprobes doesn't optimize kprobe itself */
1895
	mutex_lock(&text_mutex);
1896 1897 1898
	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
		head = &kprobe_table[i];
		hlist_for_each_entry_rcu(p, node, head, hlist)
1899
			if (!kprobe_disabled(p))
1900
				__arm_kprobe(p);
1901
	}
1902
	mutex_unlock(&text_mutex);
1903

1904
	kprobes_all_disarmed = false;
1905 1906 1907 1908 1909 1910 1911
	printk(KERN_INFO "Kprobes globally enabled\n");

already_enabled:
	mutex_unlock(&kprobe_mutex);
	return;
}

1912
static void __kprobes disarm_all_kprobes(void)
1913 1914 1915 1916 1917 1918 1919 1920
{
	struct hlist_head *head;
	struct hlist_node *node;
	struct kprobe *p;
	unsigned int i;

	mutex_lock(&kprobe_mutex);

1921 1922
	/* If kprobes are already disarmed, just return */
	if (kprobes_all_disarmed)
1923 1924
		goto already_disabled;

1925
	kprobes_all_disarmed = true;
1926
	printk(KERN_INFO "Kprobes globally disabled\n");
1927 1928 1929 1930 1931 1932

	/*
	 * Here we call get_online_cpus() for avoiding text_mutex deadlock,
	 * because disarming may also unoptimize kprobes.
	 */
	get_online_cpus();
1933
	mutex_lock(&text_mutex);
1934 1935 1936
	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
		head = &kprobe_table[i];
		hlist_for_each_entry_rcu(p, node, head, hlist) {
1937
			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
1938
				__disarm_kprobe(p);
1939 1940 1941
		}
	}

1942
	mutex_unlock(&text_mutex);
1943
	put_online_cpus();
1944 1945 1946
	mutex_unlock(&kprobe_mutex);
	/* Allow all currently running kprobes to complete */
	synchronize_sched();
1947
	return;
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963

already_disabled:
	mutex_unlock(&kprobe_mutex);
	return;
}

/*
 * XXX: The debugfs bool file interface doesn't allow for callbacks
 * when the bool state is switched. We can reuse that facility when
 * available
 */
static ssize_t read_enabled_file_bool(struct file *file,
	       char __user *user_buf, size_t count, loff_t *ppos)
{
	char buf[3];

1964
	if (!kprobes_all_disarmed)
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
		buf[0] = '1';
	else
		buf[0] = '0';
	buf[1] = '\n';
	buf[2] = 0x00;
	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
}

static ssize_t write_enabled_file_bool(struct file *file,
	       const char __user *user_buf, size_t count, loff_t *ppos)
{
	char buf[32];
	int buf_size;

	buf_size = min(count, (sizeof(buf)-1));
	if (copy_from_user(buf, user_buf, buf_size))
		return -EFAULT;

	switch (buf[0]) {
	case 'y':
	case 'Y':
	case '1':
1987
		arm_all_kprobes();
1988 1989 1990 1991
		break;
	case 'n':
	case 'N':
	case '0':
1992
		disarm_all_kprobes();
1993 1994 1995 1996 1997 1998
		break;
	}

	return count;
}

1999
static const struct file_operations fops_kp = {
2000 2001 2002 2003
	.read =         read_enabled_file_bool,
	.write =        write_enabled_file_bool,
};

2004 2005 2006
static int __kprobes debugfs_kprobe_init(void)
{
	struct dentry *dir, *file;
2007
	unsigned int value = 1;
2008 2009 2010 2011 2012

	dir = debugfs_create_dir("kprobes", NULL);
	if (!dir)
		return -ENOMEM;

R
Randy Dunlap 已提交
2013
	file = debugfs_create_file("list", 0444, dir, NULL,
2014 2015 2016 2017 2018 2019
				&debugfs_kprobes_operations);
	if (!file) {
		debugfs_remove(dir);
		return -ENOMEM;
	}

2020 2021 2022 2023 2024 2025 2026
	file = debugfs_create_file("enabled", 0600, dir,
					&value, &fops_kp);
	if (!file) {
		debugfs_remove(dir);
		return -ENOMEM;
	}

2027 2028 2029 2030 2031 2032 2033
	return 0;
}

late_initcall(debugfs_kprobe_init);
#endif /* CONFIG_DEBUG_FS */

module_init(init_kprobes);
L
Linus Torvalds 已提交
2034

2035
/* defined in arch/.../kernel/kprobes.c */
L
Linus Torvalds 已提交
2036
EXPORT_SYMBOL_GPL(jprobe_return);