xfs_file.c 41.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2 3
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
L
Linus Torvalds 已提交
4
 *
5 6
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
L
Linus Torvalds 已提交
7 8
 * published by the Free Software Foundation.
 *
9 10 11 12
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
L
Linus Torvalds 已提交
13
 *
14 15 16
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
L
Linus Torvalds 已提交
17 18
 */
#include "xfs.h"
19
#include "xfs_fs.h"
20
#include "xfs_shared.h"
21
#include "xfs_format.h"
22 23
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
L
Linus Torvalds 已提交
24
#include "xfs_mount.h"
25 26
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
L
Linus Torvalds 已提交
27
#include "xfs_inode.h"
28
#include "xfs_trans.h"
29
#include "xfs_inode_item.h"
30
#include "xfs_bmap.h"
D
Dave Chinner 已提交
31
#include "xfs_bmap_util.h"
L
Linus Torvalds 已提交
32
#include "xfs_error.h"
33
#include "xfs_dir2.h"
D
Dave Chinner 已提交
34
#include "xfs_dir2_priv.h"
35
#include "xfs_ioctl.h"
36
#include "xfs_trace.h"
37
#include "xfs_log.h"
38
#include "xfs_icache.h"
39
#include "xfs_pnfs.h"
40
#include "xfs_iomap.h"
41
#include "xfs_reflink.h"
L
Linus Torvalds 已提交
42 43

#include <linux/dcache.h>
44
#include <linux/falloc.h>
45
#include <linux/pagevec.h>
46
#include <linux/backing-dev.h>
L
Linus Torvalds 已提交
47

48
static const struct vm_operations_struct xfs_file_vm_ops;
L
Linus Torvalds 已提交
49

50 51 52 53 54 55 56 57 58 59
/*
 * Locking primitives for read and write IO paths to ensure we consistently use
 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
 */
static inline void
xfs_rw_ilock(
	struct xfs_inode	*ip,
	int			type)
{
	if (type & XFS_IOLOCK_EXCL)
A
Al Viro 已提交
60
		inode_lock(VFS_I(ip));
61 62 63 64 65 66 67 68 69 70
	xfs_ilock(ip, type);
}

static inline void
xfs_rw_iunlock(
	struct xfs_inode	*ip,
	int			type)
{
	xfs_iunlock(ip, type);
	if (type & XFS_IOLOCK_EXCL)
A
Al Viro 已提交
71
		inode_unlock(VFS_I(ip));
72 73 74 75 76 77 78 79 80
}

static inline void
xfs_rw_ilock_demote(
	struct xfs_inode	*ip,
	int			type)
{
	xfs_ilock_demote(ip, type);
	if (type & XFS_IOLOCK_EXCL)
A
Al Viro 已提交
81
		inode_unlock(VFS_I(ip));
82 83
}

84
/*
85 86
 * Clear the specified ranges to zero through either the pagecache or DAX.
 * Holes and unwritten extents will be left as-is as they already are zeroed.
87
 */
88
int
89
xfs_zero_range(
90
	struct xfs_inode	*ip,
91 92 93
	xfs_off_t		pos,
	xfs_off_t		count,
	bool			*did_zero)
94
{
95
	return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops);
96 97
}

98 99 100 101 102 103 104 105
int
xfs_update_prealloc_flags(
	struct xfs_inode	*ip,
	enum xfs_prealloc_flags	flags)
{
	struct xfs_trans	*tp;
	int			error;

106 107 108
	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
			0, 0, 0, &tp);
	if (error)
109 110 111 112 113 114
		return error;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);

	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
D
Dave Chinner 已提交
115 116 117
		VFS_I(ip)->i_mode &= ~S_ISUID;
		if (VFS_I(ip)->i_mode & S_IXGRP)
			VFS_I(ip)->i_mode &= ~S_ISGID;
118 119 120 121 122 123 124 125 126 127 128
		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
	}

	if (flags & XFS_PREALLOC_SET)
		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
	if (flags & XFS_PREALLOC_CLEAR)
		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;

	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
	if (flags & XFS_PREALLOC_SYNC)
		xfs_trans_set_sync(tp);
129
	return xfs_trans_commit(tp);
130 131
}

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
/*
 * Fsync operations on directories are much simpler than on regular files,
 * as there is no file data to flush, and thus also no need for explicit
 * cache flush operations, and there are no non-transaction metadata updates
 * on directories either.
 */
STATIC int
xfs_dir_fsync(
	struct file		*file,
	loff_t			start,
	loff_t			end,
	int			datasync)
{
	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
	struct xfs_mount	*mp = ip->i_mount;
	xfs_lsn_t		lsn = 0;

	trace_xfs_dir_fsync(ip);

	xfs_ilock(ip, XFS_ILOCK_SHARED);
	if (xfs_ipincount(ip))
		lsn = ip->i_itemp->ili_last_lsn;
	xfs_iunlock(ip, XFS_ILOCK_SHARED);

	if (!lsn)
		return 0;
D
Dave Chinner 已提交
158
	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
159 160
}

161 162 163
STATIC int
xfs_file_fsync(
	struct file		*file,
164 165
	loff_t			start,
	loff_t			end,
166 167
	int			datasync)
{
168 169
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
170
	struct xfs_mount	*mp = ip->i_mount;
171 172
	int			error = 0;
	int			log_flushed = 0;
173
	xfs_lsn_t		lsn = 0;
174

C
Christoph Hellwig 已提交
175
	trace_xfs_file_fsync(ip);
176

177 178 179 180
	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
	if (error)
		return error;

181
	if (XFS_FORCED_SHUTDOWN(mp))
E
Eric Sandeen 已提交
182
		return -EIO;
183 184 185

	xfs_iflags_clear(ip, XFS_ITRUNCATED);

186 187 188 189 190 191 192 193 194 195 196 197 198 199
	if (mp->m_flags & XFS_MOUNT_BARRIER) {
		/*
		 * If we have an RT and/or log subvolume we need to make sure
		 * to flush the write cache the device used for file data
		 * first.  This is to ensure newly written file data make
		 * it to disk before logging the new inode size in case of
		 * an extending write.
		 */
		if (XFS_IS_REALTIME_INODE(ip))
			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
		else if (mp->m_logdev_targp != mp->m_ddev_targp)
			xfs_blkdev_issue_flush(mp->m_ddev_targp);
	}

