journal.c 56.4 KB
Newer Older
1
/*
2
 * linux/fs/jbd2/journal.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
 *
 * Copyright 1998 Red Hat corp --- All Rights Reserved
 *
 * This file is part of the Linux kernel and is made available under
 * the terms of the GNU General Public License, version 2, or at your
 * option, any later version, incorporated herein by reference.
 *
 * Generic filesystem journal-writing code; part of the ext2fs
 * journaling system.
 *
 * This file manages journals: areas of disk reserved for logging
 * transactional updates.  This includes the kernel journaling thread
 * which is responsible for scheduling updates to the log.
 *
 * We do not actually manage the physical storage of the journal in this
 * file: that is left to a per-journal policy function, which allows us
 * to store the journal within a filesystem-specified area for ext2
 * journaling (ext2 can use a reserved inode for storing the log).
 */

#include <linux/module.h>
#include <linux/time.h>
#include <linux/fs.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34 35 36 37 38 39 40 41 42
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/smp_lock.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/suspend.h>
#include <linux/pagemap.h>
#include <linux/kthread.h>
#include <linux/poison.h>
#include <linux/proc_fs.h>

#include <asm/uaccess.h>
#include <asm/page.h>

43 44 45 46 47 48 49 50 51 52 53 54 55
EXPORT_SYMBOL(jbd2_journal_start);
EXPORT_SYMBOL(jbd2_journal_restart);
EXPORT_SYMBOL(jbd2_journal_extend);
EXPORT_SYMBOL(jbd2_journal_stop);
EXPORT_SYMBOL(jbd2_journal_lock_updates);
EXPORT_SYMBOL(jbd2_journal_unlock_updates);
EXPORT_SYMBOL(jbd2_journal_get_write_access);
EXPORT_SYMBOL(jbd2_journal_get_create_access);
EXPORT_SYMBOL(jbd2_journal_get_undo_access);
EXPORT_SYMBOL(jbd2_journal_dirty_data);
EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
EXPORT_SYMBOL(jbd2_journal_release_buffer);
EXPORT_SYMBOL(jbd2_journal_forget);
56 57 58
#if 0
EXPORT_SYMBOL(journal_sync_buffer);
#endif
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
EXPORT_SYMBOL(jbd2_journal_flush);
EXPORT_SYMBOL(jbd2_journal_revoke);

EXPORT_SYMBOL(jbd2_journal_init_dev);
EXPORT_SYMBOL(jbd2_journal_init_inode);
EXPORT_SYMBOL(jbd2_journal_update_format);
EXPORT_SYMBOL(jbd2_journal_check_used_features);
EXPORT_SYMBOL(jbd2_journal_check_available_features);
EXPORT_SYMBOL(jbd2_journal_set_features);
EXPORT_SYMBOL(jbd2_journal_create);
EXPORT_SYMBOL(jbd2_journal_load);
EXPORT_SYMBOL(jbd2_journal_destroy);
EXPORT_SYMBOL(jbd2_journal_update_superblock);
EXPORT_SYMBOL(jbd2_journal_abort);
EXPORT_SYMBOL(jbd2_journal_errno);
EXPORT_SYMBOL(jbd2_journal_ack_err);
EXPORT_SYMBOL(jbd2_journal_clear_err);
EXPORT_SYMBOL(jbd2_log_wait_commit);
EXPORT_SYMBOL(jbd2_journal_start_commit);
EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
EXPORT_SYMBOL(jbd2_journal_wipe);
EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
EXPORT_SYMBOL(jbd2_journal_invalidatepage);
EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
EXPORT_SYMBOL(jbd2_journal_force_commit);
84 85 86

static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
static void __journal_abort_soft (journal_t *journal, int errno);
87
static int jbd2_journal_create_jbd_slab(size_t slab_size);
88 89 90 91 92 93 94 95 96 97 98 99 100

/*
 * Helper function used to manage commit timeouts
 */

static void commit_timeout(unsigned long __data)
{
	struct task_struct * p = (struct task_struct *) __data;

	wake_up_process(p);
}

/*
101
 * kjournald2: The main thread function used to manage a logging device
102 103 104 105 106 107 108 109 110 111 112 113 114 115
 * journal.
 *
 * This kernel thread is responsible for two things:
 *
 * 1) COMMIT:  Every so often we need to commit the current state of the
 *    filesystem to disk.  The journal thread is responsible for writing
 *    all of the metadata buffers to disk.
 *
 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
 *    of the data in that part of the log has been rewritten elsewhere on
 *    the disk.  Flushing these old buffers to reclaim space in the log is
 *    known as checkpointing, and this thread is responsible for that job.
 */

116
static int kjournald2(void *arg)
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
{
	journal_t *journal = arg;
	transaction_t *transaction;

	/*
	 * Set up an interval timer which can be used to trigger a commit wakeup
	 * after the commit interval expires
	 */
	setup_timer(&journal->j_commit_timer, commit_timeout,
			(unsigned long)current);

	/* Record that the journal thread is running */
	journal->j_task = current;
	wake_up(&journal->j_wait_done_commit);

132
	printk(KERN_INFO "kjournald2 starting.  Commit interval %ld seconds\n",
133 134 135 136 137 138 139 140
			journal->j_commit_interval / HZ);

	/*
	 * And now, wait forever for commit wakeup events.
	 */
	spin_lock(&journal->j_state_lock);

loop:
141
	if (journal->j_flags & JBD2_UNMOUNT)
142 143 144 145 146 147 148 149 150
		goto end_loop;

	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
		journal->j_commit_sequence, journal->j_commit_request);

	if (journal->j_commit_sequence != journal->j_commit_request) {
		jbd_debug(1, "OK, requests differ\n");
		spin_unlock(&journal->j_state_lock);
		del_timer_sync(&journal->j_commit_timer);
151
		jbd2_journal_commit_transaction(journal);
152 153 154 155 156 157 158 159 160 161 162
		spin_lock(&journal->j_state_lock);
		goto loop;
	}

	wake_up(&journal->j_wait_done_commit);
	if (freezing(current)) {
		/*
		 * The simpler the better. Flushing journal isn't a
		 * good idea, because that depends on threads that may
		 * be already stopped.
		 */
163
		jbd_debug(1, "Now suspending kjournald2\n");
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
		spin_unlock(&journal->j_state_lock);
		refrigerator();
		spin_lock(&journal->j_state_lock);
	} else {
		/*
		 * We assume on resume that commits are already there,
		 * so we don't sleep
		 */
		DEFINE_WAIT(wait);
		int should_sleep = 1;

		prepare_to_wait(&journal->j_wait_commit, &wait,
				TASK_INTERRUPTIBLE);
		if (journal->j_commit_sequence != journal->j_commit_request)
			should_sleep = 0;
		transaction = journal->j_running_transaction;
		if (transaction && time_after_eq(jiffies,
						transaction->t_expires))
			should_sleep = 0;
183
		if (journal->j_flags & JBD2_UNMOUNT)
184 185 186 187 188 189 190 191 192
			should_sleep = 0;
		if (should_sleep) {
			spin_unlock(&journal->j_state_lock);
			schedule();
			spin_lock(&journal->j_state_lock);
		}
		finish_wait(&journal->j_wait_commit, &wait);
	}

193
	jbd_debug(1, "kjournald2 wakes\n");
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213

	/*
	 * Were we woken up by a commit wakeup event?
	 */
	transaction = journal->j_running_transaction;
	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
		journal->j_commit_request = transaction->t_tid;
		jbd_debug(1, "woke because of timeout\n");
	}
	goto loop;

end_loop:
	spin_unlock(&journal->j_state_lock);
	del_timer_sync(&journal->j_commit_timer);
	journal->j_task = NULL;
	wake_up(&journal->j_wait_done_commit);
	jbd_debug(1, "Journal thread exiting.\n");
	return 0;
}

214
static void jbd2_journal_start_thread(journal_t *journal)
215
{
216
	kthread_run(kjournald2, journal, "kjournald2");
217 218 219 220 221 222
	wait_event(journal->j_wait_done_commit, journal->j_task != 0);
}

static void journal_kill_thread(journal_t *journal)
{
	spin_lock(&journal->j_state_lock);
223
	journal->j_flags |= JBD2_UNMOUNT;
224 225 226 227 228 229 230 231 232 233 234

	while (journal->j_task) {
		wake_up(&journal->j_wait_commit);
		spin_unlock(&journal->j_state_lock);
		wait_event(journal->j_wait_done_commit, journal->j_task == 0);
		spin_lock(&journal->j_state_lock);
	}
	spin_unlock(&journal->j_state_lock);
}

