ctree.c 151.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2
/*
C
Chris Mason 已提交
3
 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
C
Chris Mason 已提交
4 5
 */

6
#include <linux/sched.h>
7
#include <linux/slab.h>
8
#include <linux/rbtree.h>
9
#include <linux/mm.h>
10 11
#include "ctree.h"
#include "disk-io.h"
12
#include "transaction.h"
13
#include "print-tree.h"
14
#include "locking.h"
15
#include "volumes.h"
16
#include "qgroup.h"
17

18 19
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_path *path, int level);
20 21 22
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *ins_key, struct btrfs_path *path,
		      int data_size, int extend);
23
static int push_node_left(struct btrfs_trans_handle *trans,
24
			  struct extent_buffer *dst,
25
			  struct extent_buffer *src, int empty);
26 27 28
static int balance_node_right(struct btrfs_trans_handle *trans,
			      struct extent_buffer *dst_buf,
			      struct extent_buffer *src_buf);
29 30
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot);
31

C
Chris Mason 已提交
32
struct btrfs_path *btrfs_alloc_path(void)
C
Chris Mason 已提交
33
{
34
	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
C
Chris Mason 已提交
35 36
}

37 38 39 40 41 42 43 44
/*
 * set all locked nodes in the path to blocking locks.  This should
 * be done before scheduling
 */
noinline void btrfs_set_path_blocking(struct btrfs_path *p)
{
	int i;
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
45 46
		if (!p->nodes[i] || !p->locks[i])
			continue;
47 48 49 50 51 52 53
		/*
		 * If we currently have a spinning reader or writer lock this
		 * will bump the count of blocking holders and drop the
		 * spinlock.
		 */
		if (p->locks[i] == BTRFS_READ_LOCK) {
			btrfs_set_lock_blocking_read(p->nodes[i]);
54
			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
55 56
		} else if (p->locks[i] == BTRFS_WRITE_LOCK) {
			btrfs_set_lock_blocking_write(p->nodes[i]);
57
			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
58
		}
59 60 61
	}
}

C
Chris Mason 已提交
62
/* this also releases the path */
C
Chris Mason 已提交
63
void btrfs_free_path(struct btrfs_path *p)
64
{
65 66
	if (!p)
		return;
67
	btrfs_release_path(p);
C
Chris Mason 已提交
68
	kmem_cache_free(btrfs_path_cachep, p);
69 70
}

C
Chris Mason 已提交
71 72 73 74 75 76
/*
 * path release drops references on the extent buffers in the path
 * and it drops any locks held by this path
 *
 * It is safe to call this on paths that no locks or extent buffers held.
 */
77
noinline void btrfs_release_path(struct btrfs_path *p)
78 79
{
	int i;
80

C
Chris Mason 已提交
81
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
82
		p->slots[i] = 0;
83
		if (!p->nodes[i])
84 85
			continue;
		if (p->locks[i]) {
86
			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
87 88
			p->locks[i] = 0;
		}
89
		free_extent_buffer(p->nodes[i]);
90
		p->nodes[i] = NULL;
91 92 93
	}
}

C
Chris Mason 已提交
94 95 96 97 98 99 100 101 102 103
/*
 * safely gets a reference on the root node of a tree.  A lock
 * is not taken, so a concurrent writer may put a different node
 * at the root of the tree.  See btrfs_lock_root_node for the
 * looping required.
 *
 * The extent buffer returned by this has a reference taken, so
 * it won't disappear.  It may stop being the root of the tree
 * at any time because there are no locks held.
 */
104 105 106
struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;
107

108 109 110 111 112 113
	while (1) {
		rcu_read_lock();
		eb = rcu_dereference(root->node);

		/*
		 * RCU really hurts here, we could free up the root node because
114
		 * it was COWed but we may not get the new root node yet so do
115 116 117 118 119 120 121 122 123 124
		 * the inc_not_zero dance and if it doesn't work then
		 * synchronize_rcu and try again.
		 */
		if (atomic_inc_not_zero(&eb->refs)) {
			rcu_read_unlock();
			break;
		}
		rcu_read_unlock();
		synchronize_rcu();
	}
125 126 127
	return eb;
}

C
Chris Mason 已提交
128 129 130 131
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
132 133 134 135
struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;

C
Chris Mason 已提交
136
	while (1) {
137 138
		eb = btrfs_root_node(root);
		btrfs_tree_lock(eb);
139
		if (eb == root->node)
140 141 142 143 144 145 146
			break;
		btrfs_tree_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

147 148 149 150
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
151
struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
152 153 154 155 156 157 158 159 160 161 162 163 164 165
{
	struct extent_buffer *eb;

	while (1) {
		eb = btrfs_root_node(root);
		btrfs_tree_read_lock(eb);
		if (eb == root->node)
			break;
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

C
Chris Mason 已提交
166 167 168 169
/* cowonly root (everything not a reference counted cow subvolume), just get
 * put onto a simple dirty list.  transaction.c walks this to make sure they
 * get properly updated on disk.
 */
170 171
static void add_root_to_dirty_list(struct btrfs_root *root)
{
172 173
	struct btrfs_fs_info *fs_info = root->fs_info;

174 175 176 177
	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
		return;

178
	spin_lock(&fs_info->trans_lock);
179 180
	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
		/* Want the extent tree to be the last on the list */
181
		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
182
			list_move_tail(&root->dirty_list,
183
				       &fs_info->dirty_cowonly_roots);
184 185
		else
			list_move(&root->dirty_list,
186
				  &fs_info->dirty_cowonly_roots);
187
	}
188
	spin_unlock(&fs_info->trans_lock);
189 190
}

C
Chris Mason 已提交
191 192 193 194 195
/*
 * used by snapshot creation to make a copy of a root for a tree with
 * a given objectid.  The buffer with the new root node is returned in
 * cow_ret, and this func returns zero on success or a negative error code.
 */
196 197 198 199 200
int btrfs_copy_root(struct btrfs_trans_handle *trans,
		      struct btrfs_root *root,
		      struct extent_buffer *buf,
		      struct extent_buffer **cow_ret, u64 new_root_objectid)
{
201
	struct btrfs_fs_info *fs_info = root->fs_info;
202 203 204
	struct extent_buffer *cow;
	int ret = 0;
	int level;
205
	struct btrfs_disk_key disk_key;
206

207
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
208
		trans->transid != fs_info->running_transaction->transid);
209 210
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
211 212

	level = btrfs_header_level(buf);
213 214 215 216
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);
Z
Zheng Yan 已提交
217

218 219
	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
			&disk_key, level, buf->start, 0);
220
	if (IS_ERR(cow))
221 222
		return PTR_ERR(cow);

223
	copy_extent_buffer_full(cow, buf);
224 225
	btrfs_set_header_bytenr(cow, cow->start);
	btrfs_set_header_generation(cow, trans->transid);
226 227 228 229 230 231 232
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, new_root_objectid);
233

234
	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
Y
Yan Zheng 已提交
235

236
	WARN_ON(btrfs_header_generation(buf) > trans->transid);
237
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
238
		ret = btrfs_inc_ref(trans, root, cow, 1);
239
	else
240
		ret = btrfs_inc_ref(trans, root, cow, 0);
241

242 243 244 245 246 247 248 249
	if (ret)
		return ret;

	btrfs_mark_buffer_dirty(cow);
	*cow_ret = cow;
	return 0;
}

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
enum mod_log_op {
	MOD_LOG_KEY_REPLACE,
	MOD_LOG_KEY_ADD,
	MOD_LOG_KEY_REMOVE,
	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
	MOD_LOG_MOVE_KEYS,
	MOD_LOG_ROOT_REPLACE,
};

struct tree_mod_root {
	u64 logical;
	u8 level;
};

struct tree_mod_elem {
	struct rb_node node;
267
	u64 logical;
268
	u64 seq;
269 270 271 272 273 274 275 276 277 278 279 280 281
	enum mod_log_op op;

	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
	int slot;

	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
	u64 generation;

	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
	struct btrfs_disk_key key;
	u64 blockptr;

	/* this is used for op == MOD_LOG_MOVE_KEYS */
282 283 284 285
	struct {
		int dst_slot;
		int nr_items;
	} move;
286 287 288 289 290

	/* this is used for op == MOD_LOG_ROOT_REPLACE */
	struct tree_mod_root old_root;
};

291
/*
J
Josef Bacik 已提交
292
 * Pull a new tree mod seq number for our operation.
293
 */
J
Josef Bacik 已提交
294
static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
295 296 297 298
{
	return atomic64_inc_return(&fs_info->tree_mod_seq);
}

299 300 301 302 303 304 305 306 307 308
/*
 * This adds a new blocker to the tree mod log's blocker list if the @elem
 * passed does not already have a sequence number set. So when a caller expects
 * to record tree modifications, it should ensure to set elem->seq to zero
 * before calling btrfs_get_tree_mod_seq.
 * Returns a fresh, unused tree log modification sequence number, even if no new
 * blocker was added.
 */
u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
			   struct seq_list *elem)
309
{
310
	write_lock(&fs_info->tree_mod_log_lock);
311
	spin_lock(&fs_info->tree_mod_seq_lock);
312
	if (!elem->seq) {
J
Josef Bacik 已提交
313
		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
314 315
		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
	}
316
	spin_unlock(&fs_info->tree_mod_seq_lock);
317
	write_unlock(&fs_info->tree_mod_log_lock);
318

J
Josef Bacik 已提交
319
	return elem->seq;
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
}

void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
			    struct seq_list *elem)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct rb_node *next;
	struct seq_list *cur_elem;
	struct tree_mod_elem *tm;
	u64 min_seq = (u64)-1;
	u64 seq_putting = elem->seq;

	if (!seq_putting)
		return;

	spin_lock(&fs_info->tree_mod_seq_lock);
	list_del(&elem->list);
338
	elem->seq = 0;
339 340

	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
341
		if (cur_elem->seq < min_seq) {
342 343 344 345 346
			if (seq_putting > cur_elem->seq) {
				/*
				 * blocker with lower sequence number exists, we
				 * cannot remove anything from the log
				 */
347 348
				spin_unlock(&fs_info->tree_mod_seq_lock);
				return;
349 350 351 352
			}
			min_seq = cur_elem->seq;
		}
	}
353 354
	spin_unlock(&fs_info->tree_mod_seq_lock);

355 356 357 358
	/*
	 * anything that's lower than the lowest existing (read: blocked)
	 * sequence number can be removed from the tree.
	 */
359
	write_lock(&fs_info->tree_mod_log_lock);
360 361 362
	tm_root = &fs_info->tree_mod_log;
	for (node = rb_first(tm_root); node; node = next) {
		next = rb_next(node);
363
		tm = rb_entry(node, struct tree_mod_elem, node);
364
		if (tm->seq > min_seq)
365 366 367 368
			continue;
		rb_erase(node, tm_root);
		kfree(tm);
	}
369
	write_unlock(&fs_info->tree_mod_log_lock);
370 371 372 373
}

/*
 * key order of the log:
374
 *       node/leaf start address -> sequence
375
 *
376 377 378
 * The 'start address' is the logical address of the *new* root node
 * for root replace operations, or the logical address of the affected
 * block for all other operations.
379
 *
380
 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
381 382 383 384 385 386 387 388
 */
static noinline int
__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
{
	struct rb_root *tm_root;
	struct rb_node **new;
	struct rb_node *parent = NULL;
	struct tree_mod_elem *cur;
389

J
Josef Bacik 已提交
390
	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
391 392 393 394

	tm_root = &fs_info->tree_mod_log;
	new = &tm_root->rb_node;
	while (*new) {
395
		cur = rb_entry(*new, struct tree_mod_elem, node);
396
		parent = *new;
397
		if (cur->logical < tm->logical)
398
			new = &((*new)->rb_left);
399
		else if (cur->logical > tm->logical)
400
			new = &((*new)->rb_right);
401
		else if (cur->seq < tm->seq)
402
			new = &((*new)->rb_left);
403
		else if (cur->seq > tm->seq)
404
			new = &((*new)->rb_right);
405 406
		else
			return -EEXIST;
407 408 409 410
	}

	rb_link_node(&tm->node, parent, new);
	rb_insert_color(&tm->node, tm_root);
411
	return 0;
412 413
}

414 415 416 417
/*
 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 * this until all tree mod log insertions are recorded in the rb tree and then
418
 * write unlock fs_info::tree_mod_log_lock.
419
 */
420 421 422 423 424
static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb) {
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 1;
425 426
	if (eb && btrfs_header_level(eb) == 0)
		return 1;
427

428
	write_lock(&fs_info->tree_mod_log_lock);
429
	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
430
		write_unlock(&fs_info->tree_mod_log_lock);
431 432 433
		return 1;
	}

434 435 436
	return 0;
}

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb)
{
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 0;
	if (eb && btrfs_header_level(eb) == 0)
		return 0;

	return 1;
}

static struct tree_mod_elem *
alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
		    enum mod_log_op op, gfp_t flags)
453
{
454
	struct tree_mod_elem *tm;
455

456 457
	tm = kzalloc(sizeof(*tm), flags);
	if (!tm)
458
		return NULL;
459

460
	tm->logical = eb->start;
461 462 463 464 465 466 467
	if (op != MOD_LOG_KEY_ADD) {
		btrfs_node_key(eb, &tm->key, slot);
		tm->blockptr = btrfs_node_blockptr(eb, slot);
	}
	tm->op = op;
	tm->slot = slot;
	tm->generation = btrfs_node_ptr_generation(eb, slot);
468
	RB_CLEAR_NODE(&tm->node);
469

470
	return tm;
471 472
}

473 474
static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
		enum mod_log_op op, gfp_t flags)
475
{
476 477 478
	struct tree_mod_elem *tm;
	int ret;

479
	if (!tree_mod_need_log(eb->fs_info, eb))
480 481 482 483 484 485
		return 0;

	tm = alloc_tree_mod_elem(eb, slot, op, flags);
	if (!tm)
		return -ENOMEM;

486
	if (tree_mod_dont_log(eb->fs_info, eb)) {
487
		kfree(tm);
488
		return 0;
489 490
	}

491
	ret = __tree_mod_log_insert(eb->fs_info, tm);
492
	write_unlock(&eb->fs_info->tree_mod_log_lock);
493 494
	if (ret)
		kfree(tm);
495

496
	return ret;
497 498
}

499 500
static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
		int dst_slot, int src_slot, int nr_items)
501
{
502 503 504
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int ret = 0;
505
	int i;
506
	int locked = 0;
507

508
	if (!tree_mod_need_log(eb->fs_info, eb))
J
Jan Schmidt 已提交
509
		return 0;
510

511
	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
512 513 514
	if (!tm_list)
		return -ENOMEM;

515
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
516 517 518 519 520
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}

521
	tm->logical = eb->start;
522 523 524 525 526 527 528
	tm->slot = src_slot;
	tm->move.dst_slot = dst_slot;
	tm->move.nr_items = nr_items;
	tm->op = MOD_LOG_MOVE_KEYS;

	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
529
		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
530 531 532 533 534 535
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

536
	if (tree_mod_dont_log(eb->fs_info, eb))
537 538 539
		goto free_tms;
	locked = 1;

540 541 542 543 544
	/*
	 * When we override something during the move, we log these removals.
	 * This can only happen when we move towards the beginning of the
	 * buffer, i.e. dst_slot < src_slot.
	 */
545
	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
546
		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
547 548
		if (ret)
			goto free_tms;
549 550
	}

551
	ret = __tree_mod_log_insert(eb->fs_info, tm);
552 553
	if (ret)
		goto free_tms;
554
	write_unlock(&eb->fs_info->tree_mod_log_lock);
555
	kfree(tm_list);
J
Jan Schmidt 已提交
556

557 558 559 560
	return 0;
free_tms:
	for (i = 0; i < nr_items; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
561
			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
562 563 564
		kfree(tm_list[i]);
	}
	if (locked)
565
		write_unlock(&eb->fs_info->tree_mod_log_lock);
566 567
	kfree(tm_list);
	kfree(tm);
568

569
	return ret;
570 571
}

572 573 574 575
static inline int
__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
		       struct tree_mod_elem **tm_list,
		       int nritems)
576
{
577
	int i, j;
578 579 580
	int ret;

	for (i = nritems - 1; i >= 0; i--) {
581 582 583 584 585 586 587
		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
		if (ret) {
			for (j = nritems - 1; j > i; j--)
				rb_erase(&tm_list[j]->node,
					 &fs_info->tree_mod_log);
			return ret;
		}
588
	}
589 590

	return 0;
591 592
}

593 594
static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
			 struct extent_buffer *new_root, int log_removal)
595
{
596
	struct btrfs_fs_info *fs_info = old_root->fs_info;
597 598 599 600 601
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int ret = 0;
	int i;
602

603
	if (!tree_mod_need_log(fs_info, NULL))
604 605
		return 0;

606 607
	if (log_removal && btrfs_header_level(old_root) > 0) {
		nritems = btrfs_header_nritems(old_root);
608
		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
609
				  GFP_NOFS);
610 611 612 613 614 615
		if (!tm_list) {
			ret = -ENOMEM;
			goto free_tms;
		}
		for (i = 0; i < nritems; i++) {
			tm_list[i] = alloc_tree_mod_elem(old_root, i,
616
			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
617 618 619 620 621 622
			if (!tm_list[i]) {
				ret = -ENOMEM;
				goto free_tms;
			}
		}
	}
623

624
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
625 626 627 628
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}
629

630
	tm->logical = new_root->start;
631 632 633 634 635
	tm->old_root.logical = old_root->start;
	tm->old_root.level = btrfs_header_level(old_root);
	tm->generation = btrfs_header_generation(old_root);
	tm->op = MOD_LOG_ROOT_REPLACE;

636 637 638 639 640 641 642 643
	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;

	if (tm_list)
		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
	if (!ret)
		ret = __tree_mod_log_insert(fs_info, tm);

644
	write_unlock(&fs_info->tree_mod_log_lock);
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return ret;

free_tms:
	if (tm_list) {
		for (i = 0; i < nritems; i++)
			kfree(tm_list[i]);
		kfree(tm_list);
	}
	kfree(tm);

	return ret;
660 661 662 663 664 665 666 667 668 669 670
}

static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
		      int smallest)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct tree_mod_elem *cur = NULL;
	struct tree_mod_elem *found = NULL;

671
	read_lock(&fs_info->tree_mod_log_lock);
672 673 674
	tm_root = &fs_info->tree_mod_log;
	node = tm_root->rb_node;
	while (node) {
675
		cur = rb_entry(node, struct tree_mod_elem, node);
676
		if (cur->logical < start) {
677
			node = node->rb_left;
678
		} else if (cur->logical > start) {
679
			node = node->rb_right;
680
		} else if (cur->seq < min_seq) {
681 682 683 684
			node = node->rb_left;
		} else if (!smallest) {
			/* we want the node with the highest seq */
			if (found)
685
				BUG_ON(found->seq > cur->seq);
686 687
			found = cur;
			node = node->rb_left;
688
		} else if (cur->seq > min_seq) {
689 690
			/* we want the node with the smallest seq */
			if (found)
691
				BUG_ON(found->seq < cur->seq);
692 693 694 695 696 697 698
			found = cur;
			node = node->rb_right;
		} else {
			found = cur;
			break;
		}
	}
699
	read_unlock(&fs_info->tree_mod_log_lock);
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726

	return found;
}

/*
 * this returns the element from the log with the smallest time sequence
 * value that's in the log (the oldest log item). any element with a time
 * sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
			   u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 1);
}

/*
 * this returns the element from the log with the largest time sequence
 * value that's in the log (the most recent log item). any element with
 * a time sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 0);
}

727
static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
728
		     struct extent_buffer *src, unsigned long dst_offset,
729
		     unsigned long src_offset, int nr_items)
730
{
731
	struct btrfs_fs_info *fs_info = dst->fs_info;
732 733 734
	int ret = 0;
	struct tree_mod_elem **tm_list = NULL;
	struct tree_mod_elem **tm_list_add, **tm_list_rem;
735
	int i;
736
	int locked = 0;
737

738 739
	if (!tree_mod_need_log(fs_info, NULL))
		return 0;
740

741
	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
742 743
		return 0;

744
	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
745 746 747
			  GFP_NOFS);
	if (!tm_list)
		return -ENOMEM;
748

749 750
	tm_list_add = tm_list;
	tm_list_rem = tm_list + nr_items;
751
	for (i = 0; i < nr_items; i++) {
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
		if (!tm_list_rem[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}

		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
		    MOD_LOG_KEY_ADD, GFP_NOFS);
		if (!tm_list_add[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;
	locked = 1;

	for (i = 0; i < nr_items; i++) {
		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
		if (ret)
			goto free_tms;
		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
		if (ret)
			goto free_tms;
778
	}
779

780
	write_unlock(&fs_info->tree_mod_log_lock);
781 782 783 784 785 786 787 788 789 790 791
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nr_items * 2; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
		kfree(tm_list[i]);
	}
	if (locked)
792
		write_unlock(&fs_info->tree_mod_log_lock);
793 794 795
	kfree(tm_list);

	return ret;
796 797
}

798
static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
799
{
800 801 802 803 804 805 806 807
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int i;
	int ret = 0;

	if (btrfs_header_level(eb) == 0)
		return 0;

808
	if (!tree_mod_need_log(eb->fs_info, NULL))
809 810 811
		return 0;

	nritems = btrfs_header_nritems(eb);
812
	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
813 814 815 816 817 818 819 820 821 822 823 824
	if (!tm_list)
		return -ENOMEM;

	for (i = 0; i < nritems; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i,
		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

825
	if (tree_mod_dont_log(eb->fs_info, eb))
826 827
		goto free_tms;

828
	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
829
	write_unlock(&eb->fs_info->tree_mod_log_lock);
830 831 832 833 834 835 836 837 838 839 840 841
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nritems; i++)
		kfree(tm_list[i]);
	kfree(tm_list);

	return ret;
842 843
}

844 845 846 847 848 849 850
/*
 * check if the tree block can be shared by multiple trees
 */
int btrfs_block_can_be_shared(struct btrfs_root *root,
			      struct extent_buffer *buf)
{
	/*
851
	 * Tree blocks not in reference counted trees and tree roots
852 853 854 855
	 * are never shared. If a block was allocated after the last
	 * snapshot and the block was not allocated by tree relocation,
	 * we know the block is not shared.
	 */
856
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
857 858 859 860 861
	    buf != root->node && buf != root->commit_root &&
	    (btrfs_header_generation(buf) <=
	     btrfs_root_last_snapshot(&root->root_item) ||
	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
		return 1;
862