200
	/*
201 202 203 204 205 206 207 208 209 210 211
	 * All metadata updates are logged, which means that we just have to
	 * flush the log up to the latest LSN that touched the inode. If we have
	 * concurrent fsync/fdatasync() calls, we need them to all block on the
	 * log force before we clear the ili_fsync_fields field. This ensures
	 * that we don't get a racing sync operation that does not wait for the
	 * metadata to hit the journal before returning. If we race with
	 * clearing the ili_fsync_fields, then all that will happen is the log
	 * force will do nothing as the lsn will already be on disk. We can't
	 * race with setting ili_fsync_fields because that is done under
	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
	 * until after the ili_fsync_fields is cleared.
212 213
	 */
	xfs_ilock(ip, XFS_ILOCK_SHARED);
214 215
	if (xfs_ipincount(ip)) {
		if (!datasync ||
216
		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
217 218
			lsn = ip->i_itemp->ili_last_lsn;
	}
219

220
	if (lsn) {
221
		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
222 223 224
		ip->i_itemp->ili_fsync_fields = 0;
	}
	xfs_iunlock(ip, XFS_ILOCK_SHARED);
225

226 227 228 229 230 231 232 233 234 235 236 237
	/*
	 * If we only have a single device, and the log force about was
	 * a no-op we might have to flush the data device cache here.
	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
	 * an already allocated file and thus do not have any metadata to
	 * commit.
	 */
	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
	    mp->m_logdev_targp == mp->m_ddev_targp &&
	    !XFS_IS_REALTIME_INODE(ip) &&
	    !log_flushed)
		xfs_blkdev_issue_flush(mp->m_ddev_targp);
238

D
Dave Chinner 已提交
239
	return error;
240 241
}

242
STATIC ssize_t
243
xfs_file_dio_aio_read(
244
	struct kiocb		*iocb,
A
Al Viro 已提交
245
	struct iov_iter		*to)
246
{
247 248
	struct address_space	*mapping = iocb->ki_filp->f_mapping;
	struct inode		*inode = mapping->host;
249
	struct xfs_inode	*ip = XFS_I(inode);
250
	loff_t			isize = i_size_read(inode);
251
	size_t			count = iov_iter_count(to);
252
	loff_t			end = iocb->ki_pos + count - 1;
253
	struct iov_iter		data;
254
	struct xfs_buftarg	*target;
255 256
	ssize_t			ret = 0;

257
	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
258

259 260
	if (!count)
		return 0; /* skip atime */
261

262 263 264 265
	if (XFS_IS_REALTIME_INODE(ip))
		target = ip->i_mount->m_rtdev_targp;
	else
		target = ip->i_mount->m_ddev_targp;
266

267 268 269 270 271
	/* DIO must be aligned to device logical sector size */
	if ((iocb->ki_pos | count) & target->bt_logical_sectormask) {
		if (iocb->ki_pos == isize)
			return 0;
		return -EINVAL;
272 273
	}

274 275
	file_accessed(iocb->ki_filp);

276
	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
277
	if (mapping->nrpages) {
278 279 280
		ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, end);
		if (ret)
			goto out_unlock;
281

282
		/*
283 284 285
		 * Invalidate whole pages. This can return an error if we fail
		 * to invalidate a page, but this should never happen on XFS.
		 * Warn if it does fail.
286
		 */
287 288 289 290
		ret = invalidate_inode_pages2_range(mapping,
				iocb->ki_pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
		WARN_ON_ONCE(ret);
		ret = 0;
291
	}
292

293
	data = *to;
294 295
	ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
			xfs_get_blocks_direct, NULL, NULL, 0);
A
Al Viro 已提交
296
	if (ret >= 0) {
297 298
		iocb->ki_pos += ret;
		iov_iter_advance(to, ret);
299
	}
300

301 302
out_unlock:
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
303 304 305
	return ret;
}

306
static noinline ssize_t
307 308 309 310
xfs_file_dax_read(
	struct kiocb		*iocb,
	struct iov_iter		*to)
{
311
	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
312 313 314 315 316 317 318 319 320
	size_t			count = iov_iter_count(to);
	ssize_t			ret = 0;

	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);

	if (!count)
		return 0; /* skip atime */

	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
321
	ret = iomap_dax_rw(iocb, to, &xfs_iomap_ops);
322 323
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);

324
	file_accessed(iocb->ki_filp);
325 326 327 328 329 330 331 332 333 334 335 336
	return ret;
}

STATIC ssize_t
xfs_file_buffered_aio_read(
	struct kiocb		*iocb,
	struct iov_iter		*to)
{
	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
	ssize_t			ret;

	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
337

338
	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
A
Al Viro 已提交
339
	ret = generic_file_read_iter(iocb, to);
340 341 342 343 344 345 346 347 348 349
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);

	return ret;
}

STATIC ssize_t
xfs_file_read_iter(
	struct kiocb		*iocb,
	struct iov_iter		*to)
{
350 351
	struct inode		*inode = file_inode(iocb->ki_filp);
	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
352 353 354 355 356 357 358
	ssize_t			ret = 0;

	XFS_STATS_INC(mp, xs_read_calls);

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

359 360 361
	if (IS_DAX(inode))
		ret = xfs_file_dax_read(iocb, to);
	else if (iocb->ki_flags & IOCB_DIRECT)
362
		ret = xfs_file_dio_aio_read(iocb, to);
C
Christoph Hellwig 已提交
363
	else
364
		ret = xfs_file_buffered_aio_read(iocb, to);
365 366

	if (ret > 0)
367
		XFS_STATS_ADD(mp, xs_read_bytes, ret);
368 369 370 371
	return ret;
}

/*
372 373 374 375 376 377 378 379 380
 * Zero any on disk space between the current EOF and the new, larger EOF.
 *
 * This handles the normal case of zeroing the remainder of the last block in
 * the file and the unusual case of zeroing blocks out beyond the size of the
 * file.  This second case only happens with fixed size extents and when the
 * system crashes before the inode size was updated but after blocks were
 * allocated.
 *
 * Expects the iolock to be held exclusive, and will take the ilock internally.
381 382 383
 */
int					/* error (positive) */
xfs_zero_eof(
384 385
	struct xfs_inode	*ip,
	xfs_off_t		offset,		/* starting I/O offset */
386 387
	xfs_fsize_t		isize,		/* current inode size */
	bool			*did_zeroing)
388
{
389
	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
390 391
	ASSERT(offset > isize);

392
	trace_xfs_zero_eof(ip, isize, offset - isize);
393
	return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
394 395
}

