hugetlb.c 61.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
10
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
11 12
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
13
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
14
#include <linux/nodemask.h>
D
David Gibson 已提交
15
#include <linux/pagemap.h>
16
#include <linux/mempolicy.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/bootmem.h>
20
#include <linux/sysfs.h>
21

D
David Gibson 已提交
22 23
#include <asm/page.h>
#include <asm/pgtable.h>
24
#include <asm/io.h>
D
David Gibson 已提交
25 26

#include <linux/hugetlb.h>
27
#include "internal.h"
L
Linus Torvalds 已提交
28 29

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30 31
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
32

33 34 35 36
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

37 38
__initdata LIST_HEAD(huge_boot_pages);

39 40 41
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
42
static unsigned long __initdata default_hstate_size;
43 44 45

#define for_each_hstate(h) \
	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
46

47 48 49 50
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
51

52 53 54
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
55 56 57 58 59 60 61 62 63 64
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
 * 	down_write(&mm->mmap_sem);
 * or
 * 	down_read(&mm->mmap_sem);
 * 	mutex_lock(&hugetlb_instantiation_mutex);
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
		int seg_from;
		int seg_to;

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

211 212 213 214
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
215 216
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
217
{
218 219
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
220 221
}

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

	return 1UL << (hstate->order + PAGE_SHIFT);
}
237
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
238

239 240 241 242 243 244 245 246 247 248 249 250 251
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

252 253 254 255 256 257 258
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
259
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
260

261 262 263 264 265 266 267 268 269
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
270 271 272 273 274 275 276 277 278
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
279
 */
280 281 282 283 284 285 286 287 288 289 290
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

291 292 293 294 295
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

296
static struct resv_map *resv_map_alloc(void)
297 298 299 300 301 302 303 304 305 306 307
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

308
static void resv_map_release(struct kref *ref)
309 310 311 312 313 314 315 316 317
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
318 319
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
320
	if (!(vma->vm_flags & VM_MAYSHARE))
321 322
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
323
	return NULL;
324 325
}

326
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
327 328
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
329
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
330

331 332
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
333 334 335 336 337
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
338
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
339 340

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
341 342 343 344 345
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
346 347

	return (get_vma_private_data(vma) & flag) != 0;
348 349 350
}

/* Decrement the reserved pages in the hugepage pool by one */
351 352
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
353
{
354 355 356
	if (vma->vm_flags & VM_NORESERVE)
		return;

357
	if (vma->vm_flags & VM_MAYSHARE) {
358
		/* Shared mappings always use reserves */
359
		h->resv_huge_pages--;
360
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
361 362 363 364
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
365
		h->resv_huge_pages--;
366 367 368
	}
}

369
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
370 371 372
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
373
	if (!(vma->vm_flags & VM_MAYSHARE))
374 375 376 377
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
378
static int vma_has_reserves(struct vm_area_struct *vma)
379
{
380
	if (vma->vm_flags & VM_MAYSHARE)
381 382 383 384
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
385 386
}

387 388 389 390 391 392 393 394 395 396 397 398
static void clear_gigantic_page(struct page *page,
			unsigned long addr, unsigned long sz)
{
	int i;
	struct page *p = page;

	might_sleep();
	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
		cond_resched();
		clear_user_highpage(p, addr + i * PAGE_SIZE);
	}
}
399 400
static void clear_huge_page(struct page *page,
			unsigned long addr, unsigned long sz)
401 402 403
{
	int i;

H
Hannes Eder 已提交
404 405 406 407
	if (unlikely(sz > MAX_ORDER_NR_PAGES)) {
		clear_gigantic_page(page, addr, sz);
		return;
	}
408

409
	might_sleep();
410
	for (i = 0; i < sz/PAGE_SIZE; i++) {
411
		cond_resched();
412
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
413 414 415
	}
}

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
static void copy_gigantic_page(struct page *dst, struct page *src,
			   unsigned long addr, struct vm_area_struct *vma)
{
	int i;
	struct hstate *h = hstate_vma(vma);
	struct page *dst_base = dst;
	struct page *src_base = src;
	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}
433
static void copy_huge_page(struct page *dst, struct page *src,
434
			   unsigned long addr, struct vm_area_struct *vma)
435 436
{
	int i;
437
	struct hstate *h = hstate_vma(vma);
438