863 864 865 866 867 868
	return 0;
}

static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct extent_buffer *buf,
869 870
				       struct extent_buffer *cow,
				       int *last_ref)
871
{
872
	struct btrfs_fs_info *fs_info = root->fs_info;
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
	u64 refs;
	u64 owner;
	u64 flags;
	u64 new_flags = 0;
	int ret;

	/*
	 * Backrefs update rules:
	 *
	 * Always use full backrefs for extent pointers in tree block
	 * allocated by tree relocation.
	 *
	 * If a shared tree block is no longer referenced by its owner
	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
	 * use full backrefs for extent pointers in tree block.
	 *
	 * If a tree block is been relocating
	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
	 * use full backrefs for extent pointers in tree block.
	 * The reason for this is some operations (such as drop tree)
	 * are only allowed for blocks use full backrefs.
	 */

	if (btrfs_block_can_be_shared(root, buf)) {
897
		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
898 899
					       btrfs_header_level(buf), 1,
					       &refs, &flags);
900 901
		if (ret)
			return ret;
902 903
		if (refs == 0) {
			ret = -EROFS;
904
			btrfs_handle_fs_error(fs_info, ret, NULL);
905 906
			return ret;
		}
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
	} else {
		refs = 1;
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
		else
			flags = 0;
	}

	owner = btrfs_header_owner(buf);
	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));

	if (refs > 1) {
		if ((owner == root->root_key.objectid ||
		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
924
			ret = btrfs_inc_ref(trans, root, buf, 1);
925 926
			if (ret)
				return ret;
927 928 929

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID) {
930
				ret = btrfs_dec_ref(trans, root, buf, 0);
931 932
				if (ret)
					return ret;
933
				ret = btrfs_inc_ref(trans, root, cow, 1);
934 935
				if (ret)
					return ret;
936 937 938 939 940 941
			}
			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
		} else {

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
942
				ret = btrfs_inc_ref(trans, root, cow, 1);
943
			else
944
				ret = btrfs_inc_ref(trans, root, cow, 0);
945 946
			if (ret)
				return ret;
947 948
		}
		if (new_flags != 0) {
949 950
			int level = btrfs_header_level(buf);

951
			ret = btrfs_set_disk_extent_flags(trans, fs_info,
952 953
							  buf->start,
							  buf->len,
954
							  new_flags, level, 0);
955 956
			if (ret)
				return ret;
957 958 959 960 961
		}
	} else {
		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
962
				ret = btrfs_inc_ref(trans, root, cow, 1);
963
			else
964
				ret = btrfs_inc_ref(trans, root, cow, 0);
965 966
			if (ret)
				return ret;
967
			ret = btrfs_dec_ref(trans, root, buf, 1);
968 969
			if (ret)
				return ret;
970
		}
971
		btrfs_clean_tree_block(buf);
972
		*last_ref = 1;
973 974 975 976
	}
	return 0;
}

977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
static struct extent_buffer *alloc_tree_block_no_bg_flush(
					  struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  u64 parent_start,
					  const struct btrfs_disk_key *disk_key,
					  int level,
					  u64 hint,
					  u64 empty_size)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *ret;

	/*
	 * If we are COWing a node/leaf from the extent, chunk, device or free
	 * space trees, make sure that we do not finish block group creation of
	 * pending block groups. We do this to avoid a deadlock.
	 * COWing can result in allocation of a new chunk, and flushing pending
	 * block groups (btrfs_create_pending_block_groups()) can be triggered
	 * when finishing allocation of a new chunk. Creation of a pending block
	 * group modifies the extent, chunk, device and free space trees,
	 * therefore we could deadlock with ourselves since we are holding a
	 * lock on an extent buffer that btrfs_create_pending_block_groups() may
	 * try to COW later.
	 * For similar reasons, we also need to delay flushing pending block
	 * groups when splitting a leaf or node, from one of those trees, since
	 * we are holding a write lock on it and its parent or when inserting a
	 * new root node for one of those trees.
	 */
	if (root == fs_info->extent_root ||
	    root == fs_info->chunk_root ||
	    root == fs_info->dev_root ||
	    root == fs_info->free_space_root)
		trans->can_flush_pending_bgs = false;

	ret = btrfs_alloc_tree_block(trans, root, parent_start,
				     root->root_key.objectid, disk_key, level,
				     hint, empty_size);
	trans->can_flush_pending_bgs = true;

	return ret;
}

C
Chris Mason 已提交
1019
/*
C
Chris Mason 已提交
1020 1021 1022 1023
 * does the dirty work in cow of a single block.  The parent block (if
 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 * dirty and returned locked.  If you modify the block it needs to be marked
 * dirty again.
C
Chris Mason 已提交
1024 1025 1026
 *
 * search_start -- an allocation hint for the new block
 *
C
Chris Mason 已提交
1027 1028 1029
 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 * bytes the allocator should try to find free next to the block it returns.
 * This is just a hint and may be ignored by the allocator.
C
Chris Mason 已提交
1030
 */
C
Chris Mason 已提交
1031
static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1032 1033 1034 1035
			     struct btrfs_root *root,
			     struct extent_buffer *buf,
			     struct extent_buffer *parent, int parent_slot,
			     struct extent_buffer **cow_ret,
1036
			     u64 search_start, u64 empty_size)
C
Chris Mason 已提交
1037
{
1038
	struct btrfs_fs_info *fs_info = root->fs_info;
1039
	struct btrfs_disk_key disk_key;
1040
	struct extent_buffer *cow;
1041
	int level, ret;
1042
	int last_ref = 0;
1043
	int unlock_orig = 0;
1044
	u64 parent_start = 0;
1045

1046 1047 1048
	if (*cow_ret == buf)
		unlock_orig = 1;

1049
	btrfs_assert_tree_locked(buf);
1050

1051
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1052
		trans->transid != fs_info->running_transaction->transid);
1053 1054
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
1055

1056
	level = btrfs_header_level(buf);
Z
Zheng Yan 已提交
1057

1058 1059 1060 1061 1062
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);

1063 1064
	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
		parent_start = parent->start;
1065

1066 1067
	cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
					   level, search_start, empty_size);
1068 1069
	if (IS_ERR(cow))
		return PTR_ERR(cow);
1070

1071 1072
	/* cow is set to blocking by btrfs_init_new_buffer */

1073
	copy_extent_buffer_full(cow, buf);
1074
	btrfs_set_header_bytenr(cow, cow->start);
1075
	btrfs_set_header_generation(cow, trans->transid);
1076 1077 1078 1079 1080 1081 1082
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, root->root_key.objectid);
1083

1084
	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
Y
Yan Zheng 已提交
1085

1086
	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1087
	if (ret) {
1088
		btrfs_abort_transaction(trans, ret);
1089 1090
		return ret;
	}
Z
Zheng Yan 已提交
1091

1092
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1093
		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1094
		if (ret) {
1095
			btrfs_abort_transaction(trans, ret);
1096
			return ret;
1097
		}
1098
	}
1099

C
Chris Mason 已提交
1100
	if (buf == root->node) {
1101
		WARN_ON(parent && parent != buf);
1102 1103 1104
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			parent_start = buf->start;
1105

1106
		extent_buffer_get(cow);
1107 1108
		ret = tree_mod_log_insert_root(root->node, cow, 1);
		BUG_ON(ret < 0);
1109
		rcu_assign_pointer(root->node, cow);
1110

1111
		btrfs_free_tree_block(trans, root, buf, parent_start,
1112
				      last_ref);
1113
		free_extent_buffer(buf);
1114
		add_root_to_dirty_list(root);
C
Chris Mason 已提交
1115
	} else {
1116
		WARN_ON(trans->transid != btrfs_header_generation(parent));
1117
		tree_mod_log_insert_key(parent, parent_slot,
1118
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1119
		btrfs_set_node_blockptr(parent, parent_slot,
1120
					cow->start);
1121 1122
		btrfs_set_node_ptr_generation(parent, parent_slot,
					      trans->transid);
C
Chris Mason 已提交
1123
		btrfs_mark_buffer_dirty(parent);
1124
		if (last_ref) {
1125
			ret = tree_mod_log_free_eb(buf);
1126
			if (ret) {
1127
				btrfs_abort_transaction(trans, ret);
1128 1129 1130
				return ret;
			}
		}
1131
		btrfs_free_tree_block(trans, root, buf, parent_start,
1132
				      last_ref);
C
Chris Mason 已提交
1133
	}
1134 1135
	if (unlock_orig)
		btrfs_tree_unlock(buf);
1136
	free_extent_buffer_stale(buf);
C
Chris Mason 已提交
1137
	btrfs_mark_buffer_dirty(cow);
C
Chris Mason 已提交
1138
	*cow_ret = cow;
C
Chris Mason 已提交
1139 1140 1141
	return 0;
}

J
Jan Schmidt 已提交
1142 1143 1144 1145
/*
 * returns the logical address of the oldest predecessor of the given root.
 * entries older than time_seq are ignored.
 */
1146 1147
static struct tree_mod_elem *__tree_mod_log_oldest_root(
		struct extent_buffer *eb_root, u64 time_seq)
J
Jan Schmidt 已提交
1148 1149 1150
{
	struct tree_mod_elem *tm;
	struct tree_mod_elem *found = NULL;
1151
	u64 root_logical = eb_root->start;
J
Jan Schmidt 已提交
1152 1153 1154
	int looped = 0;

	if (!time_seq)
1155
		return NULL;
J
Jan Schmidt 已提交
1156 1157

	/*
1158 1159 1160 1161
	 * the very last operation that's logged for a root is the
	 * replacement operation (if it is replaced at all). this has
	 * the logical address of the *new* root, making it the very
	 * first operation that's logged for this root.
J
Jan Schmidt 已提交
1162 1163
	 */
	while (1) {
1164
		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
J
Jan Schmidt 已提交
1165 1166
						time_seq);
		if (!looped && !tm)
1167
			return NULL;
J
Jan Schmidt 已提交
1168
		/*
1169 1170 1171
		 * if there are no tree operation for the oldest root, we simply
		 * return it. this should only happen if that (old) root is at
		 * level 0.
J
Jan Schmidt 已提交
1172
		 */
1173 1174
		if (!tm)
			break;
J
Jan Schmidt 已提交
1175

1176 1177 1178 1179 1180
		/*
		 * if there's an operation that's not a root replacement, we
		 * found the oldest version of our root. normally, we'll find a
		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
		 */
J
Jan Schmidt 已提交
1181 1182 1183 1184 1185 1186 1187 1188
		if (tm->op != MOD_LOG_ROOT_REPLACE)
			break;

		found = tm;
		root_logical = tm->old_root.logical;
		looped = 1;
	}

1189 1190 1191 1192
	/* if there's no old root to return, return what we found instead */
	if (!found)
		found = tm;

J
Jan Schmidt 已提交
1193 1194 1195 1196 1197
	return found;
}

/*
 * tm is a pointer to the first operation to rewind within eb. then, all
1198
 * previous operations will be rewound (until we reach something older than
J
Jan Schmidt 已提交
1199 1200 1201
 * time_seq).
 */
static void
1202 1203
__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
		      u64 time_seq, struct tree_mod_elem *first_tm)
J
Jan Schmidt 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212
{
	u32 n;
	struct rb_node *next;
	struct tree_mod_elem *tm = first_tm;
	unsigned long o_dst;
	unsigned long o_src;
	unsigned long p_size = sizeof(struct btrfs_key_ptr);

	n = btrfs_header_nritems(eb);
1213
	read_lock(&fs_info->tree_mod_log_lock);
1214
	while (tm && tm->seq >= time_seq) {
J
Jan Schmidt 已提交
1215 1216 1217 1218 1219 1220 1221 1222
		/*
		 * all the operations are recorded with the operator used for
		 * the modification. as we're going backwards, we do the
		 * opposite of each operation here.
		 */
		switch (tm->op) {
		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
			BUG_ON(tm->slot < n);
1223
			/* Fallthrough */
1224
		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1225
		case MOD_LOG_KEY_REMOVE:
J
Jan Schmidt 已提交
1226 1227 1228 1229
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
1230
			n++;
J
Jan Schmidt 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239
			break;
		case MOD_LOG_KEY_REPLACE:
			BUG_ON(tm->slot >= n);
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
			break;
		case MOD_LOG_KEY_ADD:
1240
			/* if a move operation is needed it's in the log */
J
Jan Schmidt 已提交
1241 1242 1243
			n--;
			break;
		case MOD_LOG_MOVE_KEYS:
1244 1245 1246
			o_dst = btrfs_node_key_ptr_offset(tm->slot);
			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
			memmove_extent_buffer(eb, o_dst, o_src,
J
Jan Schmidt 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
					      tm->move.nr_items * p_size);
			break;
		case MOD_LOG_ROOT_REPLACE:
			/*
			 * this operation is special. for roots, this must be
			 * handled explicitly before rewinding.
			 * for non-roots, this operation may exist if the node
			 * was a root: root A -> child B; then A gets empty and
			 * B is promoted to the new root. in the mod log, we'll
			 * have a root-replace operation for B, a tree block
			 * that is no root. we simply ignore that operation.
			 */
			break;
		}
		next = rb_next(&tm->node);
		if (!next)
			break;
1264
		tm = rb_entry(next, struct tree_mod_elem, node);
1265
		if (tm->logical != first_tm->logical)
J
Jan Schmidt 已提交
1266 1267
			break;
	}
1268
	read_unlock(&fs_info->tree_mod_log_lock);
J
Jan Schmidt 已提交
1269 1270 1271
	btrfs_set_header_nritems(eb, n);
}

1272
/*
1273
 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1274 1275 1276 1277 1278
 * is returned. If rewind operations happen, a fresh buffer is returned. The
 * returned buffer is always read-locked. If the returned buffer is not the
 * input buffer, the lock on the input buffer is released and the input buffer
 * is freed (its refcount is decremented).
 */
J
Jan Schmidt 已提交
1279
static struct extent_buffer *
1280 1281
tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
		    struct extent_buffer *eb, u64 time_seq)
J
Jan Schmidt 已提交
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
{
	struct extent_buffer *eb_rewin;
	struct tree_mod_elem *tm;

	if (!time_seq)
		return eb;

	if (btrfs_header_level(eb) == 0)
		return eb;

	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
	if (!tm)
		return eb;

1296
	btrfs_set_path_blocking(path);
1297
	btrfs_set_lock_blocking_read(eb);
1298

J
Jan Schmidt 已提交
1299 1300
	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
		BUG_ON(tm->slot != 0);
1301
		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1302
		if (!eb_rewin) {
1303
			btrfs_tree_read_unlock_blocking(eb);
1304 1305 1306
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1307 1308 1309 1310
		btrfs_set_header_bytenr(eb_rewin, eb->start);
		btrfs_set_header_backref_rev(eb_rewin,
					     btrfs_header_backref_rev(eb));
		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1311
		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
J
Jan Schmidt 已提交
1312 1313
	} else {
		eb_rewin = btrfs_clone_extent_buffer(eb);
1314
		if (!eb_rewin) {
1315
			btrfs_tree_read_unlock_blocking(eb);
1316 1317 1318
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1319 1320
	}

1321
	btrfs_tree_read_unlock_blocking(eb);
J
Jan Schmidt 已提交
1322 1323
	free_extent_buffer(eb);

1324
	btrfs_tree_read_lock(eb_rewin);
1325
	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1326
	WARN_ON(btrfs_header_nritems(eb_rewin) >
1327
		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1328 1329 1330 1331

	return eb_rewin;
}

1332 1333 1334 1335 1336 1337 1338
/*
 * get_old_root() rewinds the state of @root's root node to the given @time_seq
 * value. If there are no changes, the current root->root_node is returned. If
 * anything changed in between, there's a fresh buffer allocated on which the
 * rewind operations are done. In any case, the returned buffer is read locked.
 * Returns NULL on error (with no locks held).
 */
J
Jan Schmidt 已提交
1339 1340 1341
static inline struct extent_buffer *
get_old_root(struct btrfs_root *root, u64 time_seq)
{
1342
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
1343
	struct tree_mod_elem *tm;
1344 1345
	struct extent_buffer *eb = NULL;
	struct extent_buffer *eb_root;
1346
	struct extent_buffer *old;
1347
	struct tree_mod_root *old_root = NULL;
1348
	u64 old_generation = 0;
1349
	u64 logical;
1350
	int level;
J
Jan Schmidt 已提交
1351

1352
	eb_root = btrfs_read_lock_root_node(root);
1353
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1354
	if (!tm)
1355
		return eb_root;
J
Jan Schmidt 已提交
1356

1357 1358 1359 1360
	if (tm->op == MOD_LOG_ROOT_REPLACE) {
		old_root = &tm->old_root;
		old_generation = tm->generation;
		logical = old_root->logical;
1361
		level = old_root->level;
1362
	} else {
1363
		logical = eb_root->start;
1364
		level = btrfs_header_level(eb_root);
1365
	}
J
Jan Schmidt 已提交
1366

1367
	tm = tree_mod_log_search(fs_info, logical, time_seq);
1368
	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1369 1370
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1371
		old = read_tree_block(fs_info, logical, 0, level, NULL);
1372 1373 1374
		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
			if (!IS_ERR(old))
				free_extent_buffer(old);
1375 1376 1377
			btrfs_warn(fs_info,
				   "failed to read tree block %llu from get_old_root",
				   logical);
1378
		} else {
1379 1380
			eb = btrfs_clone_extent_buffer(old);
			free_extent_buffer(old);
1381 1382
		}
	} else if (old_root) {
1383 1384
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1385
		eb = alloc_dummy_extent_buffer(fs_info, logical);
1386
	} else {
1387
		btrfs_set_lock_blocking_read(eb_root);
1388
		eb = btrfs_clone_extent_buffer(eb_root);
1389
		btrfs_tree_read_unlock_blocking(eb_root);
1390
		free_extent_buffer(eb_root);
1391 1392
	}

1393 1394 1395
	if (!eb)
		return NULL;
	btrfs_tree_read_lock(eb);
1396
	if (old_root) {
J
Jan Schmidt 已提交
1397 1398
		btrfs_set_header_bytenr(eb, eb->start);
		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1399
		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1400 1401
		btrfs_set_header_level(eb, old_root->level);
		btrfs_set_header_generation(eb, old_generation);
J
Jan Schmidt 已提交
1402
	}
1403
	if (tm)
1404
		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1405 1406
	else
		WARN_ON(btrfs_header_level(eb) != 0);
1407
	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1408 1409 1410 1411

	return eb;
}

J
Jan Schmidt 已提交
1412 1413 1414 1415
int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
	int level;
1416
	struct extent_buffer *eb_root = btrfs_root_node(root);
J
Jan Schmidt 已提交
1417

1418
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1419 1420 1421
	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
		level = tm->old_root.level;
	} else {
1422
		level = btrfs_header_level(eb_root);
J
Jan Schmidt 已提交
1423
	}
1424
	free_extent_buffer(eb_root);
J
Jan Schmidt 已提交
1425 1426 1427 1428

	return level;
}

1429 1430 1431 1432
static inline int should_cow_block(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
				   struct extent_buffer *buf)
{
1433
	if (btrfs_is_testing(root->fs_info))
1434
		return 0;
1435

1436 1437
	/* Ensure we can see the FORCE_COW bit */
	smp_mb__before_atomic();
1438 1439 1440 1441 1442 1443 1444 1445

	/*
	 * We do not need to cow a block if
	 * 1) this block is not created or changed in this transaction;
	 * 2) this block does not belong to TREE_RELOC tree;
	 * 3) the root is not forced COW.
	 *
	 * What is forced COW:
1446
	 *    when we create snapshot during committing the transaction,
1447
	 *    after we've finished copying src root, we must COW the shared
1448 1449
	 *    block to ensure the metadata consistency.
	 */
1450 1451 1452
	if (btrfs_header_generation(buf) == trans->transid &&
	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1453
	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1454
	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1455 1456 1457 1458
		return 0;
	return 1;
}

C
Chris Mason 已提交
1459 1460
/*
 * cows a single block, see __btrfs_cow_block for the real work.
1461
 * This version of it has extra checks so that a block isn't COWed more than
C
Chris Mason 已提交
1462 1463
 * once per transaction, as long as it hasn't been written yet
 */
C
Chris Mason 已提交
1464
noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1465 1466
		    struct btrfs_root *root, struct extent_buffer *buf,
		    struct extent_buffer *parent, int parent_slot,
1467
		    struct extent_buffer **cow_ret)
1468
{
1469
	struct btrfs_fs_info *fs_info = root->fs_info;
1470
	u64 search_start;
1471
	int ret;
C
Chris Mason 已提交
1472

1473 1474 1475 1476
	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
		btrfs_err(fs_info,
			"COW'ing blocks on a fs root that's being dropped");

1477
	if (trans->transaction != fs_info->running_transaction)
J
Julia Lawall 已提交
1478
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1479
		       trans->transid,
1480
		       fs_info->running_transaction->transid);
J
Julia Lawall 已提交
1481

1482
	if (trans->transid != fs_info->generation)
J
Julia Lawall 已提交
1483
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1484
		       trans->transid, fs_info->generation);
C
Chris Mason 已提交
1485

1486
	if (!should_cow_block(trans, root, buf)) {
1487
		trans->dirty = true;
1488 1489 1490
		*cow_ret = buf;
		return 0;
	}
1491

1492
	search_start = buf->start & ~((u64)SZ_1G - 1);
1493 1494

	if (parent)
1495 1496
		btrfs_set_lock_blocking_write(parent);
	btrfs_set_lock_blocking_write(buf);
1497

1498 1499 1500 1501 1502 1503 1504
	/*
	 * Before CoWing this block for later modification, check if it's
	 * the subtree root and do the delayed subtree trace if needed.
	 *
	 * Also We don't care about the error, as it's handled internally.
	 */
	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1505
	ret = __btrfs_cow_block(trans, root, buf, parent,
1506
				 parent_slot, cow_ret, search_start, 0);
1507 1508 1509

	trace_btrfs_cow_block(root, buf, *cow_ret);

1510
	return ret;
1511 1512
}

C
Chris Mason 已提交
1513 1514 1515 1516
/*
 * helper function for defrag to decide if two blocks pointed to by a
 * node are actually close by
 */
1517
static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1518
{
1519
	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1520
		return 1;
1521
	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1522 1523 1524 1525
		return 1;
	return 0;
}

1526 1527 1528
/*
 * compare two keys in a memcmp fashion
 */
1529 1530
static int comp_keys(const struct btrfs_disk_key *disk,
		     const struct btrfs_key *k2)
1531 1532 1533 1534 1535
{
	struct btrfs_key k1;

	btrfs_disk_key_to_cpu(&k1, disk);