396 397 398
/*
 * Common pre-write limit and setup checks.
 *
399 400 401
 * Called with the iolocked held either shared and exclusive according to
 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 * if called for a direct write beyond i_size.
402 403 404
 */
STATIC ssize_t
xfs_file_aio_write_checks(
405 406
	struct kiocb		*iocb,
	struct iov_iter		*from,
407 408
	int			*iolock)
{
409
	struct file		*file = iocb->ki_filp;
410 411
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
412
	ssize_t			error = 0;
413
	size_t			count = iov_iter_count(from);
414
	bool			drained_dio = false;
415

416
restart:
417 418
	error = generic_write_checks(iocb, from);
	if (error <= 0)
419 420
		return error;

421
	error = xfs_break_layouts(inode, iolock, true);
422 423 424
	if (error)
		return error;

425 426 427 428 429 430 431
	/* For changing security info in file_remove_privs() we need i_mutex */
	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
		xfs_rw_iunlock(ip, *iolock);
		*iolock = XFS_IOLOCK_EXCL;
		xfs_rw_ilock(ip, *iolock);
		goto restart;
	}
432 433 434
	/*
	 * If the offset is beyond the size of the file, we need to zero any
	 * blocks that fall between the existing EOF and the start of this
435
	 * write.  If zeroing is needed and we are currently holding the
436 437
	 * iolock shared, we need to update it to exclusive which implies
	 * having to redo all checks before.
438 439 440 441 442 443 444 445
	 *
	 * We need to serialise against EOF updates that occur in IO
	 * completions here. We want to make sure that nobody is changing the
	 * size while we do this check until we have placed an IO barrier (i.e.
	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
	 * The spinlock effectively forms a memory barrier once we have the
	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
	 * and hence be able to correctly determine if we need to run zeroing.
446
	 */
447
	spin_lock(&ip->i_flags_lock);
448
	if (iocb->ki_pos > i_size_read(inode)) {
449 450
		bool	zero = false;

451
		spin_unlock(&ip->i_flags_lock);
452 453 454 455 456 457 458
		if (!drained_dio) {
			if (*iolock == XFS_IOLOCK_SHARED) {
				xfs_rw_iunlock(ip, *iolock);
				*iolock = XFS_IOLOCK_EXCL;
				xfs_rw_ilock(ip, *iolock);
				iov_iter_reexpand(from, count);
			}
459 460 461 462 463 464 465 466 467
			/*
			 * We now have an IO submission barrier in place, but
			 * AIO can do EOF updates during IO completion and hence
			 * we now need to wait for all of them to drain. Non-AIO
			 * DIO will have drained before we are given the
			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
			 * no-op.
			 */
			inode_dio_wait(inode);
468
			drained_dio = true;
469 470
			goto restart;
		}
471
		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
472 473
		if (error)
			return error;
474 475
	} else
		spin_unlock(&ip->i_flags_lock);
476

C
Christoph Hellwig 已提交
477 478 479 480 481 482
	/*
	 * Updating the timestamps will grab the ilock again from
	 * xfs_fs_dirty_inode, so we have to call it after dropping the
	 * lock above.  Eventually we should look into a way to avoid
	 * the pointless lock roundtrip.
	 */
483 484 485 486 487
	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
		error = file_update_time(file);
		if (error)
			return error;
	}
C
Christoph Hellwig 已提交
488

489 490 491 492 493
	/*
	 * If we're writing the file then make sure to clear the setuid and
	 * setgid bits if the process is not being run by root.  This keeps
	 * people from modifying setuid and setgid binaries.
	 */
494 495 496
	if (!IS_NOSEC(inode))
		return file_remove_privs(file);
	return 0;
497 498
}

499 500 501 502
/*
 * xfs_file_dio_aio_write - handle direct IO writes
 *
 * Lock the inode appropriately to prepare for and issue a direct IO write.
503
 * By separating it from the buffered write path we remove all the tricky to
504 505
 * follow locking changes and looping.
 *
506 507 508 509 510 511 512 513 514 515 516 517 518
 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 * pages are flushed out.
 *
 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 * allowing them to be done in parallel with reads and other direct IO writes.
 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 * needs to do sub-block zeroing and that requires serialisation against other
 * direct IOs to the same block. In this case we need to serialise the
 * submission of the unaligned IOs so that we don't get racing block zeroing in
 * the dio layer.  To avoid the problem with aio, we also need to wait for
 * outstanding IOs to complete so that unwritten extent conversion is completed
 * before we try to map the overlapping block. This is currently implemented by
C
Christoph Hellwig 已提交
519
 * hitting it with a big hammer (i.e. inode_dio_wait()).
520
 *
521 522 523 524 525 526
 * Returns with locks held indicated by @iolock and errors indicated by
 * negative return values.
 */
STATIC ssize_t
xfs_file_dio_aio_write(
	struct kiocb		*iocb,
527
	struct iov_iter		*from)
528 529 530 531 532 533 534
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	ssize_t			ret = 0;
535
	int			unaligned_io = 0;
536
	int			iolock;
537
	size_t			count = iov_iter_count(from);
538 539
	loff_t			end;
	struct iov_iter		data;
540 541 542
	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
					mp->m_rtdev_targp : mp->m_ddev_targp;

543
	/* DIO must be aligned to device logical sector size */
544
	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
E
Eric Sandeen 已提交
545
		return -EINVAL;
546

547
	/*
548 549 550 551 552
	 * Don't take the exclusive iolock here unless the I/O is unaligned to
	 * the file system block size.  We don't need to consider the EOF
	 * extension case here because xfs_file_aio_write_checks() will relock
	 * the inode as necessary for EOF zeroing cases and fill out the new
	 * inode size as appropriate.
553
	 */
554 555 556
	if ((iocb->ki_pos & mp->m_blockmask) ||
	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
		unaligned_io = 1;
557
		iolock = XFS_IOLOCK_EXCL;
558
	} else {
559
		iolock = XFS_IOLOCK_SHARED;
560
	}
561

562 563
	xfs_rw_ilock(ip, iolock);

564
	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
565
	if (ret)
566
		goto out;
567
	count = iov_iter_count(from);
568
	end = iocb->ki_pos + count - 1;
569 570

	if (mapping->nrpages) {
571
		ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, end);
572
		if (ret)
573
			goto out;
574

575
		/*
576 577 578
		 * Invalidate whole pages. This can return an error if we fail
		 * to invalidate a page, but this should never happen on XFS.
		 * Warn if it does fail.
579
		 */
580 581
		ret = invalidate_inode_pages2_range(mapping,
				iocb->ki_pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
582 583
		WARN_ON_ONCE(ret);
		ret = 0;
584 585
	}