H
Hannes Eder 已提交
439 440 441 442
	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src, addr, vma);
		return;
	}
443

444
	might_sleep();
445
	for (i = 0; i < pages_per_huge_page(h); i++) {
446
		cond_resched();
447
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
448 449 450
	}
}

451
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
452 453
{
	int nid = page_to_nid(page);
454 455 456
	list_add(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
457 458
}

459
static struct page *dequeue_huge_page(struct hstate *h)
460 461 462 463 464
{
	int nid;
	struct page *page = NULL;

	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
465 466
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
467 468
					  struct page, lru);
			list_del(&page->lru);
469 470
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
471 472 473 474 475 476
			break;
		}
	}
	return page;
}

477 478
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
479
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
480
{
481
	int nid;
L
Linus Torvalds 已提交
482
	struct page *page = NULL;
483
	struct mempolicy *mpol;
484
	nodemask_t *nodemask;
485
	struct zonelist *zonelist = huge_zonelist(vma, address,
486
					htlb_alloc_mask, &mpol, &nodemask);
487 488
	struct zone *zone;
	struct zoneref *z;
L
Linus Torvalds 已提交
489

490 491 492 493 494
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
495
	if (!vma_has_reserves(vma) &&
496
			h->free_huge_pages - h->resv_huge_pages == 0)
497 498
		return NULL;

499
	/* If reserves cannot be used, ensure enough pages are in the pool */
500
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
501 502
		return NULL;

503 504
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
505 506
		nid = zone_to_nid(zone);
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
507 508
		    !list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
A
Andrew Morton 已提交
509 510
					  struct page, lru);
			list_del(&page->lru);
511 512
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
513 514

			if (!avoid_reserve)
515
				decrement_hugepage_resv_vma(h, vma);
516

K
Ken Chen 已提交
517
			break;
A
Andrew Morton 已提交
518
		}
L
Linus Torvalds 已提交
519
	}
520
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
521 522 523
	return page;
}

524
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
525 526
{
	int i;
527

528 529
	VM_BUG_ON(h->order >= MAX_ORDER);

530 531 532
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
A
Adam Litke 已提交
533 534 535 536 537 538
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
539
	arch_release_hugepage(page);
540
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
541 542
}

543 544 545 546 547 548 549 550 551 552 553
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

554 555
static void free_huge_page(struct page *page)
{
556 557 558 559
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
560
	struct hstate *h = page_hstate(page);
561
	int nid = page_to_nid(page);
562
	struct address_space *mapping;
563

564
	mapping = (struct address_space *) page_private(page);
565
	set_page_private(page, 0);
566
	BUG_ON(page_count(page));
567 568 569
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
570
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
571 572 573
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
574
	} else {
575
		enqueue_huge_page(h, page);
576
	}
577
	spin_unlock(&hugetlb_lock);
578
	if (mapping)
579
		hugetlb_put_quota(mapping, 1);
580 581
}

582
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
583 584 585
{
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
586 587
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
588 589 590 591
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
		p->first_page = page;
	}
}

int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}

620
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
621 622
{
	struct page *page;
623

624 625 626
	if (h->order >= MAX_ORDER)
		return NULL;

627
	page = alloc_pages_exact_node(nid,
628 629
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
630
		huge_page_order(h));
L
Linus Torvalds 已提交
631
	if (page) {
632
		if (arch_prepare_hugepage(page)) {
633
			__free_pages(page, huge_page_order(h));
634
			return NULL;
635
		}
636
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
637
	}
638 639 640 641

	return page;
}

642 643 644 645
/*
 * Use a helper variable to find the next node and then
 * copy it back to hugetlb_next_nid afterwards:
 * otherwise there's a window in which a racer might
646
 * pass invalid nid MAX_NUMNODES to alloc_pages_exact_node.
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
 * But we don't need to use a spin_lock here: it really
 * doesn't matter if occasionally a racer chooses the
 * same nid as we do.  Move nid forward in the mask even
 * if we just successfully allocated a hugepage so that
 * the next caller gets hugepages on the next node.
 */
static int hstate_next_node(struct hstate *h)
{
	int next_nid;
	next_nid = next_node(h->hugetlb_next_nid, node_online_map);
	if (next_nid == MAX_NUMNODES)
		next_nid = first_node(node_online_map);
	h->hugetlb_next_nid = next_nid;
	return next_nid;
}