1536
	return btrfs_comp_cpu_keys(&k1, k2);
1537 1538
}

1539 1540 1541
/*
 * same as comp_keys only with two btrfs_key's
 */
1542
int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->type > k2->type)
		return 1;
	if (k1->type < k2->type)
		return -1;
	if (k1->offset > k2->offset)
		return 1;
	if (k1->offset < k2->offset)
		return -1;
	return 0;
}
1558

C
Chris Mason 已提交
1559 1560 1561 1562 1563
/*
 * this is used by the defrag code to go through all the
 * leaves pointed to by a node and reallocate them so that
 * disk order is close to key order
 */
1564
int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1565
		       struct btrfs_root *root, struct extent_buffer *parent,
1566
		       int start_slot, u64 *last_ret,
1567
		       struct btrfs_key *progress)
1568
{
1569
	struct btrfs_fs_info *fs_info = root->fs_info;
1570
	struct extent_buffer *cur;
1571
	u64 blocknr;
1572
	u64 gen;
1573 1574
	u64 search_start = *last_ret;
	u64 last_block = 0;
1575 1576 1577 1578 1579
	u64 other;
	u32 parent_nritems;
	int end_slot;
	int i;
	int err = 0;
1580
	int parent_level;
1581 1582
	int uptodate;
	u32 blocksize;
1583 1584
	int progress_passed = 0;
	struct btrfs_disk_key disk_key;
1585

1586 1587
	parent_level = btrfs_header_level(parent);

1588 1589
	WARN_ON(trans->transaction != fs_info->running_transaction);
	WARN_ON(trans->transid != fs_info->generation);
1590

1591
	parent_nritems = btrfs_header_nritems(parent);
1592
	blocksize = fs_info->nodesize;
1593
	end_slot = parent_nritems - 1;
1594

1595
	if (parent_nritems <= 1)
1596 1597
		return 0;

1598
	btrfs_set_lock_blocking_write(parent);
1599

1600
	for (i = start_slot; i <= end_slot; i++) {
1601
		struct btrfs_key first_key;
1602
		int close = 1;
1603

1604 1605 1606 1607 1608
		btrfs_node_key(parent, &disk_key, i);
		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
			continue;

		progress_passed = 1;
1609
		blocknr = btrfs_node_blockptr(parent, i);
1610
		gen = btrfs_node_ptr_generation(parent, i);
1611
		btrfs_node_key_to_cpu(parent, &first_key, i);
1612 1613
		if (last_block == 0)
			last_block = blocknr;
1614

1615
		if (i > 0) {
1616 1617
			other = btrfs_node_blockptr(parent, i - 1);
			close = close_blocks(blocknr, other, blocksize);
1618
		}
1619
		if (!close && i < end_slot) {
1620 1621
			other = btrfs_node_blockptr(parent, i + 1);
			close = close_blocks(blocknr, other, blocksize);
1622
		}
1623 1624
		if (close) {
			last_block = blocknr;
1625
			continue;
1626
		}
1627

1628
		cur = find_extent_buffer(fs_info, blocknr);
1629
		if (cur)
1630
			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1631 1632
		else
			uptodate = 0;
1633
		if (!cur || !uptodate) {
1634
			if (!cur) {
1635 1636 1637
				cur = read_tree_block(fs_info, blocknr, gen,
						      parent_level - 1,
						      &first_key);
1638 1639 1640
				if (IS_ERR(cur)) {
					return PTR_ERR(cur);
				} else if (!extent_buffer_uptodate(cur)) {
1641
					free_extent_buffer(cur);
1642
					return -EIO;
1643
				}
1644
			} else if (!uptodate) {
1645 1646
				err = btrfs_read_buffer(cur, gen,
						parent_level - 1,&first_key);
1647 1648 1649 1650
				if (err) {
					free_extent_buffer(cur);
					return err;
				}
1651
			}
1652
		}
1653
		if (search_start == 0)
1654
			search_start = last_block;
1655

1656
		btrfs_tree_lock(cur);
1657
		btrfs_set_lock_blocking_write(cur);
1658
		err = __btrfs_cow_block(trans, root, cur, parent, i,
1659
					&cur, search_start,
1660
					min(16 * blocksize,
1661
					    (end_slot - i) * blocksize));
Y
Yan 已提交
1662
		if (err) {
1663
			btrfs_tree_unlock(cur);
1664
			free_extent_buffer(cur);
1665
			break;
Y
Yan 已提交
1666
		}
1667 1668
		search_start = cur->start;
		last_block = cur->start;
1669
		*last_ret = search_start;
1670 1671
		btrfs_tree_unlock(cur);
		free_extent_buffer(cur);
1672 1673 1674 1675
	}
	return err;
}

C
Chris Mason 已提交
1676
/*
1677 1678 1679
 * search for key in the extent_buffer.  The items start at offset p,
 * and they are item_size apart.  There are 'max' items in p.
 *
C
Chris Mason 已提交
1680 1681 1682 1683 1684 1685
 * the slot in the array is returned via slot, and it points to
 * the place where you would insert key if it is not found in
 * the array.
 *
 * slot may point to max if the key is bigger than all of the keys
 */
1686
static noinline int generic_bin_search(struct extent_buffer *eb,
1687 1688
				       unsigned long p, int item_size,
				       const struct btrfs_key *key,
1689
				       int max, int *slot)
1690 1691 1692 1693 1694
{
	int low = 0;
	int high = max;
	int mid;
	int ret;
1695
	struct btrfs_disk_key *tmp = NULL;
1696 1697 1698 1699 1700
	struct btrfs_disk_key unaligned;
	unsigned long offset;
	char *kaddr = NULL;
	unsigned long map_start = 0;
	unsigned long map_len = 0;
1701
	int err;
1702

1703 1704 1705 1706 1707 1708 1709 1710
	if (low > high) {
		btrfs_err(eb->fs_info,
		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
			  __func__, low, high, eb->start,
			  btrfs_header_owner(eb), btrfs_header_level(eb));
		return -EINVAL;
	}

C
Chris Mason 已提交
1711
	while (low < high) {
1712
		mid = (low + high) / 2;
1713 1714
		offset = p + mid * item_size;

1715
		if (!kaddr || offset < map_start ||
1716 1717
		    (offset + sizeof(struct btrfs_disk_key)) >
		    map_start + map_len) {
1718 1719

			err = map_private_extent_buffer(eb, offset,
1720
						sizeof(struct btrfs_disk_key),
1721
						&kaddr, &map_start, &map_len);
1722 1723 1724 1725

			if (!err) {
				tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
1726
			} else if (err == 1) {
1727 1728 1729
				read_extent_buffer(eb, &unaligned,
						   offset, sizeof(unaligned));
				tmp = &unaligned;
1730 1731
			} else {
				return err;
1732
			}
1733 1734 1735 1736 1737

		} else {
			tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
		}
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
		ret = comp_keys(tmp, key);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

C
Chris Mason 已提交
1753 1754 1755 1756
/*
 * simple bin_search frontend that does the right thing for
 * leaves vs nodes
 */
1757 1758
int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
		     int level, int *slot)
1759
{
1760
	if (level == 0)
1761 1762
		return generic_bin_search(eb,
					  offsetof(struct btrfs_leaf, items),
C
Chris Mason 已提交
1763
					  sizeof(struct btrfs_item),
1764
					  key, btrfs_header_nritems(eb),
1765
					  slot);
1766
	else
1767 1768
		return generic_bin_search(eb,
					  offsetof(struct btrfs_node, ptrs),
C
Chris Mason 已提交
1769
					  sizeof(struct btrfs_key_ptr),
1770
					  key, btrfs_header_nritems(eb),
1771
					  slot);
1772 1773
}

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
static void root_add_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) + size);
	spin_unlock(&root->accounting_lock);
}

static void root_sub_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) - size);
	spin_unlock(&root->accounting_lock);
}

C
Chris Mason 已提交
1790 1791 1792
/* given a node and slot number, this reads the blocks it points to.  The
 * extent buffer is returned with a reference taken (but unlocked).
 */
1793 1794
static noinline struct extent_buffer *read_node_slot(
				struct extent_buffer *parent, int slot)
1795
{
1796
	int level = btrfs_header_level(parent);
1797
	struct extent_buffer *eb;
1798
	struct btrfs_key first_key;
1799

1800 1801
	if (slot < 0 || slot >= btrfs_header_nritems(parent))
		return ERR_PTR(-ENOENT);
1802 1803 1804

	BUG_ON(level == 0);

1805
	btrfs_node_key_to_cpu(parent, &first_key, slot);
1806
	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1807 1808
			     btrfs_node_ptr_generation(parent, slot),
			     level - 1, &first_key);
1809 1810 1811
	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
		free_extent_buffer(eb);
		eb = ERR_PTR(-EIO);
1812 1813 1814
	}

	return eb;
1815 1816
}

C
Chris Mason 已提交
1817 1818 1819 1820 1821
/*
 * node level balancing, used to make sure nodes are in proper order for
 * item deletion.  We balance from the top down, so we have to make sure
 * that a deletion won't leave an node completely empty later on.
 */
1822
static noinline int balance_level(struct btrfs_trans_handle *trans,
1823 1824
			 struct btrfs_root *root,
			 struct btrfs_path *path, int level)
1825
{
1826
	struct btrfs_fs_info *fs_info = root->fs_info;
1827 1828 1829 1830
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
1831 1832 1833 1834
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];
1835
	u64 orig_ptr;
1836

1837
	ASSERT(level > 0);
1838

1839
	mid = path->nodes[level];
1840

1841 1842
	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1843 1844
	WARN_ON(btrfs_header_generation(mid) != trans->transid);

1845
	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1846

L
Li Zefan 已提交
1847
	if (level < BTRFS_MAX_LEVEL - 1) {
1848
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
1849 1850
		pslot = path->slots[level + 1];
	}
1851

C
Chris Mason 已提交
1852 1853 1854 1855
	/*
	 * deal with the case where there is only one pointer in the root
	 * by promoting the node below to a root
	 */
1856 1857
	if (!parent) {
		struct extent_buffer *child;
1858

1859
		if (btrfs_header_nritems(mid) != 1)
1860 1861 1862
			return 0;

		/* promote the child to a root */
1863
		child = read_node_slot(mid, 0);
1864 1865
		if (IS_ERR(child)) {
			ret = PTR_ERR(child);
1866
			btrfs_handle_fs_error(fs_info, ret, NULL);
1867 1868 1869
			goto enospc;
		}

1870
		btrfs_tree_lock(child);
1871
		btrfs_set_lock_blocking_write(child);
1872
		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1873 1874 1875 1876 1877
		if (ret) {
			btrfs_tree_unlock(child);
			free_extent_buffer(child);
			goto enospc;
		}
1878

1879 1880
		ret = tree_mod_log_insert_root(root->node, child, 1);
		BUG_ON(ret < 0);
1881
		rcu_assign_pointer(root->node, child);
1882

1883
		add_root_to_dirty_list(root);
1884
		btrfs_tree_unlock(child);
1885

1886
		path->locks[level] = 0;
1887
		path->nodes[level] = NULL;
1888
		btrfs_clean_tree_block(mid);
1889
		btrfs_tree_unlock(mid);
1890
		/* once for the path */
1891
		free_extent_buffer(mid);
1892 1893

		root_sub_used(root, mid->len);
1894
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1895
		/* once for the root ptr */
1896
		free_extent_buffer_stale(mid);
1897
		return 0;
1898
	}
1899
	if (btrfs_header_nritems(mid) >
1900
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1901 1902
		return 0;

1903
	left = read_node_slot(parent, pslot - 1);
1904 1905 1906
	if (IS_ERR(left))
		left = NULL;

1907
	if (left) {
1908
		btrfs_tree_lock(left);
1909
		btrfs_set_lock_blocking_write(left);
1910
		wret = btrfs_cow_block(trans, root, left,
1911
				       parent, pslot - 1, &left);
1912 1913 1914 1915
		if (wret) {
			ret = wret;
			goto enospc;
		}
1916
	}
1917

1918
	right = read_node_slot(parent, pslot + 1);
1919 1920 1921
	if (IS_ERR(right))
		right = NULL;

1922
	if (right) {
1923
		btrfs_tree_lock(right);
1924
		btrfs_set_lock_blocking_write(right);
1925
		wret = btrfs_cow_block(trans, root, right,
1926
				       parent, pslot + 1, &right);
1927 1928 1929 1930 1931 1932 1933
		if (wret) {
			ret = wret;
			goto enospc;
		}
	}

	/* first, try to make some room in the middle buffer */
1934 1935
	if (left) {
		orig_slot += btrfs_header_nritems(left);
1936
		wret = push_node_left(trans, left, mid, 1);
1937 1938
		if (wret < 0)
			ret = wret;
1939
	}
1940 1941 1942 1943

	/*
	 * then try to empty the right most buffer into the middle
	 */
1944
	if (right) {
1945
		wret = push_node_left(trans, mid, right, 1);
1946
		if (wret < 0 && wret != -ENOSPC)
1947
			ret = wret;
1948
		if (btrfs_header_nritems(right) == 0) {
1949
			btrfs_clean_tree_block(right);
1950
			btrfs_tree_unlock(right);
1951
			del_ptr(root, path, level + 1, pslot + 1);
1952
			root_sub_used(root, right->len);
1953
			btrfs_free_tree_block(trans, root, right, 0, 1);
1954
			free_extent_buffer_stale(right);
1955
			right = NULL;
1956
		} else {
1957 1958
			struct btrfs_disk_key right_key;
			btrfs_node_key(right, &right_key, 0);
1959 1960 1961
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
1962 1963
			btrfs_set_node_key(parent, &right_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);
1964 1965
		}
	}
1966
	if (btrfs_header_nritems(mid) == 1) {
1967 1968 1969 1970 1971 1972 1973 1974 1975
		/*
		 * we're not allowed to leave a node with one item in the
		 * tree during a delete.  A deletion from lower in the tree
		 * could try to delete the only pointer in this node.
		 * So, pull some keys from the left.
		 * There has to be a left pointer at this point because
		 * otherwise we would have pulled some pointers from the
		 * right
		 */
1976 1977
		if (!left) {
			ret = -EROFS;
1978
			btrfs_handle_fs_error(fs_info, ret, NULL);
1979 1980
			goto enospc;
		}
1981
		wret = balance_node_right(trans, mid, left);
1982
		if (wret < 0) {
1983
			ret = wret;
1984 1985
			goto enospc;
		}
1986
		if (wret == 1) {
1987
			wret = push_node_left(trans, left, mid, 1);
1988 1989 1990
			if (wret < 0)
				ret = wret;
		}
1991 1992
		BUG_ON(wret == 1);
	}
1993
	if (btrfs_header_nritems(mid) == 0) {
1994
		btrfs_clean_tree_block(mid);
1995
		btrfs_tree_unlock(mid);
1996
		del_ptr(root, path, level + 1, pslot);
1997
		root_sub_used(root, mid->len);
1998
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1999
		free_extent_buffer_stale(mid);
2000
		mid = NULL;
2001 2002
	} else {
		/* update the parent key to reflect our changes */
2003 2004
		struct btrfs_disk_key mid_key;
		btrfs_node_key(mid, &mid_key, 0);
2005 2006 2007
		ret = tree_mod_log_insert_key(parent, pslot,
				MOD_LOG_KEY_REPLACE, GFP_NOFS);
		BUG_ON(ret < 0);
2008 2009
		btrfs_set_node_key(parent, &mid_key, pslot);
		btrfs_mark_buffer_dirty(parent);
2010
	}
2011

2012
	/* update the path */
2013 2014 2015
	if (left) {
		if (btrfs_header_nritems(left) > orig_slot) {
			extent_buffer_get(left);
2016
			/* left was locked after cow */
2017
			path->nodes[level] = left;
2018 2019
			path->slots[level + 1] -= 1;
			path->slots[level] = orig_slot;
2020 2021
			if (mid) {
				btrfs_tree_unlock(mid);
2022
				free_extent_buffer(mid);
2023
			}
2024
		} else {
2025
			orig_slot -= btrfs_header_nritems(left);
2026 2027 2028
			path->slots[level] = orig_slot;
		}
	}
2029
	/* double check we haven't messed things up */
C
Chris Mason 已提交
2030
	if (orig_ptr !=
2031
	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2032
		BUG();
2033
enospc:
2034 2035
	if (right) {
		btrfs_tree_unlock(right);
2036
		free_extent_buffer(right);
2037 2038 2039 2040
	}
	if (left) {
		if (path->nodes[level] != left)
			btrfs_tree_unlock(left);
2041
		free_extent_buffer(left);
2042
	}
2043 2044 2045
	return ret;
}

C
Chris Mason 已提交
2046 2047 2048 2049
/* Node balancing for insertion.  Here we only split or push nodes around
 * when they are completely full.  This is also done top down, so we
 * have to be pessimistic.
 */
C
Chris Mason 已提交
2050
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2051 2052
					  struct btrfs_root *root,
					  struct btrfs_path *path, int level)
2053
{
2054
	struct btrfs_fs_info *fs_info = root->fs_info;
2055 2056 2057 2058
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
2059 2060 2061 2062 2063 2064 2065 2066
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];

	if (level == 0)
		return 1;

2067
	mid = path->nodes[level];
2068
	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2069

L
Li Zefan 已提交
2070
	if (level < BTRFS_MAX_LEVEL - 1) {
2071
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
2072 2073
		pslot = path->slots[level + 1];
	}
2074

2075
	if (!parent)
2076 2077
		return 1;

2078
	left = read_node_slot(parent, pslot - 1);
2079 2080
	if (IS_ERR(left))
		left = NULL;
2081 2082

	/* first, try to make some room in the middle buffer */
2083
	if (left) {
2084
		u32 left_nr;
2085 2086

		btrfs_tree_lock(left);
2087
		btrfs_set_lock_blocking_write(left);
2088

2089
		left_nr = btrfs_header_nritems(left);
2090
		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2091 2092
			wret = 1;
		} else {
2093
			ret = btrfs_cow_block(trans, root, left, parent,
2094
					      pslot - 1, &left);
2095 2096 2097
			if (ret)
				wret = 1;
			else {
2098
				wret = push_node_left(trans, left, mid, 0);
2099
			}
C
Chris Mason 已提交
2100
		}
2101 2102 2103
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2104
			struct btrfs_disk_key disk_key;
2105
			orig_slot += left_nr;
2106
			btrfs_node_key(mid, &disk_key, 0);
2107 2108 2109
			ret = tree_mod_log_insert_key(parent, pslot,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2110 2111 2112 2113
			btrfs_set_node_key(parent, &disk_key, pslot);
			btrfs_mark_buffer_dirty(parent);
			if (btrfs_header_nritems(left) > orig_slot) {
				path->nodes[level] = left;
2114 2115
				path->slots[level + 1] -= 1;
				path->slots[level] = orig_slot;
2116
				btrfs_tree_unlock(mid);
2117
				free_extent_buffer(mid);
2118 2119
			} else {
				orig_slot -=
2120
					btrfs_header_nritems(left);
2121
				path->slots[level] = orig_slot;
2122
				btrfs_tree_unlock(left);
2123
				free_extent_buffer(left);
2124 2125 2126
			}
			return 0;
		}
2127
		btrfs_tree_unlock(left);
2128
		free_extent_buffer(left);
2129
	}
2130
	right = read_node_slot(parent, pslot + 1);
2131 2132
	if (IS_ERR(right))
		right = NULL;
2133 2134 2135 2136

	/*
	 * then try to empty the right most buffer into the middle
	 */
2137
	if (right) {
C
Chris Mason 已提交
2138
		u32 right_nr;
2139

2140
		btrfs_tree_lock(right);
2141
		btrfs_set_lock_blocking_write(right);
2142

2143
		right_nr = btrfs_header_nritems(right);
2144
		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2145 2146
			wret = 1;
		} else {
2147 2148
			ret = btrfs_cow_block(trans, root, right,
					      parent, pslot + 1,
2149
					      &right);
2150 2151 2152
			if (ret)
				wret = 1;
			else {
2153
				wret = balance_node_right(trans, right, mid);
2154
			}
C
Chris Mason 已提交
2155
		}
2156 2157 2158
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2159 2160 2161
			struct btrfs_disk_key disk_key;

			btrfs_node_key(right, &disk_key, 0);
2162 2163 2164
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2165 2166 2167 2168 2169
			btrfs_set_node_key(parent, &disk_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);

			if (btrfs_header_nritems(mid) <= orig_slot) {
				path->nodes[level] = right;
2170 2171
				path->slots[level + 1] += 1;
				path->slots[level] = orig_slot -
2172
					btrfs_header_nritems(mid);
2173
				btrfs_tree_unlock(mid);
2174
				free_extent_buffer(mid);
2175
			} else {
2176
				btrfs_tree_unlock(right);
2177
				free_extent_buffer(right);
2178 2179 2180
			}
			return 0;
		}
2181
		btrfs_tree_unlock(right);
2182
		free_extent_buffer(right);
2183 2184 2185 2186
	}
	return 1;
}

2187
/*
C
Chris Mason 已提交
2188 2189
 * readahead one full node of leaves, finding things that are close
 * to the block in 'slot', and triggering ra on them.
2190
 */
2191
static void reada_for_search(struct btrfs_fs_info *fs_info,
2192 2193
			     struct btrfs_path *path,
			     int level, int slot, u64 objectid)
2194
{
2195
	struct extent_buffer *node;
2196
	struct btrfs_disk_key disk_key;
2197 2198
	u32 nritems;
	u64 search;
2199
	u64 target;
2200
	u64 nread = 0;
2201
	struct extent_buffer *eb;
2202 2203 2204
	u32 nr;
	u32 blocksize;
	u32 nscan = 0;
2205

2206
	if (level != 1)
2207 2208 2209
		return;

	if (!path->nodes[level])
2210 2211
		return;

2212
	node = path->nodes[level];
2213

2214
	search = btrfs_node_blockptr(node, slot);
2215 2216
	blocksize = fs_info->nodesize;
	eb = find_extent_buffer(fs_info, search);
2217 2218
	if (eb) {
		free_extent_buffer(eb);
2219 2220 2221
		return;
	}