586 587
	/*
	 * If we are doing unaligned IO, wait for all other IO to drain,
588 589
	 * otherwise demote the lock if we had to take the exclusive lock
	 * for other reasons in xfs_file_aio_write_checks.
590 591
	 */
	if (unaligned_io)
C
Christoph Hellwig 已提交
592
		inode_dio_wait(inode);
593
	else if (iolock == XFS_IOLOCK_EXCL) {
594
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
595
		iolock = XFS_IOLOCK_SHARED;
596 597
	}

C
Christoph Hellwig 已提交
598
	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
599

600 601 602 603 604 605 606
	/* If this is a block-aligned directio CoW, remap immediately. */
	if (xfs_is_reflink_inode(ip) && !unaligned_io) {
		ret = xfs_reflink_allocate_cow_range(ip, iocb->ki_pos, count);
		if (ret)
			goto out;
	}

607
	data = *from;
608 609 610
	ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
			xfs_get_blocks_direct, xfs_end_io_direct_write,
			NULL, DIO_ASYNC_EXTEND);
611 612 613 614

	/* see generic_file_direct_write() for why this is necessary */
	if (mapping->nrpages) {
		invalidate_inode_pages2_range(mapping,
615
					      iocb->ki_pos >> PAGE_SHIFT,
616
					      end >> PAGE_SHIFT);
617 618 619
	}

	if (ret > 0) {
620
		iocb->ki_pos += ret;
621 622
		iov_iter_advance(from, ret);
	}
623 624 625
out:
	xfs_rw_iunlock(ip, iolock);

626
	/*
627 628
	 * No fallback to buffered IO on errors for XFS, direct IO will either
	 * complete fully or fail.
629
	 */
630 631 632 633
	ASSERT(ret < 0 || ret == count);
	return ret;
}

634
static noinline ssize_t
635 636 637 638
xfs_file_dax_write(
	struct kiocb		*iocb,
	struct iov_iter		*from)
{
639
	struct inode		*inode = iocb->ki_filp->f_mapping->host;
640
	struct xfs_inode	*ip = XFS_I(inode);
641
	int			iolock = XFS_IOLOCK_EXCL;
642 643 644
	ssize_t			ret, error = 0;
	size_t			count;
	loff_t			pos;
645 646 647 648 649 650

	xfs_rw_ilock(ip, iolock);
	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
	if (ret)
		goto out;

651 652
	pos = iocb->ki_pos;
	count = iov_iter_count(from);
653

654
	trace_xfs_file_dax_write(ip, count, pos);
655

656 657 658 659
	ret = iomap_dax_rw(iocb, from, &xfs_iomap_ops);
	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
		i_size_write(inode, iocb->ki_pos);
		error = xfs_setfilesize(ip, pos, ret);
660 661 662 663
	}

out:
	xfs_rw_iunlock(ip, iolock);
664
	return error ? error : ret;
665 666
}

667
STATIC ssize_t
668
xfs_file_buffered_aio_write(
669
	struct kiocb		*iocb,
670
	struct iov_iter		*from)
671 672 673 674
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
675
	struct xfs_inode	*ip = XFS_I(inode);
676 677
	ssize_t			ret;
	int			enospc = 0;
678
	int			iolock = XFS_IOLOCK_EXCL;
679

680
	xfs_rw_ilock(ip, iolock);
681

682
	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
683
	if (ret)
684
		goto out;
685 686

	/* We can write back this queue in page reclaim */
687
	current->backing_dev_info = inode_to_bdi(inode);
688 689

write_retry:
C
Christoph Hellwig 已提交
690
	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
691
	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
692
	if (likely(ret >= 0))
693
		iocb->ki_pos += ret;
694

695
	/*
696 697 698 699 700 701 702
	 * If we hit a space limit, try to free up some lingering preallocated
	 * space before returning an error. In the case of ENOSPC, first try to
	 * write back all dirty inodes to free up some of the excess reserved
	 * metadata space. This reduces the chances that the eofblocks scan
	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
	 * also behaves as a filter to prevent too many eofblocks scans from
	 * running at the same time.
703
	 */
704 705 706 707
	if (ret == -EDQUOT && !enospc) {
		enospc = xfs_inode_free_quota_eofblocks(ip);
		if (enospc)
			goto write_retry;
708 709 710
		enospc = xfs_inode_free_quota_cowblocks(ip);
		if (enospc)
			goto write_retry;
711 712 713
	} else if (ret == -ENOSPC && !enospc) {
		struct xfs_eofblocks eofb = {0};

714
		enospc = 1;
D
Dave Chinner 已提交
715
		xfs_flush_inodes(ip->i_mount);
716 717 718
		eofb.eof_scan_owner = ip->i_ino; /* for locking */
		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
D
Dave Chinner 已提交
719
		goto write_retry;
720
	}
721

722
	current->backing_dev_info = NULL;
723 724
out:
	xfs_rw_iunlock(ip, iolock);
725 726 727 728
	return ret;
}

STATIC ssize_t
A
Al Viro 已提交
729
xfs_file_write_iter(
730
	struct kiocb		*iocb,
A
Al Viro 已提交
731
	struct iov_iter		*from)
732 733 734 735 736 737
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	ssize_t			ret;
A
Al Viro 已提交
738
	size_t			ocount = iov_iter_count(from);
739

740
	XFS_STATS_INC(ip->i_mount, xs_write_calls);
741 742 743 744

	if (ocount == 0)
		return 0;

A
Al Viro 已提交
745 746
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;
747

748 749
	if (IS_DAX(inode))
		ret = xfs_file_dax_write(iocb, from);
750 751 752 753 754 755 756
	else if (iocb->ki_flags & IOCB_DIRECT) {
		/*
		 * Allow a directio write to fall back to a buffered
		 * write *only* in the case that we're doing a reflink
		 * CoW.  In all other directio scenarios we do not
		 * allow an operation to fall back to buffered mode.
		 */
A
Al Viro 已提交
757
		ret = xfs_file_dio_aio_write(iocb, from);
758 759 760 761
		if (ret == -EREMCHG)
			goto buffered;
	} else {
buffered:
A
Al Viro 已提交
762
		ret = xfs_file_buffered_aio_write(iocb, from);
763
	}
764

765
	if (ret > 0) {
766
		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
767

768
		/* Handle various SYNC-type writes */
769
		ret = generic_write_sync(iocb, ret);
770
	}
771
	return ret;
772 773
}

774 775 776
#define	XFS_FALLOC_FL_SUPPORTED						\
		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
777
		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
778