/*
235
 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
236 237 238 239 240 241 242
 *
 * Writes a metadata buffer to a given disk block.  The actual IO is not
 * performed but a new buffer_head is constructed which labels the data
 * to be written with the correct destination disk block.
 *
 * Any magic-number escaping which needs to be done will cause a
 * copy-out here.  If the buffer happens to start with the
243
 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
 * magic number is only written to the log for descripter blocks.  In
 * this case, we copy the data and replace the first word with 0, and we
 * return a result code which indicates that this buffer needs to be
 * marked as an escaped buffer in the corresponding log descriptor
 * block.  The missing word can then be restored when the block is read
 * during recovery.
 *
 * If the source buffer has already been modified by a new transaction
 * since we took the last commit snapshot, we use the frozen copy of
 * that data for IO.  If we end up using the existing buffer_head's data
 * for the write, then we *have* to lock the buffer to prevent anyone
 * else from using and possibly modifying it while the IO is in
 * progress.
 *
 * The function returns a pointer to the buffer_heads to be used for IO.
 *
 * We assume that the journal has already been locked in this function.
 *
 * Return value:
 *  <0: Error
 * >=0: Finished OK
 *
 * On success:
 * Bit 0 set == escape performed on the data
 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
 */

271
int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
				  struct journal_head  *jh_in,
				  struct journal_head **jh_out,
				  unsigned long blocknr)
{
	int need_copy_out = 0;
	int done_copy_out = 0;
	int do_escape = 0;
	char *mapped_data;
	struct buffer_head *new_bh;
	struct journal_head *new_jh;
	struct page *new_page;
	unsigned int new_offset;
	struct buffer_head *bh_in = jh2bh(jh_in);

	/*
	 * The buffer really shouldn't be locked: only the current committing
	 * transaction is allowed to write it, so nobody else is allowed
	 * to do any IO.
	 *
	 * akpm: except if we're journalling data, and write() output is
	 * also part of a shared mapping, and another thread has
	 * decided to launch a writepage() against this buffer.
	 */
	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));

	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);

	/*
	 * If a new transaction has already done a buffer copy-out, then
	 * we use that version of the data for the commit.
	 */
	jbd_lock_bh_state(bh_in);
repeat:
	if (jh_in->b_frozen_data) {
		done_copy_out = 1;
		new_page = virt_to_page(jh_in->b_frozen_data);
		new_offset = offset_in_page(jh_in->b_frozen_data);
	} else {
		new_page = jh2bh(jh_in)->b_page;
		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
	}

	mapped_data = kmap_atomic(new_page, KM_USER0);
	/*
	 * Check for escaping
	 */
	if (*((__be32 *)(mapped_data + new_offset)) ==
319
				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
320 321 322 323 324 325 326 327 328 329 330 331
		need_copy_out = 1;
		do_escape = 1;
	}
	kunmap_atomic(mapped_data, KM_USER0);

	/*
	 * Do we need to do a data copy?
	 */
	if (need_copy_out && !done_copy_out) {
		char *tmp;

		jbd_unlock_bh_state(bh_in);
332
		tmp = jbd2_slab_alloc(bh_in->b_size, GFP_NOFS);
333 334
		jbd_lock_bh_state(bh_in);
		if (jh_in->b_frozen_data) {
335
			jbd2_slab_free(tmp, bh_in->b_size);
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
			goto repeat;
		}

		jh_in->b_frozen_data = tmp;
		mapped_data = kmap_atomic(new_page, KM_USER0);
		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
		kunmap_atomic(mapped_data, KM_USER0);

		new_page = virt_to_page(tmp);
		new_offset = offset_in_page(tmp);
		done_copy_out = 1;
	}

	/*
	 * Did we need to do an escaping?  Now we've done all the
	 * copying, we can finally do so.
	 */
	if (do_escape) {
		mapped_data = kmap_atomic(new_page, KM_USER0);
		*((unsigned int *)(mapped_data + new_offset)) = 0;
		kunmap_atomic(mapped_data, KM_USER0);
	}

	/* keep subsequent assertions sane */
	new_bh->b_state = 0;
	init_buffer(new_bh, NULL, NULL);
	atomic_set(&new_bh->b_count, 1);
	jbd_unlock_bh_state(bh_in);

365
	new_jh = jbd2_journal_add_journal_head(new_bh);	/* This sleeps */
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382

	set_bh_page(new_bh, new_page, new_offset);
	new_jh->b_transaction = NULL;
	new_bh->b_size = jh2bh(jh_in)->b_size;
	new_bh->b_bdev = transaction->t_journal->j_dev;
	new_bh->b_blocknr = blocknr;
	set_buffer_mapped(new_bh);
	set_buffer_dirty(new_bh);

	*jh_out = new_jh;

	/*
	 * The to-be-written buffer needs to get moved to the io queue,
	 * and the original buffer whose contents we are shadowing or
	 * copying is moved to the transaction's shadow queue.
	 */
	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
383
	jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
384
	JBUFFER_TRACE(new_jh, "file as BJ_IO");
385
	jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
386 387 388 389 390 391 392 393 394 395

	return do_escape | (done_copy_out << 1);
}

/*
 * Allocation code for the journal file.  Manage the space left in the
 * journal, so that we can begin checkpointing when appropriate.
 */

/*
396
 * __jbd2_log_space_left: Return the number of free blocks left in the journal.
397 398 399 400 401 402
 *
 * Called with the journal already locked.
 *
 * Called under j_state_lock
 */

403
int __jbd2_log_space_left(journal_t *journal)
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
{
	int left = journal->j_free;

	assert_spin_locked(&journal->j_state_lock);

	/*
	 * Be pessimistic here about the number of those free blocks which
	 * might be required for log descriptor control blocks.
	 */

#define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */

	left -= MIN_LOG_RESERVED_BLOCKS;

	if (left <= 0)
		return 0;
	left -= (left >> 3);
	return left;
}

/*
 * Called under j_state_lock.  Returns true if a transaction was started.
 */
427
int __jbd2_log_start_commit(journal_t *journal, tid_t target)
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
{
	/*
	 * Are we already doing a recent enough commit?
	 */
	if (!tid_geq(journal->j_commit_request, target)) {
		/*
		 * We want a new commit: OK, mark the request and wakup the
		 * commit thread.  We do _not_ do the commit ourselves.
		 */

		journal->j_commit_request = target;
		jbd_debug(1, "JBD: requesting commit %d/%d\n",
			  journal->j_commit_request,
			  journal->j_commit_sequence);
		wake_up(&journal->j_wait_commit);
		return 1;
	}
	return 0;
}

448
int jbd2_log_start_commit(journal_t *journal, tid_t tid)
449 450 451 452
{
	int ret;

	spin_lock(&journal->j_state_lock);
453
	ret = __jbd2_log_start_commit(journal, tid);
454 455 456 457 458 459 460 461 462 463 464 465 466 467
	spin_unlock(&journal->j_state_lock);
	return ret;
}

/*
 * Force and wait upon a commit if the calling process is not within
 * transaction.  This is used for forcing out undo-protected data which contains
 * bitmaps, when the fs is running out of space.
 *
 * We can only force the running transaction if we don't have an active handle;
 * otherwise, we will deadlock.
 *
 * Returns true if a transaction was started.
 */
468
int jbd2_journal_force_commit_nested(journal_t *journal)
469 470 471 472 473 474 475
{
	transaction_t *transaction = NULL;
	tid_t tid;

	spin_lock(&journal->j_state_lock);
	if (journal->j_running_transaction && !current->journal_info) {
		transaction = journal->j_running_transaction;
476
		__jbd2_log_start_commit(journal, transaction->t_tid);
477 478 479 480 481 482 483 484 485 486
	} else if (journal->j_committing_transaction)
		transaction = journal->j_committing_transaction;

	if (!transaction) {
		spin_unlock(&journal->j_state_lock);
		return 0;	/* Nothing to retry */
	}

	tid = transaction->t_tid;
	spin_unlock(&journal->j_state_lock);
487
	jbd2_log_wait_commit(journal, tid);
488 489 490 491 492 493 494
	return 1;
}