2222
	target = search;
2223

2224
	nritems = btrfs_header_nritems(node);
2225
	nr = slot;
2226

C
Chris Mason 已提交
2227
	while (1) {
2228
		if (path->reada == READA_BACK) {
2229 2230 2231
			if (nr == 0)
				break;
			nr--;
2232
		} else if (path->reada == READA_FORWARD) {
2233 2234 2235
			nr++;
			if (nr >= nritems)
				break;
2236
		}
2237
		if (path->reada == READA_BACK && objectid) {
2238 2239 2240 2241
			btrfs_node_key(node, &disk_key, nr);
			if (btrfs_disk_key_objectid(&disk_key) != objectid)
				break;
		}
2242
		search = btrfs_node_blockptr(node, nr);
2243 2244
		if ((search <= target && target - search <= 65536) ||
		    (search > target && search - target <= 65536)) {
2245
			readahead_tree_block(fs_info, search);
2246 2247 2248
			nread += blocksize;
		}
		nscan++;
2249
		if ((nread > 65536 || nscan > 32))
2250
			break;
2251 2252
	}
}
2253

2254
static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
J
Josef Bacik 已提交
2255
				       struct btrfs_path *path, int level)
2256 2257 2258 2259 2260 2261 2262 2263 2264
{
	int slot;
	int nritems;
	struct extent_buffer *parent;
	struct extent_buffer *eb;
	u64 gen;
	u64 block1 = 0;
	u64 block2 = 0;

2265
	parent = path->nodes[level + 1];
2266
	if (!parent)
J
Josef Bacik 已提交
2267
		return;
2268 2269

	nritems = btrfs_header_nritems(parent);
2270
	slot = path->slots[level + 1];
2271 2272 2273 2274

	if (slot > 0) {
		block1 = btrfs_node_blockptr(parent, slot - 1);
		gen = btrfs_node_ptr_generation(parent, slot - 1);
2275
		eb = find_extent_buffer(fs_info, block1);
2276 2277 2278 2279 2280 2281
		/*
		 * if we get -eagain from btrfs_buffer_uptodate, we
		 * don't want to return eagain here.  That will loop
		 * forever
		 */
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2282 2283 2284
			block1 = 0;
		free_extent_buffer(eb);
	}
2285
	if (slot + 1 < nritems) {
2286 2287
		block2 = btrfs_node_blockptr(parent, slot + 1);
		gen = btrfs_node_ptr_generation(parent, slot + 1);
2288
		eb = find_extent_buffer(fs_info, block2);
2289
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2290 2291 2292
			block2 = 0;
		free_extent_buffer(eb);
	}
2293

J
Josef Bacik 已提交
2294
	if (block1)
2295
		readahead_tree_block(fs_info, block1);
J
Josef Bacik 已提交
2296
	if (block2)
2297
		readahead_tree_block(fs_info, block2);
2298 2299 2300
}


C
Chris Mason 已提交
2301
/*
C
Chris Mason 已提交
2302 2303 2304 2305
 * when we walk down the tree, it is usually safe to unlock the higher layers
 * in the tree.  The exceptions are when our path goes through slot 0, because
 * operations on the tree might require changing key pointers higher up in the
 * tree.
C
Chris Mason 已提交
2306
 *
C
Chris Mason 已提交
2307 2308 2309
 * callers might also have set path->keep_locks, which tells this code to keep
 * the lock if the path points to the last slot in the block.  This is part of
 * walking through the tree, and selecting the next slot in the higher block.
C
Chris Mason 已提交
2310
 *
C
Chris Mason 已提交
2311 2312
 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
 * if lowest_unlock is 1, level 0 won't be unlocked
C
Chris Mason 已提交
2313
 */
2314
static noinline void unlock_up(struct btrfs_path *path, int level,
2315 2316
			       int lowest_unlock, int min_write_lock_level,
			       int *write_lock_level)
2317 2318 2319
{
	int i;
	int skip_level = level;
2320
	int no_skips = 0;
2321 2322 2323 2324 2325 2326 2327
	struct extent_buffer *t;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
			break;
		if (!path->locks[i])
			break;
2328
		if (!no_skips && path->slots[i] == 0) {
2329 2330 2331
			skip_level = i + 1;
			continue;
		}
2332
		if (!no_skips && path->keep_locks) {
2333 2334 2335
			u32 nritems;
			t = path->nodes[i];
			nritems = btrfs_header_nritems(t);
2336
			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2337 2338 2339 2340
				skip_level = i + 1;
				continue;
			}
		}
2341 2342 2343
		if (skip_level < i && i >= lowest_unlock)
			no_skips = 1;

2344
		t = path->nodes[i];
2345
		if (i >= lowest_unlock && i > skip_level) {
2346
			btrfs_tree_unlock_rw(t, path->locks[i]);
2347
			path->locks[i] = 0;
2348 2349 2350 2351 2352
			if (write_lock_level &&
			    i > min_write_lock_level &&
			    i <= *write_lock_level) {
				*write_lock_level = i - 1;
			}
2353 2354 2355 2356
		}
	}
}

2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
/*
 * This releases any locks held in the path starting at level and
 * going all the way up to the root.
 *
 * btrfs_search_slot will keep the lock held on higher nodes in a few
 * corner cases, such as COW of the block at slot zero in the node.  This
 * ignores those rules, and it should only be called when there are no
 * more updates to be done higher up in the tree.
 */
noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
{
	int i;

J
Josef Bacik 已提交
2370
	if (path->keep_locks)
2371 2372 2373 2374
		return;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
2375
			continue;
2376
		if (!path->locks[i])
2377
			continue;
2378
		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2379 2380 2381 2382
		path->locks[i] = 0;
	}
}

2383 2384 2385 2386 2387 2388 2389 2390 2391
/*
 * helper function for btrfs_search_slot.  The goal is to find a block
 * in cache without setting the path to blocking.  If we find the block
 * we return zero and the path is unchanged.
 *
 * If we can't find the block, we set the path blocking and do some
 * reada.  -EAGAIN is returned and the search must be repeated.
 */
static int
2392 2393
read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
		      struct extent_buffer **eb_ret, int level, int slot,
2394
		      const struct btrfs_key *key)
2395
{
2396
	struct btrfs_fs_info *fs_info = root->fs_info;
2397 2398 2399 2400
	u64 blocknr;
	u64 gen;
	struct extent_buffer *b = *eb_ret;
	struct extent_buffer *tmp;
2401
	struct btrfs_key first_key;
2402
	int ret;
2403
	int parent_level;
2404 2405 2406

	blocknr = btrfs_node_blockptr(b, slot);
	gen = btrfs_node_ptr_generation(b, slot);
2407 2408
	parent_level = btrfs_header_level(b);
	btrfs_node_key_to_cpu(b, &first_key, slot);
2409

2410
	tmp = find_extent_buffer(fs_info, blocknr);
2411
	if (tmp) {
2412
		/* first we do an atomic uptodate check */
2413
		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2414 2415 2416 2417 2418
			/*
			 * Do extra check for first_key, eb can be stale due to
			 * being cached, read from scrub, or have multiple
			 * parents (shared tree blocks).
			 */
2419
			if (btrfs_verify_level_key(tmp,
2420 2421 2422 2423
					parent_level - 1, &first_key, gen)) {
				free_extent_buffer(tmp);
				return -EUCLEAN;
			}
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
			*eb_ret = tmp;
			return 0;
		}

		/* the pages were up to date, but we failed
		 * the generation number check.  Do a full
		 * read for the generation number that is correct.
		 * We must do this without dropping locks so
		 * we can trust our generation number
		 */
		btrfs_set_path_blocking(p);

		/* now we're allowed to do a blocking uptodate check */
2437
		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2438 2439 2440
		if (!ret) {
			*eb_ret = tmp;
			return 0;
2441
		}
2442 2443 2444
		free_extent_buffer(tmp);
		btrfs_release_path(p);
		return -EIO;
2445 2446 2447 2448 2449
	}

	/*
	 * reduce lock contention at high levels
	 * of the btree by dropping locks before
2450 2451 2452
	 * we read.  Don't release the lock on the current
	 * level because we need to walk this node to figure
	 * out which blocks to read.
2453
	 */
2454 2455 2456
	btrfs_unlock_up_safe(p, level + 1);
	btrfs_set_path_blocking(p);

2457
	if (p->reada != READA_NONE)
2458
		reada_for_search(fs_info, p, level, slot, key->objectid);
2459

2460
	ret = -EAGAIN;
2461
	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2462
			      &first_key);
2463
	if (!IS_ERR(tmp)) {
2464 2465 2466 2467 2468 2469
		/*
		 * If the read above didn't mark this buffer up to date,
		 * it will never end up being up to date.  Set ret to EIO now
		 * and give up so that our caller doesn't loop forever
		 * on our EAGAINs.
		 */
2470
		if (!extent_buffer_uptodate(tmp))
2471
			ret = -EIO;
2472
		free_extent_buffer(tmp);
2473 2474
	} else {
		ret = PTR_ERR(tmp);
2475
	}
2476 2477

	btrfs_release_path(p);
2478
	return ret;
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
}

/*
 * helper function for btrfs_search_slot.  This does all of the checks
 * for node-level blocks and does any balancing required based on
 * the ins_len.
 *
 * If no extra work was required, zero is returned.  If we had to
 * drop the path, -EAGAIN is returned and btrfs_search_slot must
 * start over
 */
static int
setup_nodes_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
2493 2494
		       struct extent_buffer *b, int level, int ins_len,
		       int *write_lock_level)
2495
{
2496
	struct btrfs_fs_info *fs_info = root->fs_info;
2497
	int ret;
2498

2499
	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2500
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2501 2502
		int sret;

2503 2504 2505 2506 2507 2508
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2509
		btrfs_set_path_blocking(p);
2510
		reada_for_balance(fs_info, p, level);
2511 2512 2513 2514 2515 2516 2517 2518 2519
		sret = split_node(trans, root, p, level);

		BUG_ON(sret > 0);
		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2520
		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2521 2522
		int sret;

2523 2524 2525 2526 2527 2528
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2529
		btrfs_set_path_blocking(p);
2530
		reada_for_balance(fs_info, p, level);
2531 2532 2533 2534 2535 2536 2537 2538
		sret = balance_level(trans, root, p, level);

		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
		if (!b) {
2539
			btrfs_release_path(p);
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
			goto again;
		}
		BUG_ON(btrfs_header_nritems(b) == 1);
	}
	return 0;

again:
	ret = -EAGAIN;
done:
	return ret;
}

2552
static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2553 2554 2555
		      int level, int *prev_cmp, int *slot)
{
	if (*prev_cmp != 0) {
2556
		*prev_cmp = btrfs_bin_search(b, key, level, slot);
2557 2558 2559 2560 2561 2562 2563 2564
		return *prev_cmp;
	}

	*slot = 0;

	return 0;
}

2565
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2566 2567 2568 2569 2570 2571
		u64 iobjectid, u64 ioff, u8 key_type,
		struct btrfs_key *found_key)
{
	int ret;
	struct btrfs_key key;
	struct extent_buffer *eb;
2572 2573

	ASSERT(path);
2574
	ASSERT(found_key);
2575 2576 2577 2578 2579 2580

	key.type = key_type;
	key.objectid = iobjectid;
	key.offset = ioff;

	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2581
	if (ret < 0)
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
		return ret;

	eb = path->nodes[0];
	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
		ret = btrfs_next_leaf(fs_root, path);
		if (ret)
			return ret;
		eb = path->nodes[0];
	}

	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
	if (found_key->type != key.type ||
			found_key->objectid != key.objectid)
		return 1;

	return 0;
}

2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
							struct btrfs_path *p,
							int write_lock_level)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *b;
	int root_lock;
	int level = 0;

	/* We try very hard to do read locks on the root */
	root_lock = BTRFS_READ_LOCK;

	if (p->search_commit_root) {
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
		/*
		 * The commit roots are read only so we always do read locks,
		 * and we always must hold the commit_root_sem when doing
		 * searches on them, the only exception is send where we don't
		 * want to block transaction commits for a long time, so
		 * we need to clone the commit root in order to avoid races
		 * with transaction commits that create a snapshot of one of
		 * the roots used by a send operation.
		 */
		if (p->need_commit_sem) {
2623
			down_read(&fs_info->commit_root_sem);
2624
			b = btrfs_clone_extent_buffer(root->commit_root);
2625
			up_read(&fs_info->commit_root_sem);
2626 2627 2628 2629 2630 2631 2632 2633
			if (!b)
				return ERR_PTR(-ENOMEM);

		} else {
			b = root->commit_root;
			extent_buffer_get(b);
		}
		level = btrfs_header_level(b);
2634 2635 2636 2637 2638
		/*
		 * Ensure that all callers have set skip_locking when
		 * p->search_commit_root = 1.
		 */
		ASSERT(p->skip_locking == 1);
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649

		goto out;
	}

	if (p->skip_locking) {
		b = btrfs_root_node(root);
		level = btrfs_header_level(b);
		goto out;
	}

	/*
2650 2651
	 * If the level is set to maximum, we can skip trying to get the read
	 * lock.
2652
	 */
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
	if (write_lock_level < BTRFS_MAX_LEVEL) {
		/*
		 * We don't know the level of the root node until we actually
		 * have it read locked
		 */
		b = btrfs_read_lock_root_node(root);
		level = btrfs_header_level(b);
		if (level > write_lock_level)
			goto out;

		/* Whoops, must trade for write lock */
		btrfs_tree_read_unlock(b);
		free_extent_buffer(b);
	}
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684

	b = btrfs_lock_root_node(root);
	root_lock = BTRFS_WRITE_LOCK;

	/* The level might have changed, check again */
	level = btrfs_header_level(b);

out:
	p->nodes[level] = b;
	if (!p->skip_locking)
		p->locks[level] = root_lock;
	/*
	 * Callers are responsible for dropping b's references.
	 */
	return b;
}


C
Chris Mason 已提交
2685
/*
2686 2687
 * btrfs_search_slot - look for a key in a tree and perform necessary
 * modifications to preserve tree invariants.
C
Chris Mason 已提交
2688
 *
2689 2690 2691 2692 2693 2694 2695 2696
 * @trans:	Handle of transaction, used when modifying the tree
 * @p:		Holds all btree nodes along the search path
 * @root:	The root node of the tree
 * @key:	The key we are looking for
 * @ins_len:	Indicates purpose of search, for inserts it is 1, for
 *		deletions it's -1. 0 for plain searches
 * @cow:	boolean should CoW operations be performed. Must always be 1
 *		when modifying the tree.
C
Chris Mason 已提交
2697
 *
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
 *
 * If @key is found, 0 is returned and you can find the item in the leaf level
 * of the path (level 0)
 *
 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
 * points to the slot where it should be inserted
 *
 * If an error is encountered while searching the tree a negative error number
 * is returned
C
Chris Mason 已提交
2709
 */
2710 2711 2712
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *key, struct btrfs_path *p,
		      int ins_len, int cow)
2713
{
2714
	struct extent_buffer *b;
2715 2716
	int slot;
	int ret;
2717
	int err;
2718
	int level;
2719
	int lowest_unlock = 1;
2720 2721
	/* everything at write_lock_level or lower must be write locked */
	int write_lock_level = 0;
2722
	u8 lowest_level = 0;
2723
	int min_write_lock_level;
2724
	int prev_cmp;
2725

2726
	lowest_level = p->lowest_level;
2727
	WARN_ON(lowest_level && ins_len > 0);
C
Chris Mason 已提交
2728
	WARN_ON(p->nodes[0] != NULL);
2729
	BUG_ON(!cow && ins_len);
2730

2731
	if (ins_len < 0) {
2732
		lowest_unlock = 2;
2733

2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
		/* when we are removing items, we might have to go up to level
		 * two as we update tree pointers  Make sure we keep write
		 * for those levels as well
		 */
		write_lock_level = 2;
	} else if (ins_len > 0) {
		/*
		 * for inserting items, make sure we have a write lock on
		 * level 1 so we can update keys
		 */
		write_lock_level = 1;
	}

	if (!cow)
		write_lock_level = -1;

J
Josef Bacik 已提交
2750
	if (cow && (p->keep_locks || p->lowest_level))
2751 2752
		write_lock_level = BTRFS_MAX_LEVEL;

2753 2754
	min_write_lock_level = write_lock_level;

2755
again:
2756
	prev_cmp = -1;
2757
	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2758 2759 2760 2761
	if (IS_ERR(b)) {
		ret = PTR_ERR(b);
		goto done;
	}
2762

2763
	while (b) {
2764
		level = btrfs_header_level(b);
2765 2766 2767 2768 2769

		/*
		 * setup the path here so we can release it under lock
		 * contention with the cow code
		 */
C
Chris Mason 已提交
2770
		if (cow) {
2771 2772
			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));

2773 2774 2775 2776 2777
			/*
			 * if we don't really need to cow this block
			 * then we don't want to set the path blocking,
			 * so we test it here
			 */
2778 2779
			if (!should_cow_block(trans, root, b)) {
				trans->dirty = true;
2780
				goto cow_done;
2781
			}
2782

2783 2784 2785 2786
			/*
			 * must have write locks on this node and the
			 * parent
			 */
2787 2788 2789 2790
			if (level > write_lock_level ||
			    (level + 1 > write_lock_level &&
			    level + 1 < BTRFS_MAX_LEVEL &&
			    p->nodes[level + 1])) {
2791 2792 2793 2794 2795
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2796
			btrfs_set_path_blocking(p);
2797 2798 2799 2800 2801 2802 2803
			if (last_level)
				err = btrfs_cow_block(trans, root, b, NULL, 0,
						      &b);
			else
				err = btrfs_cow_block(trans, root, b,
						      p->nodes[level + 1],
						      p->slots[level + 1], &b);
2804 2805
			if (err) {
				ret = err;
2806
				goto done;
2807
			}
C
Chris Mason 已提交
2808
		}
2809
cow_done:
2810
		p->nodes[level] = b;
L
Liu Bo 已提交
2811 2812 2813 2814
		/*
		 * Leave path with blocking locks to avoid massive
		 * lock context switch, this is made on purpose.
		 */
2815 2816 2817 2818 2819 2820 2821

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 *
2822 2823 2824 2825
		 * If we're inserting or deleting (ins_len != 0), then we might
		 * be changing slot zero, which may require changing the parent.
		 * So, we can't drop the lock until after we know which slot
		 * we're operating on.
2826
		 */
2827 2828 2829 2830 2831 2832 2833 2834
		if (!ins_len && !p->keep_locks) {
			int u = level + 1;

			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
				p->locks[u] = 0;
			}
		}
2835

2836
		ret = key_search(b, key, level, &prev_cmp, &slot);
2837 2838
		if (ret < 0)
			goto done;
2839

2840
		if (level != 0) {
2841 2842 2843
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
2844
				slot -= 1;
2845
			}
2846
			p->slots[level] = slot;
2847
			err = setup_nodes_for_search(trans, root, p, b, level,
2848
					     ins_len, &write_lock_level);
2849
			if (err == -EAGAIN)
2850
				goto again;
2851 2852
			if (err) {
				ret = err;
2853
				goto done;
2854
			}
2855 2856
			b = p->nodes[level];
			slot = p->slots[level];
2857

2858 2859 2860 2861 2862 2863
			/*
			 * slot 0 is special, if we change the key
			 * we have to update the parent pointer
			 * which means we must have a write lock
			 * on the parent
			 */
2864
			if (slot == 0 && ins_len &&
2865 2866 2867 2868 2869 2870
			    write_lock_level < level + 1) {
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2871 2872
			unlock_up(p, level, lowest_unlock,
				  min_write_lock_level, &write_lock_level);
2873

2874
			if (level == lowest_level) {
2875 2876
				if (dec)
					p->slots[level]++;
2877
				goto done;
2878
			}
2879

2880
			err = read_block_for_search(root, p, &b, level,
2881
						    slot, key);
2882
			if (err == -EAGAIN)
2883
				goto again;
2884 2885
			if (err) {
				ret = err;
2886
				goto done;
2887
			}
2888

2889
			if (!p->skip_locking) {
2890 2891 2892 2893 2894 2895 2896 2897 2898
				level = btrfs_header_level(b);
				if (level <= write_lock_level) {
					err = btrfs_try_tree_write_lock(b);
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_lock(b);
					}
					p->locks[level] = BTRFS_WRITE_LOCK;
				} else {
2899
					err = btrfs_tree_read_lock_atomic(b);
2900 2901 2902 2903 2904
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_read_lock(b);
					}
					p->locks[level] = BTRFS_READ_LOCK;
2905
				}
2906
				p->nodes[level] = b;
2907
			}
2908 2909
		} else {
			p->slots[level] = slot;
2910
			if (ins_len > 0 &&
2911
			    btrfs_leaf_free_space(b) < ins_len) {
2912 2913 2914 2915 2916 2917
				if (write_lock_level < 1) {
					write_lock_level = 1;
					btrfs_release_path(p);
					goto again;
				}

2918
				btrfs_set_path_blocking(p);
2919 2920
				err = split_leaf(trans, root, key,
						 p, ins_len, ret == 0);
2921

2922 2923 2924
				BUG_ON(err > 0);
				if (err) {
					ret = err;
2925 2926
					goto done;
				}
C
Chris Mason 已提交
2927
			}
2928
			if (!p->search_for_split)
2929
				unlock_up(p, level, lowest_unlock,
2930
					  min_write_lock_level, NULL);
2931
			goto done;
2932 2933
		}
	}
2934 2935
	ret = 1;
done:
2936 2937 2938 2939
	/*
	 * we don't really know what they plan on doing with the path
	 * from here on, so for now just mark it as blocking
	 */
2940 2941
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
2942
	if (ret < 0 && !p->skip_release_on_error)
2943
		btrfs_release_path(p);
2944
	return ret;
2945 2946
}

J
Jan Schmidt 已提交
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
/*
 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
 * current state of the tree together with the operations recorded in the tree
 * modification log to search for the key in a previous version of this tree, as
 * denoted by the time_seq parameter.
 *
 * Naturally, there is no support for insert, delete or cow operations.
 *
 * The resulting path and return value will be set up as if we called
 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
 */
2958
int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
J
Jan Schmidt 已提交
2959 2960
			  struct btrfs_path *p, u64 time_seq)
{
2961
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
2962 2963 2964 2965 2966 2967 2968
	struct extent_buffer *b;
	int slot;
	int ret;
	int err;
	int level;
	int lowest_unlock = 1;
	u8 lowest_level = 0;
2969
	int prev_cmp = -1;
J
Jan Schmidt 已提交
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980

	lowest_level = p->lowest_level;
	WARN_ON(p->nodes[0] != NULL);

	if (p->search_commit_root) {
		BUG_ON(time_seq);
		return btrfs_search_slot(NULL, root, key, p, 0, 0);
	}

again:
	b = get_old_root(root, time_seq);
2981 2982 2983 2984
	if (!b) {
		ret = -EIO;
		goto done;
	}
J
Jan Schmidt 已提交
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
	level = btrfs_header_level(b);
	p->locks[level] = BTRFS_READ_LOCK;

	while (b) {
		level = btrfs_header_level(b);
		p->nodes[level] = b;