779 780
STATIC long
xfs_file_fallocate(
781 782 783 784
	struct file		*file,
	int			mode,
	loff_t			offset,
	loff_t			len)
785
{
786 787 788
	struct inode		*inode = file_inode(file);
	struct xfs_inode	*ip = XFS_I(inode);
	long			error;
789
	enum xfs_prealloc_flags	flags = 0;
790
	uint			iolock = XFS_IOLOCK_EXCL;
791
	loff_t			new_size = 0;
792
	bool			do_file_insert = 0;
793

794 795
	if (!S_ISREG(inode->i_mode))
		return -EINVAL;
796
	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
797 798
		return -EOPNOTSUPP;

799
	xfs_ilock(ip, iolock);
800
	error = xfs_break_layouts(inode, &iolock, false);
801 802 803
	if (error)
		goto out_unlock;

804 805 806
	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
	iolock |= XFS_MMAPLOCK_EXCL;

807 808 809 810
	if (mode & FALLOC_FL_PUNCH_HOLE) {
		error = xfs_free_file_space(ip, offset, len);
		if (error)
			goto out_unlock;
811 812 813 814
	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;

		if (offset & blksize_mask || len & blksize_mask) {
D
Dave Chinner 已提交
815
			error = -EINVAL;
816 817 818
			goto out_unlock;
		}

819 820 821 822 823
		/*
		 * There is no need to overlap collapse range with EOF,
		 * in which case it is effectively a truncate operation
		 */
		if (offset + len >= i_size_read(inode)) {
D
Dave Chinner 已提交
824
			error = -EINVAL;
825 826 827
			goto out_unlock;
		}

828 829 830 831 832
		new_size = i_size_read(inode) - len;

		error = xfs_collapse_file_space(ip, offset, len);
		if (error)
			goto out_unlock;
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
	} else if (mode & FALLOC_FL_INSERT_RANGE) {
		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;

		new_size = i_size_read(inode) + len;
		if (offset & blksize_mask || len & blksize_mask) {
			error = -EINVAL;
			goto out_unlock;
		}

		/* check the new inode size does not wrap through zero */
		if (new_size > inode->i_sb->s_maxbytes) {
			error = -EFBIG;
			goto out_unlock;
		}

		/* Offset should be less than i_size */
		if (offset >= i_size_read(inode)) {
			error = -EINVAL;
			goto out_unlock;
		}
		do_file_insert = 1;
854
	} else {
855 856
		flags |= XFS_PREALLOC_SET;

857 858 859
		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
		    offset + len > i_size_read(inode)) {
			new_size = offset + len;
D
Dave Chinner 已提交
860
			error = inode_newsize_ok(inode, new_size);
861 862 863
			if (error)
				goto out_unlock;
		}
864

865 866
		if (mode & FALLOC_FL_ZERO_RANGE)
			error = xfs_zero_file_space(ip, offset, len);
867 868 869 870 871 872
		else {
			if (mode & FALLOC_FL_UNSHARE_RANGE) {
				error = xfs_reflink_unshare(ip, offset, len);
				if (error)
					goto out_unlock;
			}
873 874
			error = xfs_alloc_file_space(ip, offset, len,
						     XFS_BMAPI_PREALLOC);
875
		}
876 877 878 879
		if (error)
			goto out_unlock;
	}

880
	if (file->f_flags & O_DSYNC)
881 882 883
		flags |= XFS_PREALLOC_SYNC;

	error = xfs_update_prealloc_flags(ip, flags);
884 885 886 887 888 889 890 891 892
	if (error)
		goto out_unlock;

	/* Change file size if needed */
	if (new_size) {
		struct iattr iattr;

		iattr.ia_valid = ATTR_SIZE;
		iattr.ia_size = new_size;
893
		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
894 895
		if (error)
			goto out_unlock;
896 897
	}

898 899 900 901 902 903 904 905 906
	/*
	 * Perform hole insertion now that the file size has been
	 * updated so that if we crash during the operation we don't
	 * leave shifted extents past EOF and hence losing access to
	 * the data that is contained within them.
	 */
	if (do_file_insert)
		error = xfs_insert_file_space(ip, offset, len);

907
out_unlock:
908
	xfs_iunlock(ip, iolock);
D
Dave Chinner 已提交
909
	return error;
910 911
}

912 913 914 915 916 917 918 919
STATIC int
xfs_file_clone_range(
	struct file	*file_in,
	loff_t		pos_in,
	struct file	*file_out,
	loff_t		pos_out,
	u64		len)
{
920
	return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
				     len, false);
}

#define XFS_MAX_DEDUPE_LEN	(16 * 1024 * 1024)
STATIC ssize_t
xfs_file_dedupe_range(
	struct file	*src_file,
	u64		loff,
	u64		len,
	struct file	*dst_file,
	u64		dst_loff)
{
	int		error;

	/*
	 * Limit the total length we will dedupe for each operation.
	 * This is intended to bound the total time spent in this
	 * ioctl to something sane.
	 */
	if (len > XFS_MAX_DEDUPE_LEN)
		len = XFS_MAX_DEDUPE_LEN;

943
	error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
944 945 946 947
				     len, true);
	if (error)
		return error;
	return len;
948
}
949

L
Linus Torvalds 已提交
950
STATIC int
951
xfs_file_open(
L
Linus Torvalds 已提交
952
	struct inode	*inode,
953
	struct file	*file)
L
Linus Torvalds 已提交
954
{
955
	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
L
Linus Torvalds 已提交
956
		return -EFBIG;
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
		return -EIO;
	return 0;
}

STATIC int
xfs_dir_open(
	struct inode	*inode,
	struct file	*file)
{
	struct xfs_inode *ip = XFS_I(inode);
	int		mode;
	int		error;

	error = xfs_file_open(inode, file);
	if (error)
		return error;

	/*
	 * If there are any blocks, read-ahead block 0 as we're almost
	 * certain to have the next operation be a read there.
	 */
979
	mode = xfs_ilock_data_map_shared(ip);
980
	if (ip->i_d.di_nextents > 0)
981
		xfs_dir3_data_readahead(ip, 0, -1);
982 983
	xfs_iunlock(ip, mode);
	return 0;
L
Linus Torvalds 已提交
984 985 986
}

STATIC int
987
xfs_file_release(
L
Linus Torvalds 已提交
988 989 990
	struct inode	*inode,
	struct file	*filp)
{
D
Dave Chinner 已提交
991
	return xfs_release(XFS_I(inode));
L
Linus Torvalds 已提交
992 993 994
}

STATIC int
995
xfs_file_readdir(
A
Al Viro 已提交
996 997
	struct file	*file,
	struct dir_context *ctx)
L
Linus Torvalds 已提交
998
{
A
Al Viro 已提交
999
	struct inode	*inode = file_inode(file);
1000
	xfs_inode_t	*ip = XFS_I(inode);
C
Christoph Hellwig 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
	size_t		bufsize;