/*
 * Start a commit of the current running transaction (if any).  Returns true
 * if a transaction was started, and fills its tid in at *ptid
 */
495
int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
496 497 498 499 500 501 502
{
	int ret = 0;

	spin_lock(&journal->j_state_lock);
	if (journal->j_running_transaction) {
		tid_t tid = journal->j_running_transaction->t_tid;

503
		ret = __jbd2_log_start_commit(journal, tid);
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
		if (ret && ptid)
			*ptid = tid;
	} else if (journal->j_committing_transaction && ptid) {
		/*
		 * If ext3_write_super() recently started a commit, then we
		 * have to wait for completion of that transaction
		 */
		*ptid = journal->j_committing_transaction->t_tid;
		ret = 1;
	}
	spin_unlock(&journal->j_state_lock);
	return ret;
}

/*
 * Wait for a specified commit to complete.
 * The caller may not hold the journal lock.
 */
522
int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
{
	int err = 0;

#ifdef CONFIG_JBD_DEBUG
	spin_lock(&journal->j_state_lock);
	if (!tid_geq(journal->j_commit_request, tid)) {
		printk(KERN_EMERG
		       "%s: error: j_commit_request=%d, tid=%d\n",
		       __FUNCTION__, journal->j_commit_request, tid);
	}
	spin_unlock(&journal->j_state_lock);
#endif
	spin_lock(&journal->j_state_lock);
	while (tid_gt(tid, journal->j_commit_sequence)) {
		jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
				  tid, journal->j_commit_sequence);
		wake_up(&journal->j_wait_commit);
		spin_unlock(&journal->j_state_lock);
		wait_event(journal->j_wait_done_commit,
				!tid_gt(tid, journal->j_commit_sequence));
		spin_lock(&journal->j_state_lock);
	}
	spin_unlock(&journal->j_state_lock);

	if (unlikely(is_journal_aborted(journal))) {
		printk(KERN_EMERG "journal commit I/O error\n");
		err = -EIO;
	}
	return err;
}

/*
 * Log buffer allocation routines:
 */

558
int jbd2_journal_next_log_block(journal_t *journal, unsigned long *retp)
559 560 561 562 563 564 565 566 567 568 569 570
{
	unsigned long blocknr;

	spin_lock(&journal->j_state_lock);
	J_ASSERT(journal->j_free > 1);

	blocknr = journal->j_head;
	journal->j_head++;
	journal->j_free--;
	if (journal->j_head == journal->j_last)
		journal->j_head = journal->j_first;
	spin_unlock(&journal->j_state_lock);
571
	return jbd2_journal_bmap(journal, blocknr, retp);
572 573 574 575 576 577 578 579 580
}

/*
 * Conversion of logical to physical block numbers for the journal
 *
 * On external journals the journal blocks are identity-mapped, so
 * this is a no-op.  If needed, we can use j_blk_offset - everything is
 * ready.
 */
581
int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
		 unsigned long *retp)
{
	int err = 0;
	unsigned long ret;

	if (journal->j_inode) {
		ret = bmap(journal->j_inode, blocknr);
		if (ret)
			*retp = ret;
		else {
			char b[BDEVNAME_SIZE];

			printk(KERN_ALERT "%s: journal block not found "
					"at offset %lu on %s\n",
				__FUNCTION__,
				blocknr,
				bdevname(journal->j_dev, b));
			err = -EIO;
			__journal_abort_soft(journal, err);
		}
	} else {
		*retp = blocknr; /* +journal->j_blk_offset */
	}
	return err;
}

/*
 * We play buffer_head aliasing tricks to write data/metadata blocks to
 * the journal without copying their contents, but for journal
 * descriptor blocks we do need to generate bona fide buffers.
 *
613
 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
614 615 616 617
 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
 * But we don't bother doing that, so there will be coherency problems with
 * mmaps of blockdevs which hold live JBD-controlled filesystems.
 */
618
struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
619 620 621 622 623
{
	struct buffer_head *bh;
	unsigned long blocknr;
	int err;

624
	err = jbd2_journal_next_log_block(journal, &blocknr);
625 626 627 628 629 630 631 632 633 634

	if (err)
		return NULL;

	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
	lock_buffer(bh);
	memset(bh->b_data, 0, journal->j_blocksize);
	set_buffer_uptodate(bh);
	unlock_buffer(bh);
	BUFFER_TRACE(bh, "return this buffer");
635
	return jbd2_journal_add_journal_head(bh);
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
}

/*
 * Management for journal control blocks: functions to create and
 * destroy journal_t structures, and to initialise and read existing
 * journal blocks from disk.  */

/* First: create and setup a journal_t object in memory.  We initialise
 * very few fields yet: that has to wait until we have created the
 * journal structures from from scratch, or loaded them from disk. */

static journal_t * journal_init_common (void)
{
	journal_t *journal;
	int err;

	journal = jbd_kmalloc(sizeof(*journal), GFP_KERNEL);
	if (!journal)
		goto fail;
	memset(journal, 0, sizeof(*journal));

	init_waitqueue_head(&journal->j_wait_transaction_locked);
	init_waitqueue_head(&journal->j_wait_logspace);
	init_waitqueue_head(&journal->j_wait_done_commit);
	init_waitqueue_head(&journal->j_wait_checkpoint);
	init_waitqueue_head(&journal->j_wait_commit);
	init_waitqueue_head(&journal->j_wait_updates);
	mutex_init(&journal->j_barrier);
	mutex_init(&journal->j_checkpoint_mutex);
	spin_lock_init(&journal->j_revoke_lock);
	spin_lock_init(&journal->j_list_lock);
	spin_lock_init(&journal->j_state_lock);

	journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);

	/* The journal is marked for error until we succeed with recovery! */
672
	journal->j_flags = JBD2_ABORT;
673 674

	/* Set up a default-sized revoke table for the new mount. */
675
	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
676 677 678 679 680 681 682 683 684
	if (err) {
		kfree(journal);
		goto fail;
	}
	return journal;
fail:
	return NULL;
}

685
/* jbd2_journal_init_dev and jbd2_journal_init_inode:
686 687 688 689 690 691 692 693 694
 *
 * Create a journal structure assigned some fixed set of disk blocks to
 * the journal.  We don't actually touch those disk blocks yet, but we
 * need to set up all of the mapping information to tell the journaling
 * system where the journal blocks are.
 *
 */

/**
695
 *  journal_t * jbd2_journal_init_dev() - creates an initialises a journal structure
696 697 698 699 700 701 702
 *  @bdev: Block device on which to create the journal
 *  @fs_dev: Device which hold journalled filesystem for this journal.
 *  @start: Block nr Start of journal.
 *  @len:  Length of the journal in blocks.
 *  @blocksize: blocksize of journalling device
 *  @returns: a newly created journal_t *
 *
703
 *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
704 705 706
 *  range of blocks on an arbitrary block device.
 *
 */
707
journal_t * jbd2_journal_init_dev(struct block_device *bdev,
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
			struct block_device *fs_dev,
			int start, int len, int blocksize)
{
	journal_t *journal = journal_init_common();
	struct buffer_head *bh;
	int n;

	if (!journal)
		return NULL;

	/* journal descriptor can store up to n blocks -bzzz */
	journal->j_blocksize = blocksize;
	n = journal->j_blocksize / sizeof(journal_block_tag_t);
	journal->j_wbufsize = n;
	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
	if (!journal->j_wbuf) {
		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
			__FUNCTION__);
		kfree(journal);
		journal = NULL;
	}
	journal->j_dev = bdev;
	journal->j_fs_dev = fs_dev;
	journal->j_blk_offset = start;
	journal->j_maxlen = len;

	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
	J_ASSERT(bh != NULL);
	journal->j_sb_buffer = bh;
	journal->j_superblock = (journal_superblock_t *)bh->b_data;

	return journal;
}

/**
743
 *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
744 745
 *  @inode: An inode to create the journal in
 *
746
 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
747 748 749
 * the journal.  The inode must exist already, must support bmap() and
 * must have all data blocks preallocated.
 */
750
journal_t * jbd2_journal_init_inode (struct inode *inode)
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
{
	struct buffer_head *bh;
	journal_t *journal = journal_init_common();
	int err;
	int n;
	unsigned long blocknr;

	if (!journal)
		return NULL;