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 */
		btrfs_unlock_up_safe(p, level + 1);

3000
		/*
3001
		 * Since we can unwind ebs we want to do a real search every
3002 3003 3004
		 * time.
		 */
		prev_cmp = -1;
3005
		ret = key_search(b, key, level, &prev_cmp, &slot);
3006 3007
		if (ret < 0)
			goto done;
J
Jan Schmidt 已提交
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023

		if (level != 0) {
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
				slot -= 1;
			}
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);

			if (level == lowest_level) {
				if (dec)
					p->slots[level]++;
				goto done;
			}

3024
			err = read_block_for_search(root, p, &b, level,
3025
						    slot, key);
J
Jan Schmidt 已提交
3026 3027 3028 3029 3030 3031 3032 3033
			if (err == -EAGAIN)
				goto again;
			if (err) {
				ret = err;
				goto done;
			}

			level = btrfs_header_level(b);
3034
			err = btrfs_tree_read_lock_atomic(b);
J
Jan Schmidt 已提交
3035 3036 3037 3038
			if (!err) {
				btrfs_set_path_blocking(p);
				btrfs_tree_read_lock(b);
			}
3039
			b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3040 3041 3042 3043
			if (!b) {
				ret = -ENOMEM;
				goto done;
			}
J
Jan Schmidt 已提交
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
			p->locks[level] = BTRFS_READ_LOCK;
			p->nodes[level] = b;
		} else {
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);
			goto done;
		}
	}
	ret = 1;
done:
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
	if (ret < 0)
		btrfs_release_path(p);

	return ret;
}

3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
/*
 * helper to use instead of search slot if no exact match is needed but
 * instead the next or previous item should be returned.
 * When find_higher is true, the next higher item is returned, the next lower
 * otherwise.
 * When return_any and find_higher are both true, and no higher item is found,
 * return the next lower instead.
 * When return_any is true and find_higher is false, and no lower item is found,
 * return the next higher instead.
 * It returns 0 if any item is found, 1 if none is found (tree empty), and
 * < 0 on error
 */
int btrfs_search_slot_for_read(struct btrfs_root *root,
3075 3076 3077
			       const struct btrfs_key *key,
			       struct btrfs_path *p, int find_higher,
			       int return_any)
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
{
	int ret;
	struct extent_buffer *leaf;

again:
	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
	if (ret <= 0)
		return ret;
	/*
	 * a return value of 1 means the path is at the position where the
	 * item should be inserted. Normally this is the next bigger item,
	 * but in case the previous item is the last in a leaf, path points
	 * to the first free slot in the previous leaf, i.e. at an invalid
	 * item.
	 */
	leaf = p->nodes[0];

	if (find_higher) {
		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, p);
			if (ret <= 0)
				return ret;
			if (!return_any)
				return 1;
			/*
			 * no higher item found, return the next
			 * lower instead
			 */
			return_any = 0;
			find_higher = 0;
			btrfs_release_path(p);
			goto again;
		}
	} else {
3112 3113 3114 3115 3116
		if (p->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, p);
			if (ret < 0)
				return ret;
			if (!ret) {
3117 3118 3119
				leaf = p->nodes[0];
				if (p->slots[0] == btrfs_header_nritems(leaf))
					p->slots[0]--;
3120
				return 0;
3121
			}
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
			if (!return_any)
				return 1;
			/*
			 * no lower item found, return the next
			 * higher instead
			 */
			return_any = 0;
			find_higher = 1;
			btrfs_release_path(p);
			goto again;
		} else {
3133 3134 3135 3136 3137 3138
			--p->slots[0];
		}
	}
	return 0;
}

C
Chris Mason 已提交
3139 3140 3141 3142 3143 3144
/*
 * adjust the pointers going up the tree, starting at level
 * making sure the right key of each node is points to 'key'.
 * This is used after shifting pointers to the left, so it stops
 * fixing up pointers when a given leaf/node is not in slot 0 of the
 * higher levels
C
Chris Mason 已提交
3145
 *
C
Chris Mason 已提交
3146
 */
3147
static void fixup_low_keys(struct btrfs_path *path,
3148
			   struct btrfs_disk_key *key, int level)
3149 3150
{
	int i;
3151
	struct extent_buffer *t;
3152
	int ret;
3153

C
Chris Mason 已提交
3154
	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3155
		int tslot = path->slots[i];
3156

3157
		if (!path->nodes[i])
3158
			break;
3159
		t = path->nodes[i];
3160 3161 3162
		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
				GFP_ATOMIC);
		BUG_ON(ret < 0);
3163
		btrfs_set_node_key(t, key, tslot);
C
Chris Mason 已提交
3164
		btrfs_mark_buffer_dirty(path->nodes[i]);
3165 3166 3167 3168 3169
		if (tslot != 0)
			break;
	}
}

Z
Zheng Yan 已提交
3170 3171 3172 3173 3174 3175
/*
 * update item key.
 *
 * This function isn't completely safe. It's the caller's responsibility
 * that the new key won't break the order
 */
3176 3177
void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path,
3178
			     const struct btrfs_key *new_key)
Z
Zheng Yan 已提交
3179 3180 3181 3182 3183 3184 3185 3186 3187
{
	struct btrfs_disk_key disk_key;
	struct extent_buffer *eb;
	int slot;

	eb = path->nodes[0];
	slot = path->slots[0];
	if (slot > 0) {
		btrfs_item_key(eb, &disk_key, slot - 1);
3188
		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
Z
Zheng Yan 已提交
3189 3190 3191
	}
	if (slot < btrfs_header_nritems(eb) - 1) {
		btrfs_item_key(eb, &disk_key, slot + 1);
3192
		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
Z
Zheng Yan 已提交
3193 3194 3195 3196 3197 3198
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(eb, &disk_key, slot);
	btrfs_mark_buffer_dirty(eb);
	if (slot == 0)
3199
		fixup_low_keys(path, &disk_key, 1);
Z
Zheng Yan 已提交
3200 3201
}

C
Chris Mason 已提交
3202 3203
/*
 * try to push data from one node into the next node left in the
3204
 * tree.
C
Chris Mason 已提交
3205 3206 3207
 *
 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
 * error, and > 0 if there was no room in the left hand block.
C
Chris Mason 已提交
3208
 */
3209
static int push_node_left(struct btrfs_trans_handle *trans,
3210
			  struct extent_buffer *dst,
3211
			  struct extent_buffer *src, int empty)
3212
{
3213
	struct btrfs_fs_info *fs_info = trans->fs_info;
3214
	int push_items = 0;
3215 3216
	int src_nritems;
	int dst_nritems;
C
Chris Mason 已提交
3217
	int ret = 0;
3218

3219 3220
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3221
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3222 3223
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3224

3225
	if (!empty && src_nritems <= 8)
3226 3227
		return 1;

C
Chris Mason 已提交
3228
	if (push_items <= 0)
3229 3230
		return 1;

3231
	if (empty) {
3232
		push_items = min(src_nritems, push_items);
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
		if (push_items < src_nritems) {
			/* leave at least 8 pointers in the node if
			 * we aren't going to empty it
			 */
			if (src_nritems - push_items < 8) {
				if (push_items <= 8)
					return 1;
				push_items -= 8;
			}
		}
	} else
		push_items = min(src_nritems - 8, push_items);
3245

3246
	ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
3247
	if (ret) {
3248
		btrfs_abort_transaction(trans, ret);
3249 3250
		return ret;
	}
3251 3252 3253
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(dst_nritems),
			   btrfs_node_key_ptr_offset(0),
C
Chris Mason 已提交
3254
			   push_items * sizeof(struct btrfs_key_ptr));
3255

3256
	if (push_items < src_nritems) {
3257
		/*
3258 3259
		 * Don't call tree_mod_log_insert_move here, key removal was
		 * already fully logged by tree_mod_log_eb_copy above.
3260
		 */
3261 3262 3263 3264 3265 3266 3267 3268 3269
		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
				      btrfs_node_key_ptr_offset(push_items),
				      (src_nritems - push_items) *
				      sizeof(struct btrfs_key_ptr));
	}
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3270

3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
	return ret;
}

/*
 * try to push data from one node into the next node right in the
 * tree.
 *
 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
 * error, and > 0 if there was no room in the right hand block.
 *
 * this will  only push up to 1/2 the contents of the left node over
 */
3283 3284 3285
static int balance_node_right(struct btrfs_trans_handle *trans,
			      struct extent_buffer *dst,
			      struct extent_buffer *src)
3286
{
3287
	struct btrfs_fs_info *fs_info = trans->fs_info;
3288 3289 3290 3291 3292 3293
	int push_items = 0;
	int max_push;
	int src_nritems;
	int dst_nritems;
	int ret = 0;

3294 3295 3296
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);

3297 3298
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3299
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
C
Chris Mason 已提交
3300
	if (push_items <= 0)
3301
		return 1;
3302

C
Chris Mason 已提交
3303
	if (src_nritems < 4)
3304
		return 1;
3305 3306 3307

	max_push = src_nritems / 2 + 1;
	/* don't try to empty the node */
C
Chris Mason 已提交
3308
	if (max_push >= src_nritems)
3309
		return 1;
Y
Yan 已提交
3310

3311 3312 3313
	if (max_push < push_items)
		push_items = max_push;

3314 3315
	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
	BUG_ON(ret < 0);
3316 3317 3318 3319
	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
				      btrfs_node_key_ptr_offset(0),
				      (dst_nritems) *
				      sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3320

3321 3322
	ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
				   push_items);
3323
	if (ret) {
3324
		btrfs_abort_transaction(trans, ret);
3325 3326
		return ret;
	}
3327 3328 3329
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(src_nritems - push_items),
C
Chris Mason 已提交
3330
			   push_items * sizeof(struct btrfs_key_ptr));
3331

3332 3333
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3334

3335 3336
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3337

C
Chris Mason 已提交
3338
	return ret;
3339 3340
}

C
Chris Mason 已提交
3341 3342 3343 3344
/*
 * helper function to insert a new root level in the tree.
 * A new node is allocated, and a single item is inserted to
 * point to the existing root
C
Chris Mason 已提交
3345 3346
 *
 * returns zero on success or < 0 on failure.
C
Chris Mason 已提交
3347
 */
C
Chris Mason 已提交
3348
static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3349
			   struct btrfs_root *root,
3350
			   struct btrfs_path *path, int level)
C
Chris Mason 已提交
3351
{
3352
	struct btrfs_fs_info *fs_info = root->fs_info;
3353
	u64 lower_gen;
3354 3355
	struct extent_buffer *lower;
	struct extent_buffer *c;
3356
	struct extent_buffer *old;
3357
	struct btrfs_disk_key lower_key;
3358
	int ret;
C
Chris Mason 已提交
3359 3360 3361 3362

	BUG_ON(path->nodes[level]);
	BUG_ON(path->nodes[level-1] != root->node);

3363 3364 3365 3366 3367 3368
	lower = path->nodes[level-1];
	if (level == 1)
		btrfs_item_key(lower, &lower_key, 0);
	else
		btrfs_node_key(lower, &lower_key, 0);

3369 3370
	c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
					 root->node->start, 0);
3371 3372
	if (IS_ERR(c))
		return PTR_ERR(c);
3373

3374
	root_add_used(root, fs_info->nodesize);
3375

3376 3377
	btrfs_set_header_nritems(c, 1);
	btrfs_set_node_key(c, &lower_key, 0);
3378
	btrfs_set_node_blockptr(c, 0, lower->start);
3379
	lower_gen = btrfs_header_generation(lower);
Z
Zheng Yan 已提交
3380
	WARN_ON(lower_gen != trans->transid);
3381 3382

	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3383

3384
	btrfs_mark_buffer_dirty(c);
3385

3386
	old = root->node;
3387 3388
	ret = tree_mod_log_insert_root(root->node, c, 0);
	BUG_ON(ret < 0);
3389
	rcu_assign_pointer(root->node, c);
3390 3391 3392 3393

	/* the super has an extra ref to root->node */
	free_extent_buffer(old);

3394
	add_root_to_dirty_list(root);
3395 3396
	extent_buffer_get(c);
	path->nodes[level] = c;
3397
	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
C
Chris Mason 已提交
3398 3399 3400 3401
	path->slots[level] = 0;
	return 0;
}

C
Chris Mason 已提交
3402 3403 3404
/*
 * worker function to insert a single pointer in a node.
 * the node should have enough room for the pointer already
C
Chris Mason 已提交
3405
 *
C
Chris Mason 已提交
3406 3407 3408
 * slot and level indicate where you want the key to go, and
 * blocknr is the block the key points to.
 */
3409
static void insert_ptr(struct btrfs_trans_handle *trans,
3410
		       struct btrfs_path *path,
3411
		       struct btrfs_disk_key *key, u64 bytenr,
3412
		       int slot, int level)
C
Chris Mason 已提交
3413
{
3414
	struct extent_buffer *lower;
C
Chris Mason 已提交
3415
	int nritems;
3416
	int ret;
C
Chris Mason 已提交
3417 3418

	BUG_ON(!path->nodes[level]);
3419
	btrfs_assert_tree_locked(path->nodes[level]);
3420 3421
	lower = path->nodes[level];
	nritems = btrfs_header_nritems(lower);
S
Stoyan Gaydarov 已提交
3422
	BUG_ON(slot > nritems);
3423
	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
C
Chris Mason 已提交
3424
	if (slot != nritems) {
3425 3426
		if (level) {
			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3427
					nritems - slot);
3428 3429
			BUG_ON(ret < 0);
		}
3430 3431 3432
		memmove_extent_buffer(lower,
			      btrfs_node_key_ptr_offset(slot + 1),
			      btrfs_node_key_ptr_offset(slot),
C
Chris Mason 已提交
3433
			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3434
	}
3435
	if (level) {
3436 3437
		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
				GFP_NOFS);
3438 3439
		BUG_ON(ret < 0);
	}
3440
	btrfs_set_node_key(lower, key, slot);
3441
	btrfs_set_node_blockptr(lower, slot, bytenr);
3442 3443
	WARN_ON(trans->transid == 0);
	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3444 3445
	btrfs_set_header_nritems(lower, nritems + 1);
	btrfs_mark_buffer_dirty(lower);
C
Chris Mason 已提交
3446 3447
}

C
Chris Mason 已提交
3448 3449 3450 3451 3452 3453
/*
 * split the node at the specified level in path in two.
 * The path is corrected to point to the appropriate node after the split
 *
 * Before splitting this tries to make some room in the node by pushing
 * left and right, if either one works, it returns right away.
C
Chris Mason 已提交
3454 3455
 *
 * returns 0 on success and < 0 on failure
C
Chris Mason 已提交
3456
 */
3457 3458 3459
static noinline int split_node(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path, int level)
3460
{
3461
	struct btrfs_fs_info *fs_info = root->fs_info;
3462 3463 3464
	struct extent_buffer *c;
	struct extent_buffer *split;
	struct btrfs_disk_key disk_key;
3465
	int mid;
C
Chris Mason 已提交
3466
	int ret;
3467
	u32 c_nritems;
3468

3469
	c = path->nodes[level];
3470
	WARN_ON(btrfs_header_generation(c) != trans->transid);
3471
	if (c == root->node) {
3472
		/*
3473 3474
		 * trying to split the root, lets make a new one
		 *
3475
		 * tree mod log: We don't log_removal old root in
3476 3477 3478 3479 3480
		 * insert_new_root, because that root buffer will be kept as a
		 * normal node. We are going to log removal of half of the
		 * elements below with tree_mod_log_eb_copy. We're holding a
		 * tree lock on the buffer, which is why we cannot race with
		 * other tree_mod_log users.
3481
		 */
3482
		ret = insert_new_root(trans, root, path, level + 1);
C
Chris Mason 已提交
3483 3484
		if (ret)
			return ret;
3485
	} else {
3486
		ret = push_nodes_for_insert(trans, root, path, level);
3487 3488
		c = path->nodes[level];
		if (!ret && btrfs_header_nritems(c) <
3489
		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3490
			return 0;
3491 3492
		if (ret < 0)
			return ret;
3493
	}
3494

3495
	c_nritems = btrfs_header_nritems(c);
3496 3497
	mid = (c_nritems + 1) / 2;
	btrfs_node_key(c, &disk_key, mid);
3498

3499 3500
	split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
					     c->start, 0);
3501 3502 3503
	if (IS_ERR(split))
		return PTR_ERR(split);

3504
	root_add_used(root, fs_info->nodesize);
3505
	ASSERT(btrfs_header_level(c) == level);
3506

3507
	ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3508
	if (ret) {
3509
		btrfs_abort_transaction(trans, ret);
3510 3511
		return ret;
	}
3512 3513 3514 3515 3516 3517
	copy_extent_buffer(split, c,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(mid),
			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
	btrfs_set_header_nritems(split, c_nritems - mid);
	btrfs_set_header_nritems(c, mid);
C
Chris Mason 已提交
3518 3519
	ret = 0;

3520 3521 3522
	btrfs_mark_buffer_dirty(c);
	btrfs_mark_buffer_dirty(split);

3523
	insert_ptr(trans, path, &disk_key, split->start,
3524
		   path->slots[level + 1] + 1, level + 1);
C
Chris Mason 已提交
3525

C
Chris Mason 已提交
3526
	if (path->slots[level] >= mid) {
C
Chris Mason 已提交
3527
		path->slots[level] -= mid;
3528
		btrfs_tree_unlock(c);
3529 3530
		free_extent_buffer(c);
		path->nodes[level] = split;
C
Chris Mason 已提交
3531 3532
		path->slots[level + 1] += 1;
	} else {
3533
		btrfs_tree_unlock(split);
3534
		free_extent_buffer(split);
3535
	}
C
Chris Mason 已提交
3536
	return ret;
3537 3538
}

C
Chris Mason 已提交
3539 3540 3541 3542 3543
/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
3544
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3545
{
J
Josef Bacik 已提交
3546 3547 3548
	struct btrfs_item *start_item;
	struct btrfs_item *end_item;
	struct btrfs_map_token token;
3549
	int data_len;
3550
	int nritems = btrfs_header_nritems(l);
3551
	int end = min(nritems, start + nr) - 1;
3552 3553 3554

	if (!nr)
		return 0;
J
Josef Bacik 已提交
3555
	btrfs_init_map_token(&token);
3556 3557
	start_item = btrfs_item_nr(start);
	end_item = btrfs_item_nr(end);
J
Josef Bacik 已提交
3558 3559 3560
	data_len = btrfs_token_item_offset(l, start_item, &token) +
		btrfs_token_item_size(l, start_item, &token);
	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
C
Chris Mason 已提交
3561
	data_len += sizeof(struct btrfs_item) * nr;
3562
	WARN_ON(data_len < 0);
3563 3564 3565
	return data_len;
}

3566 3567 3568 3569 3570
/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
3571
noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3572
{
3573
	struct btrfs_fs_info *fs_info = leaf->fs_info;
3574 3575
	int nritems = btrfs_header_nritems(leaf);
	int ret;
3576 3577

	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3578
	if (ret < 0) {
3579 3580 3581 3582 3583
		btrfs_crit(fs_info,
			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
			   ret,
			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
			   leaf_space_used(leaf, 0, nritems), nritems);
3584 3585
	}
	return ret;
3586 3587
}

3588 3589 3590 3591
/*
 * min slot controls the lowest index we're willing to push to the
 * right.  We'll push up to and including min_slot, but no lower
 */
3592
static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
3593 3594 3595
				      struct btrfs_path *path,
				      int data_size, int empty,
				      struct extent_buffer *right,
3596 3597
				      int free_space, u32 left_nritems,
				      u32 min_slot)
C
Chris Mason 已提交
3598
{
3599
	struct extent_buffer *left = path->nodes[0];
3600
	struct extent_buffer *upper = path->nodes[1];
3601
	struct btrfs_map_token token;
3602
	struct btrfs_disk_key disk_key;
C
Chris Mason 已提交
3603
	int slot;
3604
	u32 i;
C
Chris Mason 已提交
3605 3606
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3607
	struct btrfs_item *item;
3608
	u32 nr;
3609
	u32 right_nritems;
3610
	u32 data_end;
3611
	u32 this_item_size;
C
Chris Mason 已提交
3612

3613 3614
	btrfs_init_map_token(&token);

3615 3616 3617
	if (empty)
		nr = 0;
	else
3618
		nr = max_t(u32, 1, min_slot);
3619

Z
Zheng Yan 已提交
3620
	if (path->slots[0] >= left_nritems)
3621
		push_space += data_size;
Z
Zheng Yan 已提交
3622

3623
	slot = path->slots[1];
3624 3625
	i = left_nritems - 1;
	while (i >= nr) {
3626
		item = btrfs_item_nr(i);
3627

Z
Zheng Yan 已提交
3628 3629 3630 3631
		if (!empty && push_items > 0) {
			if (path->slots[0] > i)
				break;
			if (path->slots[0] == i) {
3632 3633
				int space = btrfs_leaf_free_space(left);

Z
Zheng Yan 已提交
3634 3635 3636 3637 3638
				if (space + push_space * 2 > free_space)
					break;
			}
		}

C
Chris Mason 已提交
3639
		if (path->slots[0] == i)
3640
			push_space += data_size;
3641 3642 3643

		this_item_size = btrfs_item_size(left, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
C
Chris Mason 已提交
3644
			break;
Z
Zheng Yan 已提交
3645

C
Chris Mason 已提交
3646
		push_items++;
3647
		push_space += this_item_size + sizeof(*item);
3648 3649 3650
		if (i == 0)
			break;
		i--;
3651
	}
3652

3653 3654
	if (push_items == 0)
		goto out_unlock;
3655

J
Julia Lawall 已提交
3656
	WARN_ON(!empty && push_items == left_nritems);
3657

C
Chris Mason 已提交
3658
	/* push left to right */
3659
	right_nritems = btrfs_header_nritems(right);
3660

3661
	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3662
	push_space -= leaf_data_end(left);
3663

C
Chris Mason 已提交
3664
	/* make room in the right data area */
3665
	data_end = leaf_data_end(right);
3666
	memmove_extent_buffer(right,
3667 3668
			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
			      BTRFS_LEAF_DATA_OFFSET + data_end,
3669
			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3670

C
Chris Mason 已提交
3671
	/* copy from the left data area */
3672
	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3673
		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3674
		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
C
Chris Mason 已提交
3675
		     push_space);
3676 3677 3678 3679 3680

	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
			      btrfs_item_nr_offset(0),
			      right_nritems * sizeof(struct btrfs_item));

C
Chris Mason 已提交
3681
	/* copy the items from left to right */
3682 3683 3684
	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
		   btrfs_item_nr_offset(left_nritems - push_items),
		   push_items * sizeof(struct btrfs_item));
C
Chris Mason 已提交
3685 3686