663
static int alloc_fresh_huge_page(struct hstate *h)
664 665 666 667 668 669
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

670
	start_nid = h->hugetlb_next_nid;
671 672

	do {
673
		page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
674 675
		if (page)
			ret = 1;
676
		next_nid = hstate_next_node(h);
677
	} while (!page && h->hugetlb_next_nid != start_nid);
678

679 680 681 682 683
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

684
	return ret;
L
Linus Torvalds 已提交
685 686
}

687 688
static struct page *alloc_buddy_huge_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
689 690
{
	struct page *page;
691
	unsigned int nid;
692

693 694 695
	if (h->order >= MAX_ORDER)
		return NULL;

696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
720
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
721 722 723
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
724 725
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
726 727 728
	}
	spin_unlock(&hugetlb_lock);

729 730
	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
					__GFP_REPEAT|__GFP_NOWARN,
731
					huge_page_order(h));
732

733 734 735 736 737
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
		return NULL;
	}

738
	spin_lock(&hugetlb_lock);
739
	if (page) {
740 741 742 743 744 745
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
746
		nid = page_to_nid(page);
747
		set_compound_page_dtor(page, free_huge_page);
748 749 750
		/*
		 * We incremented the global counters already
		 */
751 752
		h->nr_huge_pages_node[nid]++;
		h->surplus_huge_pages_node[nid]++;
753
		__count_vm_event(HTLB_BUDDY_PGALLOC);
754
	} else {
755 756
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
757
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
758
	}
759
	spin_unlock(&hugetlb_lock);
760 761 762 763

	return page;
}

764 765 766 767
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
768
static int gather_surplus_pages(struct hstate *h, int delta)
769 770 771 772 773 774
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

775
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
776
	if (needed <= 0) {
777
		h->resv_huge_pages += delta;
778
		return 0;
779
	}
780 781 782 783 784 785 786 787

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
788
		page = alloc_buddy_huge_page(h, NULL, 0);
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
809 810
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
811 812 813 814 815 816 817
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
818 819 820
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
821 822
	 */
	needed += allocated;
823
	h->resv_huge_pages += delta;
824 825
	ret = 0;
free:
826
	/* Free the needed pages to the hugetlb pool */
827
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
828 829
		if ((--needed) < 0)
			break;
830
		list_del(&page->lru);
831
		enqueue_huge_page(h, page);
832 833 834 835 836 837 838
	}

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		spin_unlock(&hugetlb_lock);
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
839
			/*
840 841 842
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
843 844 845
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
846
			free_huge_page(page);
847
		}
848
		spin_lock(&hugetlb_lock);
849 850 851 852 853 854 855 856 857 858
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
 */
859 860
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
861 862 863 864 865
{
	static int nid = -1;
	struct page *page;
	unsigned long nr_pages;

866 867 868 869 870 871
	/*
	 * We want to release as many surplus pages as possible, spread
	 * evenly across all nodes. Iterate across all nodes until we
	 * can no longer free unreserved surplus pages. This occurs when
	 * the nodes with surplus pages have no free pages.
	 */
872
	unsigned long remaining_iterations = nr_online_nodes;
873

874
	/* Uncommit the reservation */
875
	h->resv_huge_pages -= unused_resv_pages;
876

877 878 879 880
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

881
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
882

883
	while (remaining_iterations-- && nr_pages) {
884 885 886 887
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

888
		if (!h->surplus_huge_pages_node[nid])
889 890
			continue;

891 892
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
893 894
					  struct page, lru);
			list_del(&page->lru);
895 896 897 898 899
			update_and_free_page(h, page);
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
			h->surplus_huge_pages--;
			h->surplus_huge_pages_node[nid]--;
900
			nr_pages--;
901
			remaining_iterations = nr_online_nodes;
902 903 904 905
		}
	}
}

906 907 908 909 910 911 912 913 914
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
 * reservation and actually increase quota before an allocation can occur.
 * Where any new reservation would be required the reservation change is
 * prepared, but not committed.  Once the page has been quota'd allocated
 * an instantiated the change should be committed via vma_commit_reservation.
 * No action is required on failure.
 */
915
static long vma_needs_reservation(struct hstate *h,
916
			struct vm_area_struct *vma, unsigned long addr)
917 918 919 920
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