	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
	journal->j_inode = inode;
	jbd_debug(1,
		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
		  journal, inode->i_sb->s_id, inode->i_ino,
		  (long long) inode->i_size,
		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);

	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
	journal->j_blocksize = inode->i_sb->s_blocksize;

	/* journal descriptor can store up to n blocks -bzzz */
	n = journal->j_blocksize / sizeof(journal_block_tag_t);
	journal->j_wbufsize = n;
	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
	if (!journal->j_wbuf) {
		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
			__FUNCTION__);
		kfree(journal);
		return NULL;
	}

783
	err = jbd2_journal_bmap(journal, 0, &blocknr);
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
	/* If that failed, give up */
	if (err) {
		printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
		       __FUNCTION__);
		kfree(journal);
		return NULL;
	}

	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
	J_ASSERT(bh != NULL);
	journal->j_sb_buffer = bh;
	journal->j_superblock = (journal_superblock_t *)bh->b_data;

	return journal;
}

/*
 * If the journal init or create aborts, we need to mark the journal
 * superblock as being NULL to prevent the journal destroy from writing
 * back a bogus superblock.
 */
static void journal_fail_superblock (journal_t *journal)
{
	struct buffer_head *bh = journal->j_sb_buffer;
	brelse(bh);
	journal->j_sb_buffer = NULL;
}

/*
 * Given a journal_t structure, initialise the various fields for
 * startup of a new journaling session.  We use this both when creating
 * a journal, and after recovering an old journal to reset it for
 * subsequent use.
 */

static int journal_reset(journal_t *journal)
{
	journal_superblock_t *sb = journal->j_superblock;
	unsigned long first, last;

	first = be32_to_cpu(sb->s_first);
	last = be32_to_cpu(sb->s_maxlen);

	journal->j_first = first;
	journal->j_last = last;

	journal->j_head = first;
	journal->j_tail = first;
	journal->j_free = last - first;

	journal->j_tail_sequence = journal->j_transaction_sequence;
	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
	journal->j_commit_request = journal->j_commit_sequence;

	journal->j_max_transaction_buffers = journal->j_maxlen / 4;

	/* Add the dynamic fields and write it to disk. */
841 842
	jbd2_journal_update_superblock(journal, 1);
	jbd2_journal_start_thread(journal);
843 844 845 846
	return 0;
}

/**
847
 * int jbd2_journal_create() - Initialise the new journal file
848 849 850 851 852 853
 * @journal: Journal to create. This structure must have been initialised
 *
 * Given a journal_t structure which tells us which disk blocks we can
 * use, create a new journal superblock and initialise all of the
 * journal fields from scratch.
 **/
854
int jbd2_journal_create(journal_t *journal)
855 856 857 858 859 860
{
	unsigned long blocknr;
	struct buffer_head *bh;
	journal_superblock_t *sb;
	int i, err;

861
	if (journal->j_maxlen < JBD2_MIN_JOURNAL_BLOCKS) {
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
		printk (KERN_ERR "Journal length (%d blocks) too short.\n",
			journal->j_maxlen);
		journal_fail_superblock(journal);
		return -EINVAL;
	}

	if (journal->j_inode == NULL) {
		/*
		 * We don't know what block to start at!
		 */
		printk(KERN_EMERG
		       "%s: creation of journal on external device!\n",
		       __FUNCTION__);
		BUG();
	}

	/* Zero out the entire journal on disk.  We cannot afford to
879
	   have any blocks on disk beginning with JBD2_MAGIC_NUMBER. */
880 881
	jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
	for (i = 0; i < journal->j_maxlen; i++) {
882
		err = jbd2_journal_bmap(journal, i, &blocknr);
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
		if (err)
			return err;
		bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
		lock_buffer(bh);
		memset (bh->b_data, 0, journal->j_blocksize);
		BUFFER_TRACE(bh, "marking dirty");
		mark_buffer_dirty(bh);
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);
		__brelse(bh);
	}

	sync_blockdev(journal->j_dev);
	jbd_debug(1, "JBD: journal cleared.\n");

	/* OK, fill in the initial static fields in the new superblock */
	sb = journal->j_superblock;

902 903
	sb->s_header.h_magic	 = cpu_to_be32(JBD2_MAGIC_NUMBER);
	sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
904 905 906 907 908 909 910

	sb->s_blocksize	= cpu_to_be32(journal->j_blocksize);
	sb->s_maxlen	= cpu_to_be32(journal->j_maxlen);
	sb->s_first	= cpu_to_be32(1);

	journal->j_transaction_sequence = 1;

911
	journal->j_flags &= ~JBD2_ABORT;
912 913 914 915 916 917
	journal->j_format_version = 2;

	return journal_reset(journal);
}

/**
918
 * void jbd2_journal_update_superblock() - Update journal sb on disk.
919 920 921 922 923 924
 * @journal: The journal to update.
 * @wait: Set to '0' if you don't want to wait for IO completion.
 *
 * Update a journal's dynamic superblock fields and write it to disk,
 * optionally waiting for the IO to complete.
 */
925
void jbd2_journal_update_superblock(journal_t *journal, int wait)
926 927 928 929 930 931 932 933
{
	journal_superblock_t *sb = journal->j_superblock;
	struct buffer_head *bh = journal->j_sb_buffer;

	/*
	 * As a special case, if the on-disk copy is already marked as needing
	 * no recovery (s_start == 0) and there are no outstanding transactions
	 * in the filesystem, then we can safely defer the superblock update
934
	 * until the next commit by setting JBD2_FLUSHED.  This avoids
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
	 * attempting a write to a potential-readonly device.
	 */
	if (sb->s_start == 0 && journal->j_tail_sequence ==
				journal->j_transaction_sequence) {
		jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
			"(start %ld, seq %d, errno %d)\n",
			journal->j_tail, journal->j_tail_sequence,
			journal->j_errno);
		goto out;
	}

	spin_lock(&journal->j_state_lock);
	jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
		  journal->j_tail, journal->j_tail_sequence, journal->j_errno);

	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
	sb->s_start    = cpu_to_be32(journal->j_tail);
	sb->s_errno    = cpu_to_be32(journal->j_errno);
	spin_unlock(&journal->j_state_lock);

	BUFFER_TRACE(bh, "marking dirty");
	mark_buffer_dirty(bh);
	if (wait)
		sync_dirty_buffer(bh);
	else
		ll_rw_block(SWRITE, 1, &bh);

out:
	/* If we have just flushed the log (by marking s_start==0), then
	 * any future commit will have to be careful to update the
	 * superblock again to re-record the true start of the log. */

	spin_lock(&journal->j_state_lock);
	if (sb->s_start)
969
		journal->j_flags &= ~JBD2_FLUSHED;
970
	else
971
		journal->j_flags |= JBD2_FLUSHED;
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
	spin_unlock(&journal->j_state_lock);
}

/*
 * Read the superblock for a given journal, performing initial
 * validation of the format.
 */

static int journal_get_superblock(journal_t *journal)
{
	struct buffer_head *bh;
	journal_superblock_t *sb;
	int err = -EIO;

	bh = journal->j_sb_buffer;

	J_ASSERT(bh != NULL);
	if (!buffer_uptodate(bh)) {
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
			printk (KERN_ERR
				"JBD: IO error reading journal superblock\n");
			goto out;
		}
	}

	sb = journal->j_superblock;

	err = -EINVAL;

1003
	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1004 1005 1006 1007 1008 1009
	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
		printk(KERN_WARNING "JBD: no valid journal superblock found\n");
		goto out;
	}

	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1010
	case JBD2_SUPERBLOCK_V1:
1011 1012
		journal->j_format_version = 1;
		break;
1013
	case JBD2_SUPERBLOCK_V2:
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
		journal->j_format_version = 2;
		break;
	default:
		printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
		goto out;
	}

	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
		printk (KERN_WARNING "JBD: journal file too short\n");
		goto out;
	}

	return 0;

out:
	journal_fail_superblock(journal);
	return err;
}

/*
 * Load the on-disk journal superblock and read the key fields into the
 * journal_t.
 */

static int load_superblock(journal_t *journal)
{
	int err;
	journal_superblock_t *sb;

	err = journal_get_superblock(journal);
	if (err)
		return err;

	sb = journal->j_superblock;