	/*
	 * The Linux API doesn't pass down the total size of the buffer
	 * we read into down to the filesystem.  With the filldir concept
	 * it's not needed for correct information, but the XFS dir2 leaf
	 * code wants an estimate of the buffer size to calculate it's
	 * readahead window and size the buffers used for mapping to
	 * physical blocks.
	 *
	 * Try to give it an estimate that's good enough, maybe at some
	 * point we can change the ->readdir prototype to include the
E
Eric Sandeen 已提交
1013
	 * buffer size.  For now we use the current glibc buffer size.
C
Christoph Hellwig 已提交
1014
	 */
E
Eric Sandeen 已提交
1015
	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
C
Christoph Hellwig 已提交
1016

1017
	return xfs_readdir(ip, ctx, bufsize);
L
Linus Torvalds 已提交
1018 1019
}

1020 1021
/*
 * This type is designed to indicate the type of offset we would like
1022
 * to search from page cache for xfs_seek_hole_data().
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
 */
enum {
	HOLE_OFF = 0,
	DATA_OFF,
};

/*
 * Lookup the desired type of offset from the given page.
 *
 * On success, return true and the offset argument will point to the
 * start of the region that was found.  Otherwise this function will
 * return false and keep the offset argument unchanged.
 */
STATIC bool
xfs_lookup_buffer_offset(
	struct page		*page,
	loff_t			*offset,
	unsigned int		type)
{
	loff_t			lastoff = page_offset(page);
	bool			found = false;
	struct buffer_head	*bh, *head;

	bh = head = page_buffers(page);
	do {
		/*
		 * Unwritten extents that have data in the page
		 * cache covering them can be identified by the
		 * BH_Unwritten state flag.  Pages with multiple
		 * buffers might have a mix of holes, data and
		 * unwritten extents - any buffer with valid
		 * data in it should have BH_Uptodate flag set
		 * on it.
		 */
		if (buffer_unwritten(bh) ||
		    buffer_uptodate(bh)) {
			if (type == DATA_OFF)
				found = true;
		} else {
			if (type == HOLE_OFF)
				found = true;
		}

		if (found) {
			*offset = lastoff;
			break;
		}
		lastoff += bh->b_size;
	} while ((bh = bh->b_this_page) != head);

	return found;
}

/*
 * This routine is called to find out and return a data or hole offset
 * from the page cache for unwritten extents according to the desired
1079
 * type for xfs_seek_hole_data().
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
 *
 * The argument offset is used to tell where we start to search from the
 * page cache.  Map is used to figure out the end points of the range to
 * lookup pages.
 *
 * Return true if the desired type of offset was found, and the argument
 * offset is filled with that address.  Otherwise, return false and keep
 * offset unchanged.
 */
STATIC bool
xfs_find_get_desired_pgoff(
	struct inode		*inode,
	struct xfs_bmbt_irec	*map,
	unsigned int		type,
	loff_t			*offset)
{
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	struct pagevec		pvec;
	pgoff_t			index;
	pgoff_t			end;
	loff_t			endoff;
	loff_t			startoff = *offset;
	loff_t			lastoff = startoff;
	bool			found = false;

	pagevec_init(&pvec, 0);

1108
	index = startoff >> PAGE_SHIFT;
1109
	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1110
	end = endoff >> PAGE_SHIFT;
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	do {
		int		want;
		unsigned	nr_pages;
		unsigned int	i;

		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
					  want);
		/*
		 * No page mapped into given range.  If we are searching holes
		 * and if this is the first time we got into the loop, it means
		 * that the given offset is landed in a hole, return it.
		 *
		 * If we have already stepped through some block buffers to find
		 * holes but they all contains data.  In this case, the last
		 * offset is already updated and pointed to the end of the last
		 * mapped page, if it does not reach the endpoint to search,
		 * that means there should be a hole between them.
		 */
		if (nr_pages == 0) {
			/* Data search found nothing */
			if (type == DATA_OFF)
				break;

			ASSERT(type == HOLE_OFF);
			if (lastoff == startoff || lastoff < endoff) {
				found = true;
				*offset = lastoff;
			}
			break;
		}

		/*
		 * At lease we found one page.  If this is the first time we
		 * step into the loop, and if the first page index offset is
		 * greater than the given search offset, a hole was found.
		 */
		if (type == HOLE_OFF && lastoff == startoff &&
		    lastoff < page_offset(pvec.pages[0])) {
			found = true;
			break;
		}

		for (i = 0; i < nr_pages; i++) {
			struct page	*page = pvec.pages[i];
			loff_t		b_offset;

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to tmpfs
			 * file mapping. However, page->index will not change
			 * because we have a reference on the page.
			 *
			 * Searching done if the page index is out of range.
			 * If the current offset is not reaches the end of
			 * the specified search range, there should be a hole
			 * between them.
			 */
			if (page->index > end) {
				if (type == HOLE_OFF && lastoff < endoff) {
					*offset = lastoff;
					found = true;
				}
				goto out;
			}

			lock_page(page);
			/*
			 * Page truncated or invalidated(page->mapping == NULL).
			 * We can freely skip it and proceed to check the next
			 * page.
			 */
			if (unlikely(page->mapping != inode->i_mapping)) {
				unlock_page(page);
				continue;
			}

			if (!page_has_buffers(page)) {
				unlock_page(page);
				continue;
			}

			found = xfs_lookup_buffer_offset(page, &b_offset, type);
			if (found) {
				/*
				 * The found offset may be less than the start
				 * point to search if this is the first time to
				 * come here.
				 */
				*offset = max_t(loff_t, startoff, b_offset);
				unlock_page(page);
				goto out;
			}

			/*
			 * We either searching data but nothing was found, or
			 * searching hole but found a data buffer.  In either
			 * case, probably the next page contains the desired
			 * things, update the last offset to it so.
			 */
			lastoff = page_offset(page) + PAGE_SIZE;
			unlock_page(page);
		}