	/* update the item pointers */
3687
	right_nritems += push_items;
3688
	btrfs_set_header_nritems(right, right_nritems);
3689
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3690
	for (i = 0; i < right_nritems; i++) {
3691
		item = btrfs_item_nr(i);
3692 3693
		push_space -= btrfs_token_item_size(right, item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3694 3695
	}

3696
	left_nritems -= push_items;
3697
	btrfs_set_header_nritems(left, left_nritems);
C
Chris Mason 已提交
3698

3699 3700
	if (left_nritems)
		btrfs_mark_buffer_dirty(left);
3701
	else
3702
		btrfs_clean_tree_block(left);
3703

3704
	btrfs_mark_buffer_dirty(right);
3705

3706 3707
	btrfs_item_key(right, &disk_key, 0);
	btrfs_set_node_key(upper, &disk_key, slot + 1);
C
Chris Mason 已提交
3708
	btrfs_mark_buffer_dirty(upper);
C
Chris Mason 已提交
3709

C
Chris Mason 已提交
3710
	/* then fixup the leaf pointer in the path */
3711 3712
	if (path->slots[0] >= left_nritems) {
		path->slots[0] -= left_nritems;
3713
		if (btrfs_header_nritems(path->nodes[0]) == 0)
3714
			btrfs_clean_tree_block(path->nodes[0]);
3715
		btrfs_tree_unlock(path->nodes[0]);
3716 3717
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
C
Chris Mason 已提交
3718 3719
		path->slots[1] += 1;
	} else {
3720
		btrfs_tree_unlock(right);
3721
		free_extent_buffer(right);
C
Chris Mason 已提交
3722 3723
	}
	return 0;
3724 3725 3726 3727 3728

out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
C
Chris Mason 已提交
3729
}
3730

3731 3732 3733 3734 3735 3736
/*
 * push some data in the path leaf to the right, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 *
 * returns 1 if the push failed because the other node didn't have enough
 * room, 0 if everything worked out and < 0 if there were major errors.
3737 3738 3739
 *
 * this will push starting from min_slot to the end of the leaf.  It won't
 * push any slot lower than min_slot
3740 3741
 */
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3742 3743 3744
			   *root, struct btrfs_path *path,
			   int min_data_size, int data_size,
			   int empty, u32 min_slot)
3745
{
3746
	struct btrfs_fs_info *fs_info = root->fs_info;
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
	struct extent_buffer *left = path->nodes[0];
	struct extent_buffer *right;
	struct extent_buffer *upper;
	int slot;
	int free_space;
	u32 left_nritems;
	int ret;

	if (!path->nodes[1])
		return 1;

	slot = path->slots[1];
	upper = path->nodes[1];
	if (slot >= btrfs_header_nritems(upper) - 1)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3765
	right = read_node_slot(upper, slot + 1);
3766 3767 3768 3769 3770
	/*
	 * slot + 1 is not valid or we fail to read the right node,
	 * no big deal, just return.
	 */
	if (IS_ERR(right))
T
Tsutomu Itoh 已提交
3771 3772
		return 1;

3773
	btrfs_tree_lock(right);
3774
	btrfs_set_lock_blocking_write(right);
3775

3776
	free_space = btrfs_leaf_free_space(right);
3777 3778 3779 3780 3781 3782 3783 3784 3785
	if (free_space < data_size)
		goto out_unlock;

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, right, upper,
			      slot + 1, &right);
	if (ret)
		goto out_unlock;

3786
	free_space = btrfs_leaf_free_space(right);
3787 3788 3789 3790 3791 3792 3793
	if (free_space < data_size)
		goto out_unlock;

	left_nritems = btrfs_header_nritems(left);
	if (left_nritems == 0)
		goto out_unlock;

3794 3795 3796 3797
	if (path->slots[0] == left_nritems && !empty) {
		/* Key greater than all keys in the leaf, right neighbor has
		 * enough room for it and we're not emptying our leaf to delete
		 * it, therefore use right neighbor to insert the new item and
3798
		 * no need to touch/dirty our left leaf. */
3799 3800 3801 3802 3803 3804 3805 3806
		btrfs_tree_unlock(left);
		free_extent_buffer(left);
		path->nodes[0] = right;
		path->slots[0] = 0;
		path->slots[1]++;
		return 0;
	}

3807
	return __push_leaf_right(fs_info, path, min_data_size, empty,
3808
				right, free_space, left_nritems, min_slot);
3809 3810 3811 3812 3813 3814
out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
}

C
Chris Mason 已提交
3815 3816 3817
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3818 3819 3820 3821
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
 * items
C
Chris Mason 已提交
3822
 */
3823
static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
3824 3825
				     struct btrfs_path *path, int data_size,
				     int empty, struct extent_buffer *left,
3826 3827
				     int free_space, u32 right_nritems,
				     u32 max_slot)
3828
{
3829 3830
	struct btrfs_disk_key disk_key;
	struct extent_buffer *right = path->nodes[0];
3831 3832 3833
	int i;
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3834
	struct btrfs_item *item;
3835
	u32 old_left_nritems;
3836
	u32 nr;
C
Chris Mason 已提交
3837
	int ret = 0;
3838 3839
	u32 this_item_size;
	u32 old_left_item_size;
3840 3841 3842
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
3843

3844
	if (empty)
3845
		nr = min(right_nritems, max_slot);
3846
	else
3847
		nr = min(right_nritems - 1, max_slot);
3848 3849

	for (i = 0; i < nr; i++) {
3850
		item = btrfs_item_nr(i);
3851

Z
Zheng Yan 已提交
3852 3853 3854 3855
		if (!empty && push_items > 0) {
			if (path->slots[0] < i)
				break;
			if (path->slots[0] == i) {
3856 3857
				int space = btrfs_leaf_free_space(right);

Z
Zheng Yan 已提交
3858 3859 3860 3861 3862
				if (space + push_space * 2 > free_space)
					break;
			}
		}

3863
		if (path->slots[0] == i)
3864
			push_space += data_size;
3865 3866 3867

		this_item_size = btrfs_item_size(right, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
3868
			break;
3869

3870
		push_items++;
3871 3872 3873
		push_space += this_item_size + sizeof(*item);
	}

3874
	if (push_items == 0) {
3875 3876
		ret = 1;
		goto out;
3877
	}
3878
	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3879

3880
	/* push data from right to left */
3881 3882 3883 3884 3885
	copy_extent_buffer(left, right,
			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
			   btrfs_item_nr_offset(0),
			   push_items * sizeof(struct btrfs_item));

3886
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
C
Chris Mason 已提交
3887
		     btrfs_item_offset_nr(right, push_items - 1);
3888

3889
	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3890
		     leaf_data_end(left) - push_space,
3891
		     BTRFS_LEAF_DATA_OFFSET +
3892
		     btrfs_item_offset_nr(right, push_items - 1),
C
Chris Mason 已提交
3893
		     push_space);
3894
	old_left_nritems = btrfs_header_nritems(left);
3895
	BUG_ON(old_left_nritems <= 0);
3896

3897
	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
C
Chris Mason 已提交
3898
	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3899
		u32 ioff;
3900

3901
		item = btrfs_item_nr(i);
3902

3903 3904
		ioff = btrfs_token_item_offset(left, item, &token);
		btrfs_set_token_item_offset(left, item,
3905
		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3906
		      &token);
3907
	}
3908
	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3909 3910

	/* fixup right node */
J
Julia Lawall 已提交
3911 3912
	if (push_items > right_nritems)
		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
C
Chris Mason 已提交
3913
		       right_nritems);
3914 3915 3916

	if (push_items < right_nritems) {
		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3917
						  leaf_data_end(right);
3918
		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3919
				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3920
				      BTRFS_LEAF_DATA_OFFSET +
3921
				      leaf_data_end(right), push_space);
3922 3923

		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3924 3925 3926
			      btrfs_item_nr_offset(push_items),
			     (btrfs_header_nritems(right) - push_items) *
			     sizeof(struct btrfs_item));
3927
	}
3928 3929
	right_nritems -= push_items;
	btrfs_set_header_nritems(right, right_nritems);
3930
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3931
	for (i = 0; i < right_nritems; i++) {
3932
		item = btrfs_item_nr(i);
3933

3934 3935 3936
		push_space = push_space - btrfs_token_item_size(right,
								item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3937
	}
3938

3939
	btrfs_mark_buffer_dirty(left);
3940 3941
	if (right_nritems)
		btrfs_mark_buffer_dirty(right);
3942
	else
3943
		btrfs_clean_tree_block(right);
3944

3945
	btrfs_item_key(right, &disk_key, 0);
3946
	fixup_low_keys(path, &disk_key, 1);
3947 3948 3949 3950

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] < push_items) {
		path->slots[0] += old_left_nritems;
3951
		btrfs_tree_unlock(path->nodes[0]);
3952 3953
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = left;
3954 3955
		path->slots[1] -= 1;
	} else {
3956
		btrfs_tree_unlock(left);
3957
		free_extent_buffer(left);
3958 3959
		path->slots[0] -= push_items;
	}
3960
	BUG_ON(path->slots[0] < 0);
C
Chris Mason 已提交
3961
	return ret;
3962 3963 3964 3965
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
3966 3967
}

3968 3969 3970
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3971 3972 3973 3974
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
 * items
3975 3976
 */
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3977 3978
			  *root, struct btrfs_path *path, int min_data_size,
			  int data_size, int empty, u32 max_slot)
3979
{
3980
	struct btrfs_fs_info *fs_info = root->fs_info;
3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
	struct extent_buffer *right = path->nodes[0];
	struct extent_buffer *left;
	int slot;
	int free_space;
	u32 right_nritems;
	int ret = 0;

	slot = path->slots[1];
	if (slot == 0)
		return 1;
	if (!path->nodes[1])
		return 1;

	right_nritems = btrfs_header_nritems(right);
	if (right_nritems == 0)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

4000
	left = read_node_slot(path->nodes[1], slot - 1);
4001 4002 4003 4004 4005
	/*
	 * slot - 1 is not valid or we fail to read the left node,
	 * no big deal, just return.
	 */
	if (IS_ERR(left))
T
Tsutomu Itoh 已提交
4006 4007
		return 1;

4008
	btrfs_tree_lock(left);
4009
	btrfs_set_lock_blocking_write(left);
4010

4011
	free_space = btrfs_leaf_free_space(left);
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, left,
			      path->nodes[1], slot - 1, &left);
	if (ret) {
		/* we hit -ENOSPC, but it isn't fatal here */
4022 4023
		if (ret == -ENOSPC)
			ret = 1;
4024 4025 4026
		goto out;
	}

4027
	free_space = btrfs_leaf_free_space(left);
4028 4029 4030 4031 4032
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

4033
	return __push_leaf_left(fs_info, path, min_data_size,
4034 4035
			       empty, left, free_space, right_nritems,
			       max_slot);
4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
}

/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 */
4046
static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4047
				    struct btrfs_fs_info *fs_info,
4048 4049 4050 4051
				    struct btrfs_path *path,
				    struct extent_buffer *l,
				    struct extent_buffer *right,
				    int slot, int mid, int nritems)
4052 4053 4054 4055 4056
{
	int data_copy_size;
	int rt_data_off;
	int i;
	struct btrfs_disk_key disk_key;
4057 4058 4059
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4060 4061 4062

	nritems = nritems - mid;
	btrfs_set_header_nritems(right, nritems);
4063
	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4064 4065 4066 4067 4068 4069

	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
			   btrfs_item_nr_offset(mid),
			   nritems * sizeof(struct btrfs_item));

	copy_extent_buffer(right, l,
4070 4071
		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4072
		     leaf_data_end(l), data_copy_size);
4073

4074
	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4075 4076

	for (i = 0; i < nritems; i++) {
4077
		struct btrfs_item *item = btrfs_item_nr(i);
4078 4079
		u32 ioff;

4080 4081 4082
		ioff = btrfs_token_item_offset(right, item, &token);
		btrfs_set_token_item_offset(right, item,
					    ioff + rt_data_off, &token);
4083 4084 4085 4086
	}

	btrfs_set_header_nritems(l, mid);
	btrfs_item_key(right, &disk_key, 0);
4087
	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106

	btrfs_mark_buffer_dirty(right);
	btrfs_mark_buffer_dirty(l);
	BUG_ON(path->slots[0] != slot);

	if (mid <= slot) {
		btrfs_tree_unlock(path->nodes[0]);
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
		path->slots[0] -= mid;
		path->slots[1] += 1;
	} else {
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
	}

	BUG_ON(path->slots[0] < 0);
}

4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
/*
 * double splits happen when we need to insert a big item in the middle
 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
 *          A                 B                 C
 *
 * We avoid this by trying to push the items on either side of our target
 * into the adjacent leaves.  If all goes well we can avoid the double split
 * completely.
 */
static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  struct btrfs_path *path,
					  int data_size)
{
	int ret;
	int progress = 0;
	int slot;
	u32 nritems;
4126
	int space_needed = data_size;
4127 4128

	slot = path->slots[0];
4129
	if (slot < btrfs_header_nritems(path->nodes[0]))
4130
		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4131 4132 4133 4134 4135

	/*
	 * try to push all the items after our slot into the
	 * right leaf
	 */
4136
	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	nritems = btrfs_header_nritems(path->nodes[0]);
	/*
	 * our goal is to get our slot at the start or end of a leaf.  If
	 * we've done so we're done
	 */
	if (path->slots[0] == 0 || path->slots[0] == nritems)
		return 0;

4151
	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4152 4153 4154 4155
		return 0;

	/* try to push all the items before our slot into the next leaf */
	slot = path->slots[0];
4156 4157
	space_needed = data_size;
	if (slot > 0)
4158
		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4159
	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	if (progress)
		return 0;
	return 1;
}

C
Chris Mason 已提交
4171 4172 4173
/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
C
Chris Mason 已提交
4174 4175
 *
 * returns 0 if all went well and < 0 on failure.
C
Chris Mason 已提交
4176
 */
4177 4178
static noinline int split_leaf(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
4179
			       const struct btrfs_key *ins_key,
4180 4181
			       struct btrfs_path *path, int data_size,
			       int extend)
4182
{
4183
	struct btrfs_disk_key disk_key;
4184
	struct extent_buffer *l;
4185
	u32 nritems;
4186 4187
	int mid;
	int slot;
4188
	struct extent_buffer *right;
4189
	struct btrfs_fs_info *fs_info = root->fs_info;
4190
	int ret = 0;
C
Chris Mason 已提交
4191
	int wret;
4192
	int split;
4193
	int num_doubles = 0;
4194
	int tried_avoid_double = 0;
C
Chris Mason 已提交
4195

4196 4197 4198
	l = path->nodes[0];
	slot = path->slots[0];
	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4199
	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4200 4201
		return -EOVERFLOW;

C
Chris Mason 已提交
4202
	/* first try to make some room by pushing left and right */
4203
	if (data_size && path->nodes[1]) {
4204 4205 4206
		int space_needed = data_size;

		if (slot < btrfs_header_nritems(l))
4207
			space_needed -= btrfs_leaf_free_space(l);
4208 4209 4210

		wret = push_leaf_right(trans, root, path, space_needed,
				       space_needed, 0, 0);
C
Chris Mason 已提交
4211
		if (wret < 0)
C
Chris Mason 已提交
4212
			return wret;
4213
		if (wret) {
4214 4215
			space_needed = data_size;
			if (slot > 0)
4216
				space_needed -= btrfs_leaf_free_space(l);
4217 4218
			wret = push_leaf_left(trans, root, path, space_needed,
					      space_needed, 0, (u32)-1);
4219 4220 4221 4222
			if (wret < 0)
				return wret;
		}
		l = path->nodes[0];
C
Chris Mason 已提交
4223

4224
		/* did the pushes work? */
4225
		if (btrfs_leaf_free_space(l) >= data_size)
4226
			return 0;
4227
	}
C
Chris Mason 已提交
4228

C
Chris Mason 已提交
4229
	if (!path->nodes[1]) {
4230
		ret = insert_new_root(trans, root, path, 1);
C
Chris Mason 已提交
4231 4232 4233
		if (ret)
			return ret;
	}
4234
again:
4235
	split = 1;
4236
	l = path->nodes[0];
4237
	slot = path->slots[0];
4238
	nritems = btrfs_header_nritems(l);
C
Chris Mason 已提交
4239
	mid = (nritems + 1) / 2;
4240

4241 4242 4243
	if (mid <= slot) {
		if (nritems == 1 ||
		    leaf_space_used(l, mid, nritems - mid) + data_size >
4244
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4245 4246 4247 4248 4249 4250
			if (slot >= nritems) {
				split = 0;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4251
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4252 4253
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4254 4255 4256 4257 4258 4259
					split = 2;
				}
			}
		}
	} else {
		if (leaf_space_used(l, 0, mid) + data_size >
4260
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4261 4262 4263 4264 4265 4266 4267 4268
			if (!extend && data_size && slot == 0) {
				split = 0;
			} else if ((extend || !data_size) && slot == 0) {
				mid = 1;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4269
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4270 4271
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4272
					split = 2;
4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
				}
			}
		}
	}

	if (split == 0)
		btrfs_cpu_key_to_disk(&disk_key, ins_key);
	else
		btrfs_item_key(l, &disk_key, mid);

4283 4284
	right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
					     l->start, 0);
4285
	if (IS_ERR(right))
4286
		return PTR_ERR(right);
4287

4288
	root_add_used(root, fs_info->nodesize);
4289

4290 4291 4292
	if (split == 0) {
		if (mid <= slot) {
			btrfs_set_header_nritems(right, 0);
4293
			insert_ptr(trans, path, &disk_key,
4294
				   right->start, path->slots[1] + 1, 1);
4295 4296 4297 4298 4299 4300 4301
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
			path->slots[1] += 1;
		} else {
			btrfs_set_header_nritems(right, 0);
4302
			insert_ptr(trans, path, &disk_key,
4303
				   right->start, path->slots[1], 1);
4304 4305 4306 4307
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
4308
			if (path->slots[1] == 0)
4309
				fixup_low_keys(path, &disk_key, 1);
4310
		}
4311 4312 4313 4314 4315
		/*
		 * We create a new leaf 'right' for the required ins_len and
		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
		 * the content of ins_len to 'right'.
		 */
4316
		return ret;
4317
	}
C
Chris Mason 已提交
4318

4319
	copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
Z
Zheng Yan 已提交
4320

4321
	if (split == 2) {
4322 4323 4324
		BUG_ON(num_doubles != 0);
		num_doubles++;
		goto again;
4325
	}
4326

4327
	return 0;
4328 4329 4330 4331

push_for_double:
	push_for_double_split(trans, root, path, data_size);
	tried_avoid_double = 1;
4332
	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4333 4334
		return 0;
	goto again;
4335 4336
}

Y
Yan, Zheng 已提交
4337 4338 4339
static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
					 struct btrfs_root *root,
					 struct btrfs_path *path, int ins_len)
4340
{
Y
Yan, Zheng 已提交
4341
	struct btrfs_key key;
4342
	struct extent_buffer *leaf;
Y
Yan, Zheng 已提交
4343 4344 4345 4346
	struct btrfs_file_extent_item *fi;
	u64 extent_len = 0;
	u32 item_size;
	int ret;
4347 4348

	leaf = path->nodes[0];
Y
Yan, Zheng 已提交
4349 4350 4351 4352 4353
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);

	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
	       key.type != BTRFS_EXTENT_CSUM_KEY);

4354
	if (btrfs_leaf_free_space(leaf) >= ins_len)
Y
Yan, Zheng 已提交
4355
		return 0;
4356 4357

	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
Y
Yan, Zheng 已提交
4358 4359 4360 4361 4362
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
	}
4363
	btrfs_release_path(path);
4364 4365

	path->keep_locks = 1;
Y
Yan, Zheng 已提交
4366 4367
	path->search_for_split = 1;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4368
	path->search_for_split = 0;
4369 4370
	if (ret > 0)
		ret = -EAGAIN;
Y
Yan, Zheng 已提交
4371 4372
	if (ret < 0)
		goto err;
4373

Y
Yan, Zheng 已提交
4374 4375
	ret = -EAGAIN;
	leaf = path->nodes[0];
4376 4377
	/* if our item isn't there, return now */
	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
Y
Yan, Zheng 已提交
4378 4379
		goto err;

4380
	/* the leaf has  changed, it now has room.  return now */
4381
	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4382 4383
		goto err;

Y
Yan, Zheng 已提交
4384 4385 4386 4387 4388
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
			goto err;
4389 4390
	}

4391
	btrfs_set_path_blocking(path);
Y
Yan, Zheng 已提交
4392
	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4393 4394
	if (ret)
		goto err;
4395

Y
Yan, Zheng 已提交
4396
	path->keep_locks = 0;
4397
	btrfs_unlock_up_safe(path, 1);
Y
Yan, Zheng 已提交
4398 4399 4400 4401 4402 4403
	return 0;
err:
	path->keep_locks = 0;
	return ret;
}

4404
static noinline int split_item(struct btrfs_fs_info *fs_info,
Y
Yan, Zheng 已提交
4405
			       struct btrfs_path *path,
4406
			       const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
			       unsigned long split_offset)
{
	struct extent_buffer *leaf;
	struct btrfs_item *item;
	struct btrfs_item *new_item;
	int slot;
	char *buf;
	u32 nritems;
	u32 item_size;
	u32 orig_offset;
	struct btrfs_disk_key disk_key;

4419
	leaf = path->nodes[0];
4420
	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4421

4422 4423
	btrfs_set_path_blocking(path);

4424
	item = btrfs_item_nr(path->slots[0]);
4425 4426 4427 4428
	orig_offset = btrfs_item_offset(leaf, item);
	item_size = btrfs_item_size(leaf, item);

	buf = kmalloc(item_size, GFP_NOFS);
Y
Yan, Zheng 已提交
4429 4430 4431
	if (!buf)
		return -ENOMEM;

4432 4433 4434
	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
			    path->slots[0]), item_size);

Y
Yan, Zheng 已提交
4435
	slot = path->slots[0] + 1;
4436 4437 4438 4439
	nritems = btrfs_header_nritems(leaf);
	if (slot != nritems) {
		/* shift the items */
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
Y
Yan, Zheng 已提交
4440 4441
				btrfs_item_nr_offset(slot),
				(nritems - slot) * sizeof(struct btrfs_item));
4442 4443 4444 4445 4446
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(leaf, &disk_key, slot);