	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
	journal->j_tail = be32_to_cpu(sb->s_start);
	journal->j_first = be32_to_cpu(sb->s_first);
	journal->j_last = be32_to_cpu(sb->s_maxlen);
	journal->j_errno = be32_to_cpu(sb->s_errno);

	return 0;
}


/**
1062
 * int jbd2_journal_load() - Read journal from disk.
1063 1064 1065 1066 1067 1068
 * @journal: Journal to act on.
 *
 * Given a journal_t structure which tells us which disk blocks contain
 * a journal, read the journal from disk to initialise the in-memory
 * structures.
 */
1069
int jbd2_journal_load(journal_t *journal)
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
{
	int err;
	journal_superblock_t *sb;

	err = load_superblock(journal);
	if (err)
		return err;

	sb = journal->j_superblock;
	/* If this is a V2 superblock, then we have to check the
	 * features flags on it. */

	if (journal->j_format_version >= 2) {
		if ((sb->s_feature_ro_compat &
1084
		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1085
		    (sb->s_feature_incompat &
1086
		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1087 1088 1089 1090 1091 1092 1093 1094 1095
			printk (KERN_WARNING
				"JBD: Unrecognised features on journal\n");
			return -EINVAL;
		}
	}

	/*
	 * Create a slab for this blocksize
	 */
1096
	err = jbd2_journal_create_jbd_slab(be32_to_cpu(sb->s_blocksize));
1097 1098 1099 1100 1101
	if (err)
		return err;

	/* Let the recovery code check whether it needs to recover any
	 * data from the journal. */
1102
	if (jbd2_journal_recover(journal))
1103 1104 1105 1106 1107 1108 1109 1110
		goto recovery_error;

	/* OK, we've finished with the dynamic journal bits:
	 * reinitialise the dynamic contents of the superblock in memory
	 * and reset them on disk. */
	if (journal_reset(journal))
		goto recovery_error;

1111 1112
	journal->j_flags &= ~JBD2_ABORT;
	journal->j_flags |= JBD2_LOADED;
1113 1114 1115 1116 1117 1118 1119 1120
	return 0;

recovery_error:
	printk (KERN_WARNING "JBD: recovery failed\n");
	return -EIO;
}

/**
1121
 * void jbd2_journal_destroy() - Release a journal_t structure.
1122 1123 1124 1125 1126
 * @journal: Journal to act on.
 *
 * Release a journal_t structure once it is no longer in use by the
 * journaled object.
 */
1127
void jbd2_journal_destroy(journal_t *journal)
1128 1129 1130 1131 1132 1133
{
	/* Wait for the commit thread to wake up and die. */
	journal_kill_thread(journal);

	/* Force a final log commit */
	if (journal->j_running_transaction)
1134
		jbd2_journal_commit_transaction(journal);
1135 1136 1137 1138 1139 1140 1141

	/* Force any old transactions to disk */

	/* Totally anal locking here... */
	spin_lock(&journal->j_list_lock);
	while (journal->j_checkpoint_transactions != NULL) {
		spin_unlock(&journal->j_list_lock);
1142
		jbd2_log_do_checkpoint(journal);
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
		spin_lock(&journal->j_list_lock);
	}

	J_ASSERT(journal->j_running_transaction == NULL);
	J_ASSERT(journal->j_committing_transaction == NULL);
	J_ASSERT(journal->j_checkpoint_transactions == NULL);
	spin_unlock(&journal->j_list_lock);

	/* We can now mark the journal as empty. */
	journal->j_tail = 0;
	journal->j_tail_sequence = ++journal->j_transaction_sequence;
	if (journal->j_sb_buffer) {
1155
		jbd2_journal_update_superblock(journal, 1);
1156 1157 1158 1159 1160 1161
		brelse(journal->j_sb_buffer);
	}

	if (journal->j_inode)
		iput(journal->j_inode);
	if (journal->j_revoke)
1162
		jbd2_journal_destroy_revoke(journal);
1163 1164 1165 1166 1167 1168
	kfree(journal->j_wbuf);
	kfree(journal);
}


/**
1169
 *int jbd2_journal_check_used_features () - Check if features specified are used.
1170 1171 1172 1173 1174 1175 1176 1177 1178
 * @journal: Journal to check.
 * @compat: bitmask of compatible features
 * @ro: bitmask of features that force read-only mount
 * @incompat: bitmask of incompatible features
 *
 * Check whether the journal uses all of a given set of
 * features.  Return true (non-zero) if it does.
 **/

1179
int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
				 unsigned long ro, unsigned long incompat)
{
	journal_superblock_t *sb;

	if (!compat && !ro && !incompat)
		return 1;
	if (journal->j_format_version == 1)
		return 0;

	sb = journal->j_superblock;

	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
		return 1;

	return 0;
}

/**
1200
 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1201 1202 1203 1204 1205 1206 1207 1208 1209
 * @journal: Journal to check.
 * @compat: bitmask of compatible features
 * @ro: bitmask of features that force read-only mount
 * @incompat: bitmask of incompatible features
 *
 * Check whether the journaling code supports the use of
 * all of a given set of features on this journal.  Return true
 * (non-zero) if it can. */

1210
int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
				      unsigned long ro, unsigned long incompat)
{
	journal_superblock_t *sb;

	if (!compat && !ro && !incompat)
		return 1;

	sb = journal->j_superblock;

	/* We can support any known requested features iff the
	 * superblock is in version 2.  Otherwise we fail to support any
	 * extended sb features. */

	if (journal->j_format_version != 2)
		return 0;

1227 1228 1229
	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1230 1231 1232 1233 1234 1235
		return 1;

	return 0;
}

/**
1236
 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
 * @journal: Journal to act on.
 * @compat: bitmask of compatible features
 * @ro: bitmask of features that force read-only mount
 * @incompat: bitmask of incompatible features
 *
 * Mark a given journal feature as present on the
 * superblock.  Returns true if the requested features could be set.
 *
 */

1247
int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1248 1249 1250 1251
			  unsigned long ro, unsigned long incompat)
{
	journal_superblock_t *sb;

1252
	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1253 1254
		return 1;

1255
	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
		return 0;

	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
		  compat, ro, incompat);

	sb = journal->j_superblock;

	sb->s_feature_compat    |= cpu_to_be32(compat);
	sb->s_feature_ro_compat |= cpu_to_be32(ro);
	sb->s_feature_incompat  |= cpu_to_be32(incompat);

	return 1;
}


/**
1272
 * int jbd2_journal_update_format () - Update on-disk journal structure.
1273 1274 1275 1276 1277
 * @journal: Journal to act on.
 *
 * Given an initialised but unloaded journal struct, poke about in the
 * on-disk structure to update it to the most recent supported version.
 */
1278
int jbd2_journal_update_format (journal_t *journal)
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
{
	journal_superblock_t *sb;
	int err;

	err = journal_get_superblock(journal);
	if (err)
		return err;

	sb = journal->j_superblock;

	switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1290
	case JBD2_SUPERBLOCK_V2:
1291
		return 0;
1292
	case JBD2_SUPERBLOCK_V1:
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
		return journal_convert_superblock_v1(journal, sb);
	default:
		break;
	}
	return -EINVAL;
}

static int journal_convert_superblock_v1(journal_t *journal,
					 journal_superblock_t *sb)
{
	int offset, blocksize;
	struct buffer_head *bh;

	printk(KERN_WARNING
		"JBD: Converting superblock from version 1 to 2.\n");

	/* Pre-initialise new fields to zero */
	offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
	blocksize = be32_to_cpu(sb->s_blocksize);
	memset(&sb->s_feature_compat, 0, blocksize-offset);

	sb->s_nr_users = cpu_to_be32(1);
1315
	sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
	journal->j_format_version = 2;

	bh = journal->j_sb_buffer;
	BUFFER_TRACE(bh, "marking dirty");
	mark_buffer_dirty(bh);
	sync_dirty_buffer(bh);
	return 0;
}