		/*
		 * The number of returned pages less than our desired, search
		 * done.  In this case, nothing was found for searching data,
		 * but we found a hole behind the last offset.
		 */
		if (nr_pages < want) {
			if (type == HOLE_OFF) {
				*offset = lastoff;
				found = true;
			}
			break;
		}

		index = pvec.pages[i - 1]->index + 1;
		pagevec_release(&pvec);
	} while (index <= end);

out:
	pagevec_release(&pvec);
	return found;
}

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
/*
 * caller must lock inode with xfs_ilock_data_map_shared,
 * can we craft an appropriate ASSERT?
 *
 * end is because the VFS-level lseek interface is defined such that any
 * offset past i_size shall return -ENXIO, but we use this for quota code
 * which does not maintain i_size, and we want to SEEK_DATA past i_size.
 */
loff_t
__xfs_seek_hole_data(
	struct inode		*inode,
1249
	loff_t			start,
1250
	loff_t			end,
1251
	int			whence)
1252 1253 1254 1255 1256
{
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	loff_t			uninitialized_var(offset);
	xfs_fileoff_t		fsbno;
1257
	xfs_filblks_t		lastbno;
1258 1259
	int			error;

1260
	if (start >= end) {
D
Dave Chinner 已提交
1261
		error = -ENXIO;
1262
		goto out_error;
1263 1264 1265 1266 1267 1268
	}

	/*
	 * Try to read extents from the first block indicated
	 * by fsbno to the end block of the file.
	 */
1269
	fsbno = XFS_B_TO_FSBT(mp, start);
1270
	lastbno = XFS_B_TO_FSB(mp, end);
1271

1272 1273 1274 1275
	for (;;) {
		struct xfs_bmbt_irec	map[2];
		int			nmap = 2;
		unsigned int		i;
1276

1277
		error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
1278 1279
				       XFS_BMAPI_ENTIRE);
		if (error)
1280
			goto out_error;
1281

1282 1283
		/* No extents at given offset, must be beyond EOF */
		if (nmap == 0) {
D
Dave Chinner 已提交
1284
			error = -ENXIO;
1285
			goto out_error;
1286 1287 1288 1289 1290 1291
		}

		for (i = 0; i < nmap; i++) {
			offset = max_t(loff_t, start,
				       XFS_FSB_TO_B(mp, map[i].br_startoff));

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
			/* Landed in the hole we wanted? */
			if (whence == SEEK_HOLE &&
			    map[i].br_startblock == HOLESTARTBLOCK)
				goto out;

			/* Landed in the data extent we wanted? */
			if (whence == SEEK_DATA &&
			    (map[i].br_startblock == DELAYSTARTBLOCK ||
			     (map[i].br_state == XFS_EXT_NORM &&
			      !isnullstartblock(map[i].br_startblock))))
1302 1303 1304
				goto out;

			/*
1305 1306
			 * Landed in an unwritten extent, try to search
			 * for hole or data from page cache.
1307 1308 1309
			 */
			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
				if (xfs_find_get_desired_pgoff(inode, &map[i],
1310 1311
				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
							&offset))
1312 1313 1314 1315 1316
					goto out;
			}
		}

		/*
1317 1318
		 * We only received one extent out of the two requested. This
		 * means we've hit EOF and didn't find what we are looking for.
1319
		 */
1320
		if (nmap == 1) {
1321 1322 1323 1324 1325 1326
			/*
			 * If we were looking for a hole, set offset to
			 * the end of the file (i.e., there is an implicit
			 * hole at the end of any file).
		 	 */
			if (whence == SEEK_HOLE) {
1327
				offset = end;
1328 1329 1330 1331 1332 1333
				break;
			}
			/*
			 * If we were looking for data, it's nowhere to be found
			 */
			ASSERT(whence == SEEK_DATA);
D
Dave Chinner 已提交
1334
			error = -ENXIO;
1335
			goto out_error;
1336 1337
		}

1338 1339 1340 1341
		ASSERT(i > 1);

		/*
		 * Nothing was found, proceed to the next round of search
1342
		 * if the next reading offset is not at or beyond EOF.
1343 1344 1345
		 */
		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
		start = XFS_FSB_TO_B(mp, fsbno);
1346
		if (start >= end) {
1347
			if (whence == SEEK_HOLE) {
1348
				offset = end;
1349 1350 1351
				break;
			}
			ASSERT(whence == SEEK_DATA);
D
Dave Chinner 已提交
1352
			error = -ENXIO;
1353
			goto out_error;
1354
		}
1355 1356
	}

1357 1358
out:
	/*
1359
	 * If at this point we have found the hole we wanted, the returned
1360
	 * offset may be bigger than the file size as it may be aligned to
1361
	 * page boundary for unwritten extents.  We need to deal with this
1362 1363
	 * situation in particular.
	 */
1364
	if (whence == SEEK_HOLE)
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
		offset = min_t(loff_t, offset, end);

	return offset;

out_error:
	return error;
}

STATIC loff_t
xfs_seek_hole_data(
	struct file		*file,
	loff_t			start,
	int			whence)
{
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	uint			lock;
	loff_t			offset, end;
	int			error = 0;

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

	lock = xfs_ilock_data_map_shared(ip);

	end = i_size_read(inode);
	offset = __xfs_seek_hole_data(inode, start, end, whence);
	if (offset < 0) {
		error = offset;
		goto out_unlock;
	}

J
Jie Liu 已提交
1398
	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1399 1400

out_unlock:
1401
	xfs_iunlock(ip, lock);
1402 1403

	if (error)
D
Dave Chinner 已提交
1404
		return error;
1405 1406 1407 1408 1409 1410 1411
	return offset;
}

STATIC loff_t
xfs_file_llseek(
	struct file	*file,
	loff_t		offset,
1412
	int		whence)
1413
{
1414
	switch (whence) {
1415 1416 1417
	case SEEK_END:
	case SEEK_CUR:
	case SEEK_SET:
1418
		return generic_file_llseek(file, offset, whence);
1419
	case SEEK_HOLE:
1420
	case SEEK_DATA:
1421
		return xfs_seek_hole_data(file, offset, whence);
1422 1423 1424 1425 1426
	default:
		return -EINVAL;
	}
}

1427 1428 1429 1430 1431
/*
 * Locking for serialisation of IO during page faults. This results in a lock
 * ordering of:
 *
 * mmap_sem (MM)
1432
 *   sb_start_pagefault(vfs, freeze)
1433
 *     i_mmaplock (XFS - truncate serialisation)
1434 1435
 *       page_lock (MM)
 *         i_lock (XFS - extent map serialisation)
1436 1437
 */

1438 1439 1440 1441 1442
/*
 * mmap()d file has taken write protection fault and is being made writable. We
 * can set the page state up correctly for a writable page, which means we can
 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
 * mapping.
1443 1444
 */
STATIC int
1445
xfs_filemap_page_mkwrite(
1446 1447 1448
	struct vm_area_struct	*vma,
	struct vm_fault		*vmf)
{
1449
	struct inode		*inode = file_inode(vma->vm_file);
1450
	int			ret;
1451