4447
	new_item = btrfs_item_nr(slot);
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468

	btrfs_set_item_offset(leaf, new_item, orig_offset);
	btrfs_set_item_size(leaf, new_item, item_size - split_offset);

	btrfs_set_item_offset(leaf, item,
			      orig_offset + item_size - split_offset);
	btrfs_set_item_size(leaf, item, split_offset);

	btrfs_set_header_nritems(leaf, nritems + 1);

	/* write the data for the start of the original item */
	write_extent_buffer(leaf, buf,
			    btrfs_item_ptr_offset(leaf, path->slots[0]),
			    split_offset);

	/* write the data for the new item */
	write_extent_buffer(leaf, buf + split_offset,
			    btrfs_item_ptr_offset(leaf, slot),
			    item_size - split_offset);
	btrfs_mark_buffer_dirty(leaf);

4469
	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4470
	kfree(buf);
Y
Yan, Zheng 已提交
4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
	return 0;
}

/*
 * This function splits a single item into two items,
 * giving 'new_key' to the new item and splitting the
 * old one at split_offset (from the start of the item).
 *
 * The path may be released by this operation.  After
 * the split, the path is pointing to the old item.  The
 * new item is going to be in the same node as the old one.
 *
 * Note, the item being split must be smaller enough to live alone on
 * a tree block with room for one extra struct btrfs_item
 *
 * This allows us to split the item in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_split_item(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_path *path,
4492
		     const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4493 4494 4495 4496 4497 4498 4499 4500
		     unsigned long split_offset)
{
	int ret;
	ret = setup_leaf_for_split(trans, root, path,
				   sizeof(struct btrfs_item));
	if (ret)
		return ret;

4501
	ret = split_item(root->fs_info, path, new_key, split_offset);
4502 4503 4504
	return ret;
}

Y
Yan, Zheng 已提交
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
/*
 * This function duplicate a item, giving 'new_key' to the new item.
 * It guarantees both items live in the same tree leaf and the new item
 * is contiguous with the original item.
 *
 * This allows us to split file extent in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
			 struct btrfs_root *root,
			 struct btrfs_path *path,
4516
			 const struct btrfs_key *new_key)
Y
Yan, Zheng 已提交
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
{
	struct extent_buffer *leaf;
	int ret;
	u32 item_size;

	leaf = path->nodes[0];
	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
	ret = setup_leaf_for_split(trans, root, path,
				   item_size + sizeof(struct btrfs_item));
	if (ret)
		return ret;

	path->slots[0]++;
4530
	setup_items_for_insert(root, path, new_key, &item_size,
4531 4532
			       item_size, item_size +
			       sizeof(struct btrfs_item), 1);
Y
Yan, Zheng 已提交
4533 4534 4535 4536 4537 4538 4539 4540
	leaf = path->nodes[0];
	memcpy_extent_buffer(leaf,
			     btrfs_item_ptr_offset(leaf, path->slots[0]),
			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
			     item_size);
	return 0;
}

C
Chris Mason 已提交
4541 4542 4543 4544 4545 4546
/*
 * make the item pointed to by the path smaller.  new_size indicates
 * how small to make it, and from_end tells us if we just chop bytes
 * off the end of the item or if we shift the item to chop bytes off
 * the front.
 */
4547 4548
void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
			 struct btrfs_path *path, u32 new_size, int from_end)
C
Chris Mason 已提交
4549 4550
{
	int slot;
4551 4552
	struct extent_buffer *leaf;
	struct btrfs_item *item;
C
Chris Mason 已提交
4553 4554 4555 4556 4557 4558
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data_start;
	unsigned int old_size;
	unsigned int size_diff;
	int i;
4559 4560 4561
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4562

4563
	leaf = path->nodes[0];
4564 4565 4566 4567
	slot = path->slots[0];

	old_size = btrfs_item_size_nr(leaf, slot);
	if (old_size == new_size)
4568
		return;
C
Chris Mason 已提交
4569

4570
	nritems = btrfs_header_nritems(leaf);
4571
	data_end = leaf_data_end(leaf);
C
Chris Mason 已提交
4572

4573
	old_data_start = btrfs_item_offset_nr(leaf, slot);
4574

C
Chris Mason 已提交
4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
	size_diff = old_size - new_size;

	BUG_ON(slot < 0);
	BUG_ON(slot >= nritems);

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4585
		u32 ioff;
4586
		item = btrfs_item_nr(i);
4587

4588 4589 4590
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff + size_diff, &token);
C
Chris Mason 已提交
4591
	}
4592

C
Chris Mason 已提交
4593
	/* shift the data */
4594
	if (from_end) {
4595 4596
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
			      data_end, old_data_start + new_size - data_end);
	} else {
		struct btrfs_disk_key disk_key;
		u64 offset;

		btrfs_item_key(leaf, &disk_key, slot);

		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
			unsigned long ptr;
			struct btrfs_file_extent_item *fi;

			fi = btrfs_item_ptr(leaf, slot,
					    struct btrfs_file_extent_item);
			fi = (struct btrfs_file_extent_item *)(
			     (unsigned long)fi - size_diff);

			if (btrfs_file_extent_type(leaf, fi) ==
			    BTRFS_FILE_EXTENT_INLINE) {
				ptr = btrfs_item_ptr_offset(leaf, slot);
				memmove_extent_buffer(leaf, ptr,
C
Chris Mason 已提交
4617
				      (unsigned long)fi,
4618
				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4619 4620 4621
			}
		}

4622 4623
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4624 4625 4626 4627 4628 4629
			      data_end, old_data_start - data_end);

		offset = btrfs_disk_key_offset(&disk_key);
		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
		btrfs_set_item_key(leaf, &disk_key, slot);
		if (slot == 0)
4630
			fixup_low_keys(path, &disk_key, 1);
4631
	}
4632

4633
	item = btrfs_item_nr(slot);
4634 4635
	btrfs_set_item_size(leaf, item, new_size);
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4636

4637
	if (btrfs_leaf_free_space(leaf) < 0) {
4638
		btrfs_print_leaf(leaf);
C
Chris Mason 已提交
4639
		BUG();
4640
	}
C
Chris Mason 已提交
4641 4642
}

C
Chris Mason 已提交
4643
/*
S
Stefan Behrens 已提交
4644
 * make the item pointed to by the path bigger, data_size is the added size.
C
Chris Mason 已提交
4645
 */
4646
void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4647
		       u32 data_size)
4648 4649
{
	int slot;
4650 4651
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4652 4653 4654 4655 4656
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data;
	unsigned int old_size;
	int i;
4657 4658 4659
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4660

4661
	leaf = path->nodes[0];
4662

4663
	nritems = btrfs_header_nritems(leaf);
4664
	data_end = leaf_data_end(leaf);
4665

4666
	if (btrfs_leaf_free_space(leaf) < data_size) {
4667
		btrfs_print_leaf(leaf);
4668
		BUG();
4669
	}
4670
	slot = path->slots[0];
4671
	old_data = btrfs_item_end_nr(leaf, slot);
4672 4673

	BUG_ON(slot < 0);
4674
	if (slot >= nritems) {
4675
		btrfs_print_leaf(leaf);
4676 4677
		btrfs_crit(fs_info, "slot %d too large, nritems %d",
			   slot, nritems);
4678
		BUG();
4679
	}
4680 4681 4682 4683 4684 4685

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4686
		u32 ioff;
4687
		item = btrfs_item_nr(i);
4688

4689 4690 4691
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff - data_size, &token);
4692
	}
4693

4694
	/* shift the data */
4695 4696
	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4697
		      data_end, old_data - data_end);
4698

4699
	data_end = old_data;
4700
	old_size = btrfs_item_size_nr(leaf, slot);
4701
	item = btrfs_item_nr(slot);
4702 4703
	btrfs_set_item_size(leaf, item, old_size + data_size);
	btrfs_mark_buffer_dirty(leaf);
4704

4705
	if (btrfs_leaf_free_space(leaf) < 0) {
4706
		btrfs_print_leaf(leaf);
4707
		BUG();
4708
	}
4709 4710
}

C
Chris Mason 已提交
4711
/*
4712 4713 4714
 * this is a helper for btrfs_insert_empty_items, the main goal here is
 * to save stack depth by doing the bulk of the work in a function
 * that doesn't call btrfs_search_slot
C
Chris Mason 已提交
4715
 */
4716
void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4717
			    const struct btrfs_key *cpu_key, u32 *data_size,
4718
			    u32 total_data, u32 total_size, int nr)
4719
{
4720
	struct btrfs_fs_info *fs_info = root->fs_info;
4721
	struct btrfs_item *item;
4722
	int i;
4723
	u32 nritems;
4724
	unsigned int data_end;
C
Chris Mason 已提交
4725
	struct btrfs_disk_key disk_key;
4726 4727
	struct extent_buffer *leaf;
	int slot;
4728 4729
	struct btrfs_map_token token;

4730 4731
	if (path->slots[0] == 0) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4732
		fixup_low_keys(path, &disk_key, 1);
4733 4734 4735
	}
	btrfs_unlock_up_safe(path, 1);

4736
	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4737

4738
	leaf = path->nodes[0];
4739
	slot = path->slots[0];
C
Chris Mason 已提交
4740

4741
	nritems = btrfs_header_nritems(leaf);
4742
	data_end = leaf_data_end(leaf);
4743

4744
	if (btrfs_leaf_free_space(leaf) < total_size) {
4745
		btrfs_print_leaf(leaf);
4746
		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4747
			   total_size, btrfs_leaf_free_space(leaf));
4748
		BUG();
4749
	}
4750

4751
	if (slot != nritems) {
4752
		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4753

4754
		if (old_data < data_end) {
4755
			btrfs_print_leaf(leaf);
4756
			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
J
Jeff Mahoney 已提交
4757
				   slot, old_data, data_end);
4758
			BUG();
4759
		}
4760 4761 4762 4763
		/*
		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
		 */
		/* first correct the data pointers */
C
Chris Mason 已提交
4764
		for (i = slot; i < nritems; i++) {
4765
			u32 ioff;
4766

4767
			item = btrfs_item_nr(i);
4768 4769 4770
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff - total_data, &token);
C
Chris Mason 已提交
4771
		}
4772
		/* shift the items */
4773
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4774
			      btrfs_item_nr_offset(slot),
C
Chris Mason 已提交
4775
			      (nritems - slot) * sizeof(struct btrfs_item));
4776 4777

		/* shift the data */
4778 4779
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4780
			      data_end, old_data - data_end);
4781 4782
		data_end = old_data;
	}
4783

4784
	/* setup the item for the new data */
4785 4786 4787
	for (i = 0; i < nr; i++) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
		btrfs_set_item_key(leaf, &disk_key, slot + i);
4788
		item = btrfs_item_nr(slot + i);
4789 4790
		btrfs_set_token_item_offset(leaf, item,
					    data_end - data_size[i], &token);
4791
		data_end -= data_size[i];
4792
		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4793
	}
4794

4795
	btrfs_set_header_nritems(leaf, nritems + nr);
4796
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4797

4798
	if (btrfs_leaf_free_space(leaf) < 0) {
4799
		btrfs_print_leaf(leaf);
4800
		BUG();
4801
	}
4802 4803 4804 4805 4806 4807 4808 4809 4810
}

/*
 * Given a key and some data, insert items into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    struct btrfs_path *path,
4811
			    const struct btrfs_key *cpu_key, u32 *data_size,
4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827
			    int nr)
{
	int ret = 0;
	int slot;
	int i;
	u32 total_size = 0;
	u32 total_data = 0;

	for (i = 0; i < nr; i++)
		total_data += data_size[i];

	total_size = total_data + (nr * sizeof(struct btrfs_item));
	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
	if (ret == 0)
		return -EEXIST;
	if (ret < 0)
4828
		return ret;
4829 4830 4831 4832

	slot = path->slots[0];
	BUG_ON(slot < 0);

4833
	setup_items_for_insert(root, path, cpu_key, data_size,
4834
			       total_data, total_size, nr);
4835
	return 0;
4836 4837 4838 4839 4840 4841
}

/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
4842 4843 4844
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *cpu_key, void *data,
		      u32 data_size)
4845 4846
{
	int ret = 0;
C
Chris Mason 已提交
4847
	struct btrfs_path *path;
4848 4849
	struct extent_buffer *leaf;
	unsigned long ptr;
4850

C
Chris Mason 已提交
4851
	path = btrfs_alloc_path();
T
Tsutomu Itoh 已提交
4852 4853
	if (!path)
		return -ENOMEM;
C
Chris Mason 已提交
4854
	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4855
	if (!ret) {
4856 4857 4858 4859
		leaf = path->nodes[0];
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		write_extent_buffer(leaf, data, ptr, data_size);
		btrfs_mark_buffer_dirty(leaf);
4860
	}
C
Chris Mason 已提交
4861
	btrfs_free_path(path);
C
Chris Mason 已提交
4862
	return ret;
4863 4864
}

C
Chris Mason 已提交
4865
/*
C
Chris Mason 已提交
4866
 * delete the pointer from a given node.
C
Chris Mason 已提交
4867
 *
C
Chris Mason 已提交
4868 4869
 * the tree should have been previously balanced so the deletion does not
 * empty a node.
C
Chris Mason 已提交
4870
 */
4871 4872
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot)
4873
{
4874
	struct extent_buffer *parent = path->nodes[level];
4875
	u32 nritems;
4876
	int ret;
4877

4878
	nritems = btrfs_header_nritems(parent);
C
Chris Mason 已提交
4879
	if (slot != nritems - 1) {
4880 4881
		if (level) {
			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4882
					nritems - slot - 1);
4883 4884
			BUG_ON(ret < 0);
		}
4885 4886 4887
		memmove_extent_buffer(parent,
			      btrfs_node_key_ptr_offset(slot),
			      btrfs_node_key_ptr_offset(slot + 1),
C
Chris Mason 已提交
4888 4889
			      sizeof(struct btrfs_key_ptr) *
			      (nritems - slot - 1));
4890
	} else if (level) {
4891 4892
		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
				GFP_NOFS);
4893
		BUG_ON(ret < 0);
4894
	}
4895

4896
	nritems--;
4897
	btrfs_set_header_nritems(parent, nritems);
4898
	if (nritems == 0 && parent == root->node) {
4899
		BUG_ON(btrfs_header_level(root->node) != 1);
4900
		/* just turn the root into a leaf and break */
4901
		btrfs_set_header_level(root->node, 0);
4902
	} else if (slot == 0) {
4903 4904 4905
		struct btrfs_disk_key disk_key;

		btrfs_node_key(parent, &disk_key, 0);
4906
		fixup_low_keys(path, &disk_key, level + 1);
4907
	}
C
Chris Mason 已提交
4908
	btrfs_mark_buffer_dirty(parent);
4909 4910
}

4911 4912
/*
 * a helper function to delete the leaf pointed to by path->slots[1] and
4913
 * path->nodes[1].
4914 4915 4916 4917 4918 4919 4920
 *
 * This deletes the pointer in path->nodes[1] and frees the leaf
 * block extent.  zero is returned if it all worked out, < 0 otherwise.
 *
 * The path must have already been setup for deleting the leaf, including
 * all the proper balancing.  path->nodes[1] must be locked.
 */
4921 4922 4923 4924
static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *leaf)
4925
{
4926
	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4927
	del_ptr(root, path, 1, path->slots[1]);
4928

4929 4930 4931 4932 4933 4934
	/*
	 * btrfs_free_extent is expensive, we want to make sure we
	 * aren't holding any locks when we call it
	 */
	btrfs_unlock_up_safe(path, 0);

4935 4936
	root_sub_used(root, leaf->len);

4937
	extent_buffer_get(leaf);
4938
	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4939
	free_extent_buffer_stale(leaf);
4940
}
C
Chris Mason 已提交
4941 4942 4943 4944
/*
 * delete the item at the leaf level in path.  If that empties
 * the leaf, remove it from the tree
 */
4945 4946
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		    struct btrfs_path *path, int slot, int nr)
4947
{
4948
	struct btrfs_fs_info *fs_info = root->fs_info;
4949 4950
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4951 4952
	u32 last_off;
	u32 dsize = 0;
C
Chris Mason 已提交
4953 4954
	int ret = 0;
	int wret;
4955
	int i;
4956
	u32 nritems;
4957 4958 4959
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4960

4961
	leaf = path->nodes[0];
4962 4963 4964 4965 4966
	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);

	for (i = 0; i < nr; i++)
		dsize += btrfs_item_size_nr(leaf, slot + i);

4967
	nritems = btrfs_header_nritems(leaf);
4968

4969
	if (slot + nr != nritems) {
4970
		int data_end = leaf_data_end(leaf);
4971

4972
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4973
			      data_end + dsize,
4974
			      BTRFS_LEAF_DATA_OFFSET + data_end,
4975
			      last_off - data_end);
4976

4977
		for (i = slot + nr; i < nritems; i++) {
4978
			u32 ioff;
4979

4980
			item = btrfs_item_nr(i);
4981 4982 4983
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff + dsize, &token);
C
Chris Mason 已提交
4984
		}
4985

4986
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4987
			      btrfs_item_nr_offset(slot + nr),
C
Chris Mason 已提交
4988
			      sizeof(struct btrfs_item) *
4989
			      (nritems - slot - nr));
4990
	}
4991 4992
	btrfs_set_header_nritems(leaf, nritems - nr);
	nritems -= nr;
4993

C
Chris Mason 已提交
4994
	/* delete the leaf if we've emptied it */
4995
	if (nritems == 0) {
4996 4997
		if (leaf == root->node) {
			btrfs_set_header_level(leaf, 0);
4998
		} else {
4999
			btrfs_set_path_blocking(path);
5000
			btrfs_clean_tree_block(leaf);
5001
			btrfs_del_leaf(trans, root, path, leaf);
5002
		}
5003
	} else {
5004
		int used = leaf_space_used(leaf, 0, nritems);
C
Chris Mason 已提交
5005
		if (slot == 0) {
5006 5007 5008
			struct btrfs_disk_key disk_key;

			btrfs_item_key(leaf, &disk_key, 0);
5009
			fixup_low_keys(path, &disk_key, 1);
C
Chris Mason 已提交
5010 5011
		}

C
Chris Mason 已提交
5012
		/* delete the leaf if it is mostly empty */
5013
		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5014 5015 5016 5017
			/* push_leaf_left fixes the path.
			 * make sure the path still points to our leaf
			 * for possible call to del_ptr below
			 */
5018
			slot = path->slots[1];
5019 5020
			extent_buffer_get(leaf);

5021
			btrfs_set_path_blocking(path);
5022 5023
			wret = push_leaf_left(trans, root, path, 1, 1,
					      1, (u32)-1);
5024
			if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5025
				ret = wret;
5026 5027 5028

			if (path->nodes[0] == leaf &&
			    btrfs_header_nritems(leaf)) {
5029 5030
				wret = push_leaf_right(trans, root, path, 1,
						       1, 1, 0);
5031
				if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5032 5033
					ret = wret;
			}
5034 5035

			if (btrfs_header_nritems(leaf) == 0) {
5036
				path->slots[1] = slot;
5037
				btrfs_del_leaf(trans, root, path, leaf);
5038
				free_extent_buffer(leaf);
5039
				ret = 0;
C
Chris Mason 已提交
5040
			} else {
5041 5042 5043 5044 5045 5046 5047
				/* if we're still in the path, make sure
				 * we're dirty.  Otherwise, one of the
				 * push_leaf functions must have already
				 * dirtied this buffer
				 */
				if (path->nodes[0] == leaf)
					btrfs_mark_buffer_dirty(leaf);
5048
				free_extent_buffer(leaf);
5049
			}
5050
		} else {
5051
			btrfs_mark_buffer_dirty(leaf);
5052 5053
		}
	}
C
Chris Mason 已提交
5054
	return ret;
5055 5056
}

5057
/*
5058
 * search the tree again to find a leaf with lesser keys
5059 5060
 * returns 0 if it found something or 1 if there are no lesser leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5061 5062 5063
 *
 * This may release the path, and so you may lose any locks held at the
 * time you call it.
5064
 */
5065
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5066
{
5067 5068 5069
	struct btrfs_key key;
	struct btrfs_disk_key found_key;
	int ret;
5070

5071
	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5072

5073
	if (key.offset > 0) {
5074
		key.offset--;
5075
	} else if (key.type > 0) {
5076
		key.type--;
5077 5078
		key.offset = (u64)-1;
	} else if (key.objectid > 0) {
5079
		key.objectid--;
5080 5081 5082
		key.type = (u8)-1;
		key.offset = (u64)-1;
	} else {
5083
		return 1;
5084
	}
5085

5086
	btrfs_release_path(path);
5087 5088 5089 5090 5091
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	btrfs_item_key(path->nodes[0], &found_key, 0);
	ret = comp_keys(&found_key, &key);
5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102
	/*
	 * We might have had an item with the previous key in the tree right
	 * before we released our path. And after we released our path, that
	 * item might have been pushed to the first slot (0) of the leaf we
	 * were holding due to a tree balance. Alternatively, an item with the
	 * previous key can exist as the only element of a leaf (big fat item).
	 * Therefore account for these 2 cases, so that our callers (like
	 * btrfs_previous_item) don't miss an existing item with a key matching
	 * the previous key we computed above.
	 */
	if (ret <= 0)
5103 5104
		return 0;
	return 1;
5105 5106
}

5107 5108
/*
 * A helper function to walk down the tree starting at min_key, and looking
5109 5110
 * for nodes or leaves that are have a minimum transaction id.
 * This is used by the btree defrag code, and tree logging
5111 5112 5113 5114 5115 5116 5117 5118
 *
 * This does not cow, but it does stuff the starting key it finds back
 * into min_key, so you can call btrfs_search_slot with cow=1 on the
 * key and get a writable path.
 *
 * This honors path->lowest_level to prevent descent past a given level
 * of the tree.
 *
C
Chris Mason 已提交
5119 5120 5121 5122
 * min_trans indicates the oldest transaction that you are interested
 * in walking through.  Any nodes or leaves older than min_trans are
 * skipped over (without reading them).
 *
5123 5124 5125 5126
 * returns zero if something useful was found, < 0 on error and 1 if there
 * was nothing in the tree that matched the search criteria.
 */
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5127
			 struct btrfs_path *path,
5128 5129 5130 5131 5132
			 u64 min_trans)
{
	struct extent_buffer *cur;
	struct btrfs_key found_key;
	int slot;
5133
	int sret;
5134 5135 5136
	u32 nritems;
	int level;
	int ret = 1;
5137
	int keep_locks = path->keep_locks;
5138