/**
1327
 * int jbd2_journal_flush () - Flush journal
1328 1329 1330 1331 1332 1333 1334
 * @journal: Journal to act on.
 *
 * Flush all data for a given journal to disk and empty the journal.
 * Filesystems can use this when remounting readonly to ensure that
 * recovery does not need to happen on remount.
 */

1335
int jbd2_journal_flush(journal_t *journal)
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
{
	int err = 0;
	transaction_t *transaction = NULL;
	unsigned long old_tail;

	spin_lock(&journal->j_state_lock);

	/* Force everything buffered to the log... */
	if (journal->j_running_transaction) {
		transaction = journal->j_running_transaction;
1346
		__jbd2_log_start_commit(journal, transaction->t_tid);
1347 1348 1349 1350 1351 1352 1353 1354
	} else if (journal->j_committing_transaction)
		transaction = journal->j_committing_transaction;

	/* Wait for the log commit to complete... */
	if (transaction) {
		tid_t tid = transaction->t_tid;

		spin_unlock(&journal->j_state_lock);
1355
		jbd2_log_wait_commit(journal, tid);
1356 1357 1358 1359 1360 1361 1362 1363
	} else {
		spin_unlock(&journal->j_state_lock);
	}

	/* ...and flush everything in the log out to disk. */
	spin_lock(&journal->j_list_lock);
	while (!err && journal->j_checkpoint_transactions != NULL) {
		spin_unlock(&journal->j_list_lock);
1364
		err = jbd2_log_do_checkpoint(journal);
1365 1366 1367
		spin_lock(&journal->j_list_lock);
	}
	spin_unlock(&journal->j_list_lock);
1368
	jbd2_cleanup_journal_tail(journal);
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378

	/* Finally, mark the journal as really needing no recovery.
	 * This sets s_start==0 in the underlying superblock, which is
	 * the magic code for a fully-recovered superblock.  Any future
	 * commits of data to the journal will restore the current
	 * s_start value. */
	spin_lock(&journal->j_state_lock);
	old_tail = journal->j_tail;
	journal->j_tail = 0;
	spin_unlock(&journal->j_state_lock);
1379
	jbd2_journal_update_superblock(journal, 1);
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
	spin_lock(&journal->j_state_lock);
	journal->j_tail = old_tail;

	J_ASSERT(!journal->j_running_transaction);
	J_ASSERT(!journal->j_committing_transaction);
	J_ASSERT(!journal->j_checkpoint_transactions);
	J_ASSERT(journal->j_head == journal->j_tail);
	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
	spin_unlock(&journal->j_state_lock);
	return err;
}

/**
1393
 * int jbd2_journal_wipe() - Wipe journal contents
1394 1395 1396 1397 1398
 * @journal: Journal to act on.
 * @write: flag (see below)
 *
 * Wipe out all of the contents of a journal, safely.  This will produce
 * a warning if the journal contains any valid recovery information.
1399
 * Must be called between journal_init_*() and jbd2_journal_load().
1400 1401 1402 1403 1404
 *
 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
 * we merely suppress recovery.
 */

1405
int jbd2_journal_wipe(journal_t *journal, int write)
1406 1407 1408 1409
{
	journal_superblock_t *sb;
	int err = 0;

1410
	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423

	err = load_superblock(journal);
	if (err)
		return err;

	sb = journal->j_superblock;

	if (!journal->j_tail)
		goto no_recovery;

	printk (KERN_WARNING "JBD: %s recovery information on journal\n",
		write ? "Clearing" : "Ignoring");

1424
	err = jbd2_journal_skip_recovery(journal);
1425
	if (write)
1426
		jbd2_journal_update_superblock(journal, 1);
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461

 no_recovery:
	return err;
}

/*
 * journal_dev_name: format a character string to describe on what
 * device this journal is present.
 */

static const char *journal_dev_name(journal_t *journal, char *buffer)
{
	struct block_device *bdev;

	if (journal->j_inode)
		bdev = journal->j_inode->i_sb->s_bdev;
	else
		bdev = journal->j_dev;

	return bdevname(bdev, buffer);
}

/*
 * Journal abort has very specific semantics, which we describe
 * for journal abort.
 *
 * Two internal function, which provide abort to te jbd layer
 * itself are here.
 */

/*
 * Quick version for internal journal use (doesn't lock the journal).
 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
 * and don't attempt to make any other journal updates.
 */
1462
void __jbd2_journal_abort_hard(journal_t *journal)
1463 1464 1465 1466
{
	transaction_t *transaction;
	char b[BDEVNAME_SIZE];

1467
	if (journal->j_flags & JBD2_ABORT)
1468 1469 1470 1471 1472 1473
		return;

	printk(KERN_ERR "Aborting journal on device %s.\n",
		journal_dev_name(journal, b));

	spin_lock(&journal->j_state_lock);
1474
	journal->j_flags |= JBD2_ABORT;
1475 1476
	transaction = journal->j_running_transaction;
	if (transaction)
1477
		__jbd2_log_start_commit(journal, transaction->t_tid);
1478 1479 1480 1481 1482 1483 1484
	spin_unlock(&journal->j_state_lock);
}

/* Soft abort: record the abort error status in the journal superblock,
 * but don't do any other IO. */
static void __journal_abort_soft (journal_t *journal, int errno)
{
1485
	if (journal->j_flags & JBD2_ABORT)
1486 1487 1488 1489 1490
		return;

	if (!journal->j_errno)
		journal->j_errno = errno;

1491
	__jbd2_journal_abort_hard(journal);
1492 1493

	if (errno)
1494
		jbd2_journal_update_superblock(journal, 1);
1495 1496 1497
}

/**
1498
 * void jbd2_journal_abort () - Shutdown the journal immediately.
1499 1500 1501 1502 1503 1504 1505 1506
 * @journal: the journal to shutdown.
 * @errno:   an error number to record in the journal indicating
 *           the reason for the shutdown.
 *
 * Perform a complete, immediate shutdown of the ENTIRE
 * journal (not of a single transaction).  This operation cannot be
 * undone without closing and reopening the journal.
 *
1507
 * The jbd2_journal_abort function is intended to support higher level error
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
 * recovery mechanisms such as the ext2/ext3 remount-readonly error
 * mode.
 *
 * Journal abort has very specific semantics.  Any existing dirty,
 * unjournaled buffers in the main filesystem will still be written to
 * disk by bdflush, but the journaling mechanism will be suspended
 * immediately and no further transaction commits will be honoured.
 *
 * Any dirty, journaled buffers will be written back to disk without
 * hitting the journal.  Atomicity cannot be guaranteed on an aborted
 * filesystem, but we _do_ attempt to leave as much data as possible
 * behind for fsck to use for cleanup.
 *
 * Any attempt to get a new transaction handle on a journal which is in
 * ABORT state will just result in an -EROFS error return.  A
1523
 * jbd2_journal_stop on an existing handle will return -EIO if we have
1524 1525 1526
 * entered abort state during the update.
 *
 * Recursive transactions are not disturbed by journal abort until the
1527
 * final jbd2_journal_stop, which will receive the -EIO error.
1528
 *
1529
 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
 * which will be recorded (if possible) in the journal superblock.  This
 * allows a client to record failure conditions in the middle of a
 * transaction without having to complete the transaction to record the
 * failure to disk.  ext3_error, for example, now uses this
 * functionality.
 *
 * Errors which originate from within the journaling layer will NOT
 * supply an errno; a null errno implies that absolutely no further
 * writes are done to the journal (unless there are any already in
 * progress).
 *
 */

1543
void jbd2_journal_abort(journal_t *journal, int errno)
1544 1545 1546 1547 1548
{
	__journal_abort_soft(journal, errno);
}

/**
1549
 * int jbd2_journal_errno () - returns the journal's error state.
1550 1551
 * @journal: journal to examine.
 *
1552
 * This is the errno numbet set with jbd2_journal_abort(), the last
1553 1554 1555 1556 1557 1558
 * time the journal was mounted - if the journal was stopped
 * without calling abort this will be 0.
 *
 * If the journal has been aborted on this mount time -EROFS will
 * be returned.
 */
1559
int jbd2_journal_errno(journal_t *journal)
1560 1561 1562 1563
{
	int err;

	spin_lock(&journal->j_state_lock);
1564
	if (journal->j_flags & JBD2_ABORT)
1565 1566 1567 1568 1569 1570 1571 1572
		err = -EROFS;
	else
		err = journal->j_errno;
	spin_unlock(&journal->j_state_lock);
	return err;
}