1452
	trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1453

1454
	sb_start_pagefault(inode->i_sb);
1455
	file_update_time(vma->vm_file);
1456
	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1457

1458
	if (IS_DAX(inode)) {
1459
		ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops);
1460
	} else {
1461
		ret = iomap_page_mkwrite(vma, vmf, &xfs_iomap_ops);
1462 1463 1464 1465 1466 1467 1468
		ret = block_page_mkwrite_return(ret);
	}

	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
	sb_end_pagefault(inode->i_sb);

	return ret;
1469 1470
}

1471
STATIC int
1472
xfs_filemap_fault(
1473 1474 1475
	struct vm_area_struct	*vma,
	struct vm_fault		*vmf)
{
1476
	struct inode		*inode = file_inode(vma->vm_file);
1477
	int			ret;
1478

1479
	trace_xfs_filemap_fault(XFS_I(inode));
1480

1481
	/* DAX can shortcut the normal fault path on write faults! */
1482
	if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1483
		return xfs_filemap_page_mkwrite(vma, vmf);
1484

1485 1486 1487 1488 1489 1490 1491 1492
	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
	if (IS_DAX(inode)) {
		/*
		 * we do not want to trigger unwritten extent conversion on read
		 * faults - that is unnecessary overhead and would also require
		 * changes to xfs_get_blocks_direct() to map unwritten extent
		 * ioend for conversion on read-only mappings.
		 */
1493
		ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops);
1494 1495 1496
	} else
		ret = filemap_fault(vma, vmf);
	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1497

1498 1499 1500
	return ret;
}

1501 1502 1503 1504 1505 1506 1507
/*
 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
 * both read and write faults. Hence we need to handle both cases. There is no
 * ->pmd_mkwrite callout for huge pages, so we have a single function here to
 * handle both cases here. @flags carries the information on the type of fault
 * occuring.
 */
M
Matthew Wilcox 已提交
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
STATIC int
xfs_filemap_pmd_fault(
	struct vm_area_struct	*vma,
	unsigned long		addr,
	pmd_t			*pmd,
	unsigned int		flags)
{
	struct inode		*inode = file_inode(vma->vm_file);
	struct xfs_inode	*ip = XFS_I(inode);
	int			ret;

	if (!IS_DAX(inode))
		return VM_FAULT_FALLBACK;

	trace_xfs_filemap_pmd_fault(ip);

1524 1525 1526 1527 1528
	if (flags & FAULT_FLAG_WRITE) {
		sb_start_pagefault(inode->i_sb);
		file_update_time(vma->vm_file);
	}

M
Matthew Wilcox 已提交
1529
	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
R
Ross Zwisler 已提交
1530
	ret = dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault);
M
Matthew Wilcox 已提交
1531 1532
	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);

1533 1534
	if (flags & FAULT_FLAG_WRITE)
		sb_end_pagefault(inode->i_sb);
M
Matthew Wilcox 已提交
1535 1536 1537 1538

	return ret;
}

1539 1540 1541
/*
 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
 * updates on write faults. In reality, it's need to serialise against
1542 1543
 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
 * to ensure we serialise the fault barrier in place.
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
 */
static int
xfs_filemap_pfn_mkwrite(
	struct vm_area_struct	*vma,
	struct vm_fault		*vmf)
{

	struct inode		*inode = file_inode(vma->vm_file);
	struct xfs_inode	*ip = XFS_I(inode);
	int			ret = VM_FAULT_NOPAGE;
	loff_t			size;

	trace_xfs_filemap_pfn_mkwrite(ip);

	sb_start_pagefault(inode->i_sb);
	file_update_time(vma->vm_file);

	/* check if the faulting page hasn't raced with truncate */
	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
	if (vmf->pgoff >= size)
		ret = VM_FAULT_SIGBUS;
1566 1567
	else if (IS_DAX(inode))
		ret = dax_pfn_mkwrite(vma, vmf);
1568 1569
	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
	sb_end_pagefault(inode->i_sb);
M
Matthew Wilcox 已提交
1570
	return ret;
1571

M
Matthew Wilcox 已提交
1572 1573
}

1574 1575
static const struct vm_operations_struct xfs_file_vm_ops = {
	.fault		= xfs_filemap_fault,
M
Matthew Wilcox 已提交
1576
	.pmd_fault	= xfs_filemap_pmd_fault,
1577 1578
	.map_pages	= filemap_map_pages,
	.page_mkwrite	= xfs_filemap_page_mkwrite,
1579
	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
};

STATIC int
xfs_file_mmap(
	struct file	*filp,
	struct vm_area_struct *vma)
{
	file_accessed(filp);
	vma->vm_ops = &xfs_file_vm_ops;
	if (IS_DAX(file_inode(filp)))
M
Matthew Wilcox 已提交
1590
		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1591
	return 0;
1592 1593
}

1594
const struct file_operations xfs_file_operations = {
1595
	.llseek		= xfs_file_llseek,
A
Al Viro 已提交
1596
	.read_iter	= xfs_file_read_iter,
A
Al Viro 已提交
1597
	.write_iter	= xfs_file_write_iter,
1598
	.splice_read	= generic_file_splice_read,
A
Al Viro 已提交
1599
	.splice_write	= iter_file_splice_write,
1600
	.unlocked_ioctl	= xfs_file_ioctl,
L
Linus Torvalds 已提交
1601
#ifdef CONFIG_COMPAT
1602
	.compat_ioctl	= xfs_file_compat_ioctl,
L
Linus Torvalds 已提交
1603
#endif
1604 1605 1606 1607
	.mmap		= xfs_file_mmap,
	.open		= xfs_file_open,
	.release	= xfs_file_release,
	.fsync		= xfs_file_fsync,
1608
	.get_unmapped_area = thp_get_unmapped_area,
1609
	.fallocate	= xfs_file_fallocate,
1610
	.clone_file_range = xfs_file_clone_range,
1611
	.dedupe_file_range = xfs_file_dedupe_range,
L
Linus Torvalds 已提交
1612 1613
};

1614
const struct file_operations xfs_dir_file_operations = {
1615
	.open		= xfs_dir_open,
L
Linus Torvalds 已提交
1616
	.read		= generic_read_dir,
1617
	.iterate_shared	= xfs_file_readdir,
1618
	.llseek		= generic_file_llseek,
1619
	.unlocked_ioctl	= xfs_file_ioctl,
1620
#ifdef CONFIG_COMPAT
1621
	.compat_ioctl	= xfs_file_compat_ioctl,
1622
#endif
1623
	.fsync		= xfs_dir_fsync,
L
Linus Torvalds 已提交
1624
};