5139
	path->keep_locks = 1;
5140
again:
5141
	cur = btrfs_read_lock_root_node(root);
5142
	level = btrfs_header_level(cur);
5143
	WARN_ON(path->nodes[level]);
5144
	path->nodes[level] = cur;
5145
	path->locks[level] = BTRFS_READ_LOCK;
5146 5147 5148 5149 5150

	if (btrfs_header_generation(cur) < min_trans) {
		ret = 1;
		goto out;
	}
C
Chris Mason 已提交
5151
	while (1) {
5152 5153
		nritems = btrfs_header_nritems(cur);
		level = btrfs_header_level(cur);
5154
		sret = btrfs_bin_search(cur, min_key, level, &slot);
5155 5156 5157 5158
		if (sret < 0) {
			ret = sret;
			goto out;
		}
5159

5160 5161
		/* at the lowest level, we're done, setup the path and exit */
		if (level == path->lowest_level) {
5162 5163
			if (slot >= nritems)
				goto find_next_key;
5164 5165 5166 5167 5168
			ret = 0;
			path->slots[level] = slot;
			btrfs_item_key_to_cpu(cur, &found_key, slot);
			goto out;
		}
5169 5170
		if (sret && slot > 0)
			slot--;
5171
		/*
5172 5173
		 * check this node pointer against the min_trans parameters.
		 * If it is too old, old, skip to the next one.
5174
		 */
C
Chris Mason 已提交
5175
		while (slot < nritems) {
5176
			u64 gen;
5177

5178 5179 5180 5181 5182
			gen = btrfs_node_ptr_generation(cur, slot);
			if (gen < min_trans) {
				slot++;
				continue;
			}
5183
			break;
5184
		}
5185
find_next_key:
5186 5187 5188 5189 5190
		/*
		 * we didn't find a candidate key in this node, walk forward
		 * and find another one
		 */
		if (slot >= nritems) {
5191
			path->slots[level] = slot;
5192
			btrfs_set_path_blocking(path);
5193
			sret = btrfs_find_next_key(root, path, min_key, level,
5194
						  min_trans);
5195
			if (sret == 0) {
5196
				btrfs_release_path(path);
5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208
				goto again;
			} else {
				goto out;
			}
		}
		/* save our key for returning back */
		btrfs_node_key_to_cpu(cur, &found_key, slot);
		path->slots[level] = slot;
		if (level == path->lowest_level) {
			ret = 0;
			goto out;
		}
5209
		btrfs_set_path_blocking(path);
5210
		cur = read_node_slot(cur, slot);
5211 5212 5213 5214
		if (IS_ERR(cur)) {
			ret = PTR_ERR(cur);
			goto out;
		}
5215

5216
		btrfs_tree_read_lock(cur);
5217

5218
		path->locks[level - 1] = BTRFS_READ_LOCK;
5219
		path->nodes[level - 1] = cur;
5220
		unlock_up(path, level, 1, 0, NULL);
5221 5222
	}
out:
5223 5224 5225 5226
	path->keep_locks = keep_locks;
	if (ret == 0) {
		btrfs_unlock_up_safe(path, path->lowest_level + 1);
		btrfs_set_path_blocking(path);
5227
		memcpy(min_key, &found_key, sizeof(found_key));
5228
	}
5229 5230 5231
	return ret;
}

5232
static int tree_move_down(struct btrfs_fs_info *fs_info,
5233
			   struct btrfs_path *path,
5234
			   int *level)
5235
{
5236 5237
	struct extent_buffer *eb;

5238
	BUG_ON(*level == 0);
5239
	eb = read_node_slot(path->nodes[*level], path->slots[*level]);
5240 5241 5242 5243
	if (IS_ERR(eb))
		return PTR_ERR(eb);

	path->nodes[*level - 1] = eb;
5244 5245
	path->slots[*level - 1] = 0;
	(*level)--;
5246
	return 0;
5247 5248
}

5249
static int tree_move_next_or_upnext(struct btrfs_path *path,
5250 5251 5252 5253 5254 5255 5256 5257
				    int *level, int root_level)
{
	int ret = 0;
	int nritems;
	nritems = btrfs_header_nritems(path->nodes[*level]);

	path->slots[*level]++;

5258
	while (path->slots[*level] >= nritems) {
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
		if (*level == root_level)
			return -1;

		/* move upnext */
		path->slots[*level] = 0;
		free_extent_buffer(path->nodes[*level]);
		path->nodes[*level] = NULL;
		(*level)++;
		path->slots[*level]++;

		nritems = btrfs_header_nritems(path->nodes[*level]);
		ret = 1;
	}
	return ret;
}

/*
 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
 * or down.
 */
5279
static int tree_advance(struct btrfs_fs_info *fs_info,
5280 5281 5282 5283 5284 5285 5286 5287
			struct btrfs_path *path,
			int *level, int root_level,
			int allow_down,
			struct btrfs_key *key)
{
	int ret;

	if (*level == 0 || !allow_down) {
5288
		ret = tree_move_next_or_upnext(path, level, root_level);
5289
	} else {
5290
		ret = tree_move_down(fs_info, path, level);
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302
	}
	if (ret >= 0) {
		if (*level == 0)
			btrfs_item_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
		else
			btrfs_node_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
	}
	return ret;
}

5303
static int tree_compare_item(struct btrfs_path *left_path,
5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
			     struct btrfs_path *right_path,
			     char *tmp_buf)
{
	int cmp;
	int len1, len2;
	unsigned long off1, off2;

	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
	if (len1 != len2)
		return 1;

	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
				right_path->slots[0]);

	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);

	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
	if (cmp)
		return 1;
	return 0;
}

#define ADVANCE 1
#define ADVANCE_ONLY_NEXT -1

/*
 * This function compares two trees and calls the provided callback for
 * every changed/new/deleted item it finds.
 * If shared tree blocks are encountered, whole subtrees are skipped, making
 * the compare pretty fast on snapshotted subvolumes.
 *
 * This currently works on commit roots only. As commit roots are read only,
 * we don't do any locking. The commit roots are protected with transactions.
 * Transactions are ended and rejoined when a commit is tried in between.
 *
 * This function checks for modifications done to the trees while comparing.
 * If it detects a change, it aborts immediately.
 */
int btrfs_compare_trees(struct btrfs_root *left_root,
			struct btrfs_root *right_root,
			btrfs_changed_cb_t changed_cb, void *ctx)
{
5348
	struct btrfs_fs_info *fs_info = left_root->fs_info;
5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365
	int ret;
	int cmp;
	struct btrfs_path *left_path = NULL;
	struct btrfs_path *right_path = NULL;
	struct btrfs_key left_key;
	struct btrfs_key right_key;
	char *tmp_buf = NULL;
	int left_root_level;
	int right_root_level;
	int left_level;
	int right_level;
	int left_end_reached;
	int right_end_reached;
	int advance_left;
	int advance_right;
	u64 left_blockptr;
	u64 right_blockptr;
5366 5367
	u64 left_gen;
	u64 right_gen;
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379

	left_path = btrfs_alloc_path();
	if (!left_path) {
		ret = -ENOMEM;
		goto out;
	}
	right_path = btrfs_alloc_path();
	if (!right_path) {
		ret = -ENOMEM;
		goto out;
	}

5380
	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
5381
	if (!tmp_buf) {
5382 5383
		ret = -ENOMEM;
		goto out;
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426
	}

	left_path->search_commit_root = 1;
	left_path->skip_locking = 1;
	right_path->search_commit_root = 1;
	right_path->skip_locking = 1;

	/*
	 * Strategy: Go to the first items of both trees. Then do
	 *
	 * If both trees are at level 0
	 *   Compare keys of current items
	 *     If left < right treat left item as new, advance left tree
	 *       and repeat
	 *     If left > right treat right item as deleted, advance right tree
	 *       and repeat
	 *     If left == right do deep compare of items, treat as changed if
	 *       needed, advance both trees and repeat
	 * If both trees are at the same level but not at level 0
	 *   Compare keys of current nodes/leafs
	 *     If left < right advance left tree and repeat
	 *     If left > right advance right tree and repeat
	 *     If left == right compare blockptrs of the next nodes/leafs
	 *       If they match advance both trees but stay at the same level
	 *         and repeat
	 *       If they don't match advance both trees while allowing to go
	 *         deeper and repeat
	 * If tree levels are different
	 *   Advance the tree that needs it and repeat
	 *
	 * Advancing a tree means:
	 *   If we are at level 0, try to go to the next slot. If that's not
	 *   possible, go one level up and repeat. Stop when we found a level
	 *   where we could go to the next slot. We may at this point be on a
	 *   node or a leaf.
	 *
	 *   If we are not at level 0 and not on shared tree blocks, go one
	 *   level deeper.
	 *
	 *   If we are not at level 0 and on shared tree blocks, go one slot to
	 *   the right if possible or go up and right.
	 */

5427
	down_read(&fs_info->commit_root_sem);
5428 5429
	left_level = btrfs_header_level(left_root->commit_root);
	left_root_level = left_level;
5430 5431 5432 5433 5434 5435 5436
	left_path->nodes[left_level] =
			btrfs_clone_extent_buffer(left_root->commit_root);
	if (!left_path->nodes[left_level]) {
		up_read(&fs_info->commit_root_sem);
		ret = -ENOMEM;
		goto out;
	}
5437 5438 5439

	right_level = btrfs_header_level(right_root->commit_root);
	right_root_level = right_level;
5440 5441 5442 5443 5444 5445 5446
	right_path->nodes[right_level] =
			btrfs_clone_extent_buffer(right_root->commit_root);
	if (!right_path->nodes[right_level]) {
		up_read(&fs_info->commit_root_sem);
		ret = -ENOMEM;
		goto out;
	}
5447
	up_read(&fs_info->commit_root_sem);
5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466

	if (left_level == 0)
		btrfs_item_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	else
		btrfs_node_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	if (right_level == 0)
		btrfs_item_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);
	else
		btrfs_node_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);

	left_end_reached = right_end_reached = 0;
	advance_left = advance_right = 0;

	while (1) {
		if (advance_left && !left_end_reached) {
5467
			ret = tree_advance(fs_info, left_path, &left_level,
5468 5469 5470
					left_root_level,
					advance_left != ADVANCE_ONLY_NEXT,
					&left_key);
5471
			if (ret == -1)
5472
				left_end_reached = ADVANCE;
5473 5474
			else if (ret < 0)
				goto out;
5475 5476 5477
			advance_left = 0;
		}
		if (advance_right && !right_end_reached) {
5478
			ret = tree_advance(fs_info, right_path, &right_level,
5479 5480 5481
					right_root_level,
					advance_right != ADVANCE_ONLY_NEXT,
					&right_key);
5482
			if (ret == -1)
5483
				right_end_reached = ADVANCE;
5484 5485
			else if (ret < 0)
				goto out;
5486 5487 5488 5489 5490 5491 5492 5493
			advance_right = 0;
		}

		if (left_end_reached && right_end_reached) {
			ret = 0;
			goto out;
		} else if (left_end_reached) {
			if (right_level == 0) {
5494
				ret = changed_cb(left_path, right_path,
5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_right = ADVANCE;
			continue;
		} else if (right_end_reached) {
			if (left_level == 0) {
5505
				ret = changed_cb(left_path, right_path,
5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_left = ADVANCE;
			continue;
		}

		if (left_level == 0 && right_level == 0) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
5519
				ret = changed_cb(left_path, right_path,
5520 5521 5522 5523 5524 5525 5526
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
				advance_left = ADVANCE;
			} else if (cmp > 0) {
5527
				ret = changed_cb(left_path, right_path,
5528 5529 5530 5531 5532 5533 5534
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
				advance_right = ADVANCE;
			} else {
5535
				enum btrfs_compare_tree_result result;
5536

5537
				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5538 5539
				ret = tree_compare_item(left_path, right_path,
							tmp_buf);
5540
				if (ret)
5541
					result = BTRFS_COMPARE_TREE_CHANGED;
5542
				else
5543
					result = BTRFS_COMPARE_TREE_SAME;
5544
				ret = changed_cb(left_path, right_path,
5545
						 &left_key, result, ctx);
5546 5547
				if (ret < 0)
					goto out;
5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563
				advance_left = ADVANCE;
				advance_right = ADVANCE;
			}
		} else if (left_level == right_level) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
				advance_left = ADVANCE;
			} else if (cmp > 0) {
				advance_right = ADVANCE;
			} else {
				left_blockptr = btrfs_node_blockptr(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_blockptr = btrfs_node_blockptr(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
5564 5565 5566 5567 5568 5569 5570 5571
				left_gen = btrfs_node_ptr_generation(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_gen = btrfs_node_ptr_generation(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
				if (left_blockptr == right_blockptr &&
				    left_gen == right_gen) {
5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592
					/*
					 * As we're on a shared block, don't
					 * allow to go deeper.
					 */
					advance_left = ADVANCE_ONLY_NEXT;
					advance_right = ADVANCE_ONLY_NEXT;
				} else {
					advance_left = ADVANCE;
					advance_right = ADVANCE;
				}
			}
		} else if (left_level < right_level) {
			advance_right = ADVANCE;
		} else {
			advance_left = ADVANCE;
		}
	}

out:
	btrfs_free_path(left_path);
	btrfs_free_path(right_path);
5593
	kvfree(tmp_buf);
5594 5595 5596
	return ret;
}

5597 5598 5599
/*
 * this is similar to btrfs_next_leaf, but does not try to preserve
 * and fixup the path.  It looks for and returns the next key in the
5600
 * tree based on the current path and the min_trans parameters.
5601 5602 5603 5604 5605 5606 5607
 *
 * 0 is returned if another key is found, < 0 if there are any errors
 * and 1 is returned if there are no higher keys in the tree
 *
 * path->keep_locks should be set to 1 on the search made before
 * calling this function.
 */
5608
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5609
			struct btrfs_key *key, int level, u64 min_trans)
5610 5611 5612 5613
{
	int slot;
	struct extent_buffer *c;

5614
	WARN_ON(!path->keep_locks);
C
Chris Mason 已提交
5615
	while (level < BTRFS_MAX_LEVEL) {
5616 5617 5618 5619 5620
		if (!path->nodes[level])
			return 1;

		slot = path->slots[level] + 1;
		c = path->nodes[level];
5621
next:
5622
		if (slot >= btrfs_header_nritems(c)) {
5623 5624 5625 5626 5627
			int ret;
			int orig_lowest;
			struct btrfs_key cur_key;
			if (level + 1 >= BTRFS_MAX_LEVEL ||
			    !path->nodes[level + 1])
5628
				return 1;
5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641

			if (path->locks[level + 1]) {
				level++;
				continue;
			}

			slot = btrfs_header_nritems(c) - 1;
			if (level == 0)
				btrfs_item_key_to_cpu(c, &cur_key, slot);
			else
				btrfs_node_key_to_cpu(c, &cur_key, slot);

			orig_lowest = path->lowest_level;
5642
			btrfs_release_path(path);
5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654
			path->lowest_level = level;
			ret = btrfs_search_slot(NULL, root, &cur_key, path,
						0, 0);
			path->lowest_level = orig_lowest;
			if (ret < 0)
				return ret;

			c = path->nodes[level];
			slot = path->slots[level];
			if (ret == 0)
				slot++;
			goto next;
5655
		}
5656

5657 5658
		if (level == 0)
			btrfs_item_key_to_cpu(c, key, slot);
5659 5660 5661 5662 5663 5664 5665
		else {
			u64 gen = btrfs_node_ptr_generation(c, slot);

			if (gen < min_trans) {
				slot++;
				goto next;
			}
5666
			btrfs_node_key_to_cpu(c, key, slot);
5667
		}
5668 5669 5670 5671 5672
		return 0;
	}
	return 1;
}

C
Chris Mason 已提交
5673
/*
5674
 * search the tree again to find a leaf with greater keys
C
Chris Mason 已提交
5675 5676
 * returns 0 if it found something or 1 if there are no greater leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5677
 */
C
Chris Mason 已提交
5678
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
J
Jan Schmidt 已提交
5679 5680 5681 5682 5683 5684
{
	return btrfs_next_old_leaf(root, path, 0);
}

int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
			u64 time_seq)
5685 5686
{
	int slot;
5687
	int level;
5688
	struct extent_buffer *c;
5689
	struct extent_buffer *next;
5690 5691 5692
	struct btrfs_key key;
	u32 nritems;
	int ret;
5693
	int old_spinning = path->leave_spinning;
5694
	int next_rw_lock = 0;
5695 5696

	nritems = btrfs_header_nritems(path->nodes[0]);
C
Chris Mason 已提交
5697
	if (nritems == 0)
5698 5699
		return 1;

5700 5701 5702 5703
	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
again:
	level = 1;
	next = NULL;
5704
	next_rw_lock = 0;
5705
	btrfs_release_path(path);
5706

5707
	path->keep_locks = 1;
5708
	path->leave_spinning = 1;
5709

J
Jan Schmidt 已提交
5710 5711 5712 5713
	if (time_seq)
		ret = btrfs_search_old_slot(root, &key, path, time_seq);
	else
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5714 5715 5716 5717 5718
	path->keep_locks = 0;

	if (ret < 0)
		return ret;

5719
	nritems = btrfs_header_nritems(path->nodes[0]);
5720 5721 5722 5723 5724 5725
	/*
	 * by releasing the path above we dropped all our locks.  A balance
	 * could have added more items next to the key that used to be
	 * at the very end of the block.  So, check again here and
	 * advance the path if there are now more items available.
	 */
5726
	if (nritems > 0 && path->slots[0] < nritems - 1) {
5727 5728
		if (ret == 0)
			path->slots[0]++;
5729
		ret = 0;
5730 5731
		goto done;
	}
5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749
	/*
	 * So the above check misses one case:
	 * - after releasing the path above, someone has removed the item that
	 *   used to be at the very end of the block, and balance between leafs
	 *   gets another one with bigger key.offset to replace it.
	 *
	 * This one should be returned as well, or we can get leaf corruption
	 * later(esp. in __btrfs_drop_extents()).
	 *
	 * And a bit more explanation about this check,
	 * with ret > 0, the key isn't found, the path points to the slot
	 * where it should be inserted, so the path->slots[0] item must be the
	 * bigger one.
	 */
	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
		ret = 0;
		goto done;
	}
5750

C
Chris Mason 已提交
5751
	while (level < BTRFS_MAX_LEVEL) {
5752 5753 5754 5755
		if (!path->nodes[level]) {
			ret = 1;
			goto done;
		}
5756

5757 5758
		slot = path->slots[level] + 1;
		c = path->nodes[level];
5759
		if (slot >= btrfs_header_nritems(c)) {
5760
			level++;
5761 5762 5763 5764
			if (level == BTRFS_MAX_LEVEL) {
				ret = 1;
				goto done;
			}
5765 5766
			continue;
		}
5767

5768
		if (next) {
5769
			btrfs_tree_unlock_rw(next, next_rw_lock);
5770
			free_extent_buffer(next);
5771
		}
5772

5773
		next = c;
5774
		next_rw_lock = path->locks[level];
5775
		ret = read_block_for_search(root, path, &next, level,
5776
					    slot, &key);
5777 5778
		if (ret == -EAGAIN)
			goto again;
5779

5780
		if (ret < 0) {
5781
			btrfs_release_path(path);
5782 5783 5784
			goto done;
		}

5785
		if (!path->skip_locking) {
5786
			ret = btrfs_try_tree_read_lock(next);
5787 5788 5789 5790 5791 5792 5793 5794
			if (!ret && time_seq) {
				/*
				 * If we don't get the lock, we may be racing
				 * with push_leaf_left, holding that lock while
				 * itself waiting for the leaf we've currently
				 * locked. To solve this situation, we give up
				 * on our lock and cycle.
				 */
5795
				free_extent_buffer(next);
5796 5797 5798 5799
				btrfs_release_path(path);
				cond_resched();
				goto again;
			}
5800 5801
			if (!ret) {
				btrfs_set_path_blocking(path);
5802
				btrfs_tree_read_lock(next);
5803
			}
5804
			next_rw_lock = BTRFS_READ_LOCK;
5805
		}
5806 5807 5808
		break;
	}
	path->slots[level] = slot;
C
Chris Mason 已提交
5809
	while (1) {
5810 5811
		level--;
		c = path->nodes[level];
5812
		if (path->locks[level])
5813
			btrfs_tree_unlock_rw(c, path->locks[level]);
5814

5815
		free_extent_buffer(c);
5816 5817
		path->nodes[level] = next;
		path->slots[level] = 0;
5818
		if (!path->skip_locking)
5819
			path->locks[level] = next_rw_lock;
5820 5821
		if (!level)
			break;
5822

5823
		ret = read_block_for_search(root, path, &next, level,
5824
					    0, &key);
5825 5826 5827
		if (ret == -EAGAIN)
			goto again;

5828
		if (ret < 0) {
5829
			btrfs_release_path(path);
5830 5831 5832
			goto done;
		}

5833
		if (!path->skip_locking) {
5834
			ret = btrfs_try_tree_read_lock(next);
5835 5836
			if (!ret) {
				btrfs_set_path_blocking(path);
5837 5838
				btrfs_tree_read_lock(next);
			}
5839
			next_rw_lock = BTRFS_READ_LOCK;
5840
		}
5841
	}
5842
	ret = 0;
5843
done:
5844
	unlock_up(path, 0, 1, 0, NULL);
5845 5846 5847 5848 5849
	path->leave_spinning = old_spinning;
	if (!old_spinning)
		btrfs_set_path_blocking(path);

	return ret;
5850
}
5851

5852 5853 5854 5855 5856 5857
/*
 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
 * searching until it gets past min_objectid or finds an item of 'type'
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
5858 5859 5860 5861 5862 5863
int btrfs_previous_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid,
			int type)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
5864
	u32 nritems;
5865 5866
	int ret;

C
Chris Mason 已提交
5867
	while (1) {
5868
		if (path->slots[0] == 0) {
5869
			btrfs_set_path_blocking(path);
5870 5871 5872 5873 5874 5875 5876
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
5877 5878 5879 5880 5881 5882
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

5883
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5884 5885
		if (found_key.objectid < min_objectid)
			break;
5886 5887
		if (found_key.type == type)
			return 0;
5888 5889 5890
		if (found_key.objectid == min_objectid &&
		    found_key.type < type)
			break;
5891 5892 5893
	}
	return 1;
}
5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936

/*
 * search in extent tree to find a previous Metadata/Data extent item with
 * min objecitd.
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
int btrfs_previous_extent_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
	u32 nritems;
	int ret;

	while (1) {
		if (path->slots[0] == 0) {
			btrfs_set_path_blocking(path);
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid < min_objectid)
			break;
		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
		    found_key.type == BTRFS_METADATA_ITEM_KEY)
			return 0;
		if (found_key.objectid == min_objectid &&
		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
			break;
	}
	return 1;
}