/**
1573
 * int jbd2_journal_clear_err () - clears the journal's error state
1574 1575 1576 1577 1578
 * @journal: journal to act on.
 *
 * An error must be cleared or Acked to take a FS out of readonly
 * mode.
 */
1579
int jbd2_journal_clear_err(journal_t *journal)
1580 1581 1582 1583
{
	int err = 0;

	spin_lock(&journal->j_state_lock);
1584
	if (journal->j_flags & JBD2_ABORT)
1585 1586 1587 1588 1589 1590 1591 1592
		err = -EROFS;
	else
		journal->j_errno = 0;
	spin_unlock(&journal->j_state_lock);
	return err;
}

/**
1593
 * void jbd2_journal_ack_err() - Ack journal err.
1594 1595 1596 1597 1598
 * @journal: journal to act on.
 *
 * An error must be cleared or Acked to take a FS out of readonly
 * mode.
 */
1599
void jbd2_journal_ack_err(journal_t *journal)
1600 1601 1602
{
	spin_lock(&journal->j_state_lock);
	if (journal->j_errno)
1603
		journal->j_flags |= JBD2_ACK_ERR;
1604 1605 1606
	spin_unlock(&journal->j_state_lock);
}

1607
int jbd2_journal_blocks_per_page(struct inode *inode)
1608 1609 1610 1611
{
	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
}

Z
Zach Brown 已提交
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
/*
 * helper functions to deal with 32 or 64bit block numbers.
 */
size_t journal_tag_bytes(journal_t *journal)
{
	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
		return JBD_TAG_SIZE64;
	else
		return JBD_TAG_SIZE32;
}

1623 1624 1625 1626
/*
 * Simple support for retrying memory allocations.  Introduced to help to
 * debug different VM deadlock avoidance strategies.
 */
1627
void * __jbd2_kmalloc (const char *where, size_t size, gfp_t flags, int retry)
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
{
	return kmalloc(size, flags | (retry ? __GFP_NOFAIL : 0));
}

/*
 * jbd slab management: create 1k, 2k, 4k, 8k slabs as needed
 * and allocate frozen and commit buffers from these slabs.
 *
 * Reason for doing this is to avoid, SLAB_DEBUG - since it could
 * cause bh to cross page boundary.
 */

#define JBD_MAX_SLABS 5
#define JBD_SLAB_INDEX(size)  (size >> 11)

static kmem_cache_t *jbd_slab[JBD_MAX_SLABS];
static const char *jbd_slab_names[JBD_MAX_SLABS] = {
J
Johann Lombardi 已提交
1645
	"jbd2_1k", "jbd2_2k", "jbd2_4k", NULL, "jbd2_8k"
1646 1647
};

1648
static void jbd2_journal_destroy_jbd_slabs(void)
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
{
	int i;

	for (i = 0; i < JBD_MAX_SLABS; i++) {
		if (jbd_slab[i])
			kmem_cache_destroy(jbd_slab[i]);
		jbd_slab[i] = NULL;
	}
}

1659
static int jbd2_journal_create_jbd_slab(size_t slab_size)
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
{
	int i = JBD_SLAB_INDEX(slab_size);

	BUG_ON(i >= JBD_MAX_SLABS);

	/*
	 * Check if we already have a slab created for this size
	 */
	if (jbd_slab[i])
		return 0;

	/*
	 * Create a slab and force alignment to be same as slabsize -
	 * this will make sure that allocations won't cross the page
	 * boundary.
	 */
	jbd_slab[i] = kmem_cache_create(jbd_slab_names[i],
				slab_size, slab_size, 0, NULL, NULL);
	if (!jbd_slab[i]) {
		printk(KERN_EMERG "JBD: no memory for jbd_slab cache\n");
		return -ENOMEM;
	}
	return 0;
}

1685
void * jbd2_slab_alloc(size_t size, gfp_t flags)
1686 1687 1688 1689 1690 1691 1692 1693
{
	int idx;

	idx = JBD_SLAB_INDEX(size);
	BUG_ON(jbd_slab[idx] == NULL);
	return kmem_cache_alloc(jbd_slab[idx], flags | __GFP_NOFAIL);
}

1694
void jbd2_slab_free(void *ptr,  size_t size)
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
{
	int idx;

	idx = JBD_SLAB_INDEX(size);
	BUG_ON(jbd_slab[idx] == NULL);
	kmem_cache_free(jbd_slab[idx], ptr);
}

/*
 * Journal_head storage management
 */
1706
static kmem_cache_t *jbd2_journal_head_cache;
1707 1708 1709 1710
#ifdef CONFIG_JBD_DEBUG
static atomic_t nr_journal_heads = ATOMIC_INIT(0);
#endif

1711
static int journal_init_jbd2_journal_head_cache(void)
1712 1713 1714
{
	int retval;

1715
	J_ASSERT(jbd2_journal_head_cache == 0);
J
Johann Lombardi 已提交
1716
	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
1717 1718 1719 1720 1721 1722
				sizeof(struct journal_head),
				0,		/* offset */
				0,		/* flags */
				NULL,		/* ctor */
				NULL);		/* dtor */
	retval = 0;
1723
	if (jbd2_journal_head_cache == 0) {
1724 1725 1726 1727 1728 1729
		retval = -ENOMEM;
		printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
	}
	return retval;
}

1730
static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
1731
{
1732 1733 1734
	J_ASSERT(jbd2_journal_head_cache != NULL);
	kmem_cache_destroy(jbd2_journal_head_cache);
	jbd2_journal_head_cache = NULL;
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
}

/*
 * journal_head splicing and dicing
 */
static struct journal_head *journal_alloc_journal_head(void)
{
	struct journal_head *ret;
	static unsigned long last_warning;

#ifdef CONFIG_JBD_DEBUG
	atomic_inc(&nr_journal_heads);
#endif
1748
	ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1749 1750 1751 1752 1753 1754 1755 1756 1757
	if (ret == 0) {
		jbd_debug(1, "out of memory for journal_head\n");
		if (time_after(jiffies, last_warning + 5*HZ)) {
			printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
			       __FUNCTION__);
			last_warning = jiffies;
		}
		while (ret == 0) {
			yield();
1758
			ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
		}
	}
	return ret;
}

static void journal_free_journal_head(struct journal_head *jh)
{
#ifdef CONFIG_JBD_DEBUG
	atomic_dec(&nr_journal_heads);
	memset(jh, JBD_POISON_FREE, sizeof(*jh));
#endif
1770
	kmem_cache_free(jbd2_journal_head_cache, jh);
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
}

/*
 * A journal_head is attached to a buffer_head whenever JBD has an
 * interest in the buffer.
 *
 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
 * is set.  This bit is tested in core kernel code where we need to take
 * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
 * there.
 *
 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
 *
 * When a buffer has its BH_JBD bit set it is immune from being released by
 * core kernel code, mainly via ->b_count.
 *
 * A journal_head may be detached from its buffer_head when the journal_head's
 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
1789
 * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the
1790 1791 1792 1793
 * journal_head can be dropped if needed.
 *
 * Various places in the kernel want to attach a journal_head to a buffer_head
 * _before_ attaching the journal_head to a transaction.  To protect the
1794
 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
1795
 * journal_head's b_jcount refcount by one.  The caller must call
1796
 * jbd2_journal_put_journal_head() to undo this.
1797 1798 1799 1800
 *
 * So the typical usage would be:
 *
 *	(Attach a journal_head if needed.  Increments b_jcount)
1801
 *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1802 1803
 *	...
 *	jh->b_transaction = xxx;
1804
 *	jbd2_journal_put_journal_head(jh);
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
 *
 * Now, the journal_head's b_jcount is zero, but it is safe from being released
 * because it has a non-zero b_transaction.
 */

/*
 * Give a buffer_head a journal_head.
 *
 * Doesn't need the journal lock.
 * May sleep.
 */
1816
struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
{
	struct journal_head *jh;
	struct journal_head *new_jh = NULL;

repeat:
	if (!buffer_jbd(bh)) {
		new_jh = journal_alloc_journal_head();
		memset(new_jh, 0, sizeof(*new_jh));
	}

	jbd_lock_bh_journal_head(bh);
	if (buffer_jbd(bh)) {
		jh = bh2jh(bh);
	} else {
		J_ASSERT_BH(bh,
			(atomic_read(&bh->b_count) > 0) ||
			(bh->b_page && bh->b_page->mapping));

		if (!new_jh) {
			jbd_unlock_bh_journal_head(bh);
			goto repeat;
		}

		jh = new_jh;
		new_jh = NULL;		/* We consumed it */
		set_buffer_jbd(bh);
		bh->b_private = jh;
		jh->b_bh = bh;
		get_bh(bh);
		BUFFER_TRACE(bh, "added journal_head");
	}
	jh->b_jcount++;
	jbd_unlock_bh_journal_head(bh);
	if (new_jh)
		journal_free_journal_head(new_jh);
	return bh->b_private;
}

/*
 * Grab a ref against this buffer_head's journal_head.  If it ended up not
 * having a journal_head, return NULL
 */
1859
struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
{
	struct journal_head *jh = NULL;

	jbd_lock_bh_journal_head(bh);
	if (buffer_jbd(bh)) {
		jh = bh2jh(bh);
		jh->b_jcount++;
	}
	jbd_unlock_bh_journal_head(bh);
	return jh;
}

static void __journal_remove_journal_head(struct buffer_head *bh)
{
	struct journal_head *jh = bh2jh(bh);

	J_ASSERT_JH(jh, jh->b_jcount >= 0);

	get_bh(bh);
	if (jh->b_jcount == 0) {
		if (jh->b_transaction == NULL &&
				jh->b_next_transaction == NULL &&
				jh->b_cp_transaction == NULL) {
			J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
			J_ASSERT_BH(bh, buffer_jbd(bh));
			J_ASSERT_BH(bh, jh2bh(jh) == bh);
			BUFFER_TRACE(bh, "remove journal_head");
			if (jh->b_frozen_data) {
				printk(KERN_WARNING "%s: freeing "
						"b_frozen_data\n",
						__FUNCTION__);
1891
				jbd2_slab_free(jh->b_frozen_data, bh->b_size);
1892 1893 1894 1895 1896
			}
			if (jh->b_committed_data) {
				printk(KERN_WARNING "%s: freeing "
						"b_committed_data\n",
						__FUNCTION__);
1897
				jbd2_slab_free(jh->b_committed_data, bh->b_size);
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
			}
			bh->b_private = NULL;
			jh->b_bh = NULL;	/* debug, really */
			clear_buffer_jbd(bh);
			__brelse(bh);
			journal_free_journal_head(jh);
		} else {
			BUFFER_TRACE(bh, "journal_head was locked");
		}
	}
}

/*
1911
 * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction
1912 1913 1914 1915 1916 1917 1918
 * and has a zero b_jcount then remove and release its journal_head.   If we did
 * see that the buffer is not used by any transaction we also "logically"
 * decrement ->b_count.
 *
 * We in fact take an additional increment on ->b_count as a convenience,
 * because the caller usually wants to do additional things with the bh
 * after calling here.
1919
 * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some
1920 1921 1922
 * time.  Once the caller has run __brelse(), the buffer is eligible for
 * reaping by try_to_free_buffers().
 */
1923
void jbd2_journal_remove_journal_head(struct buffer_head *bh)
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
{
	jbd_lock_bh_journal_head(bh);
	__journal_remove_journal_head(bh);
	jbd_unlock_bh_journal_head(bh);
}

/*
 * Drop a reference on the passed journal_head.  If it fell to zero then try to
 * release the journal_head from the buffer_head.
 */
1934
void jbd2_journal_put_journal_head(struct journal_head *jh)
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
{
	struct buffer_head *bh = jh2bh(jh);

	jbd_lock_bh_journal_head(bh);
	J_ASSERT_JH(jh, jh->b_jcount > 0);
	--jh->b_jcount;
	if (!jh->b_jcount && !jh->b_transaction) {
		__journal_remove_journal_head(bh);
		__brelse(bh);
	}
	jbd_unlock_bh_journal_head(bh);
}

/*
 * /proc tunables
 */
#if defined(CONFIG_JBD_DEBUG)
1952 1953
int jbd2_journal_enable_debug;
EXPORT_SYMBOL(jbd2_journal_enable_debug);
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
#endif

#if defined(CONFIG_JBD_DEBUG) && defined(CONFIG_PROC_FS)

static struct proc_dir_entry *proc_jbd_debug;

static int read_jbd_debug(char *page, char **start, off_t off,
			  int count, int *eof, void *data)
{
	int ret;

1965
	ret = sprintf(page + off, "%d\n", jbd2_journal_enable_debug);
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
	*eof = 1;
	return ret;
}

static int write_jbd_debug(struct file *file, const char __user *buffer,
			   unsigned long count, void *data)
{
	char buf[32];

	if (count > ARRAY_SIZE(buf) - 1)
		count = ARRAY_SIZE(buf) - 1;
	if (copy_from_user(buf, buffer, count))
		return -EFAULT;
	buf[ARRAY_SIZE(buf) - 1] = '\0';
1980
	jbd2_journal_enable_debug = simple_strtoul(buf, NULL, 10);
1981 1982 1983
	return count;
}

1984
#define JBD_PROC_NAME "sys/fs/jbd2-debug"
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

static void __init create_jbd_proc_entry(void)
{
	proc_jbd_debug = create_proc_entry(JBD_PROC_NAME, 0644, NULL);
	if (proc_jbd_debug) {
		/* Why is this so hard? */
		proc_jbd_debug->read_proc = read_jbd_debug;
		proc_jbd_debug->write_proc = write_jbd_debug;
	}
}

1996
static void __exit jbd2_remove_jbd_proc_entry(void)
1997 1998 1999 2000 2001 2002 2003 2004
{
	if (proc_jbd_debug)
		remove_proc_entry(JBD_PROC_NAME, NULL);
}

#else

#define create_jbd_proc_entry() do {} while (0)
2005
#define jbd2_remove_jbd_proc_entry() do {} while (0)
2006 2007 2008

#endif

2009
kmem_cache_t *jbd2_handle_cache;
2010 2011 2012

static int __init journal_init_handle_cache(void)
{
J
Johann Lombardi 已提交
2013
	jbd2_handle_cache = kmem_cache_create("jbd2_journal_handle",
2014 2015 2016 2017 2018
				sizeof(handle_t),
				0,		/* offset */
				0,		/* flags */
				NULL,		/* ctor */
				NULL);		/* dtor */
2019
	if (jbd2_handle_cache == NULL) {
2020 2021 2022 2023 2024 2025
		printk(KERN_EMERG "JBD: failed to create handle cache\n");
		return -ENOMEM;
	}
	return 0;
}

2026
static void jbd2_journal_destroy_handle_cache(void)
2027
{
2028 2029
	if (jbd2_handle_cache)
		kmem_cache_destroy(jbd2_handle_cache);
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
}

/*
 * Module startup and shutdown
 */

static int __init journal_init_caches(void)
{
	int ret;

2040
	ret = jbd2_journal_init_revoke_caches();
2041
	if (ret == 0)
2042
		ret = journal_init_jbd2_journal_head_cache();
2043 2044 2045 2046 2047
	if (ret == 0)
		ret = journal_init_handle_cache();
	return ret;
}

2048
static void jbd2_journal_destroy_caches(void)
2049
{
2050 2051 2052 2053
	jbd2_journal_destroy_revoke_caches();
	jbd2_journal_destroy_jbd2_journal_head_cache();
	jbd2_journal_destroy_handle_cache();
	jbd2_journal_destroy_jbd_slabs();
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
}

static int __init journal_init(void)
{
	int ret;

	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);

	ret = journal_init_caches();
	if (ret != 0)
2064
		jbd2_journal_destroy_caches();
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
	create_jbd_proc_entry();
	return ret;
}

static void __exit journal_exit(void)
{
#ifdef CONFIG_JBD_DEBUG
	int n = atomic_read(&nr_journal_heads);
	if (n)
		printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
#endif
2076 2077
	jbd2_remove_jbd_proc_entry();
	jbd2_journal_destroy_caches();
2078 2079 2080 2081 2082 2083
}

MODULE_LICENSE("GPL");
module_init(journal_init);
module_exit(journal_exit);