921
	if (vma->vm_flags & VM_MAYSHARE) {
922
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
923 924 925
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

926 927
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
928

929
	} else  {
930
		long err;
931
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
932 933 934 935 936 937 938
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
939
}
940 941
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
942 943 944 945
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

946
	if (vma->vm_flags & VM_MAYSHARE) {
947
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
948
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
949 950

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
951
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
952 953 954 955
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
956 957 958
	}
}

959
static struct page *alloc_huge_page(struct vm_area_struct *vma,
960
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
961
{
962
	struct hstate *h = hstate_vma(vma);
963
	struct page *page;
964 965
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
966
	long chg;
967 968 969 970 971

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
972 973
	 * MAP_NORESERVE mappings may also need pages and quota allocated
	 * if no reserve mapping overlaps.
974
	 */
975
	chg = vma_needs_reservation(h, vma, addr);
976 977 978
	if (chg < 0)
		return ERR_PTR(chg);
	if (chg)
979 980
		if (hugetlb_get_quota(inode->i_mapping, chg))
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
981 982

	spin_lock(&hugetlb_lock);
983
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
984
	spin_unlock(&hugetlb_lock);
985

K
Ken Chen 已提交
986
	if (!page) {
987
		page = alloc_buddy_huge_page(h, vma, addr);
K
Ken Chen 已提交
988
		if (!page) {
989
			hugetlb_put_quota(inode->i_mapping, chg);
K
Ken Chen 已提交
990 991 992
			return ERR_PTR(-VM_FAULT_OOM);
		}
	}
993

994 995
	set_page_refcounted(page);
	set_page_private(page, (unsigned long) mapping);
996

997
	vma_commit_reservation(h, vma, addr);
998

999
	return page;
1000 1001
}

1002
int __weak alloc_bootmem_huge_page(struct hstate *h)
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
{
	struct huge_bootmem_page *m;
	int nr_nodes = nodes_weight(node_online_map);

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
				NODE_DATA(h->hugetlb_next_nid),
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1021
			goto found;
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
		}
		hstate_next_node(h);
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1036 1037 1038 1039 1040 1041 1042 1043
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct page *page = virt_to_page(m);
		struct hstate *h = m->hstate;
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1054
		prep_compound_huge_page(page, h->order);
1055 1056 1057 1058
		prep_new_huge_page(h, page, page_to_nid(page));
	}
}

1059
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1060 1061
{
	unsigned long i;
1062

1063
	for (i = 0; i < h->max_huge_pages; ++i) {
1064 1065 1066 1067
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
		} else if (!alloc_fresh_huge_page(h))
L
Linus Torvalds 已提交
1068 1069
			break;
	}
1070
	h->max_huge_pages = i;
1071 1072 1073 1074 1075 1076 1077
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1078 1079 1080
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1081 1082 1083
	}
}

A
Andi Kleen 已提交
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1095 1096 1097 1098 1099
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1100 1101 1102 1103 1104
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1105 1106 1107
	}
}

L
Linus Torvalds 已提交
1108
#ifdef CONFIG_HIGHMEM
1109
static void try_to_free_low(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1110
{
1111 1112
	int i;

1113 1114 1115
	if (h->order >= MAX_ORDER)
		return;

L
Linus Torvalds 已提交
1116 1117
	for (i = 0; i < MAX_NUMNODES; ++i) {
		struct page *page, *next;
1118 1119 1120
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1121
				return;
L
Linus Torvalds 已提交
1122 1123 1124
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1125
			update_and_free_page(h, page);
1126 1127
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1128 1129 1130 1131
		}
	}
}
#else
1132
static inline void try_to_free_low(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1133 1134 1135 1136
{
}
#endif

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
static int adjust_pool_surplus(struct hstate *h, int delta)
{
	static int prev_nid;
	int nid = prev_nid;
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);
	do {
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

		/* To shrink on this node, there must be a surplus page */
		if (delta < 0 && !h->surplus_huge_pages_node[nid])
			continue;
		/* Surplus cannot exceed the total number of pages */
		if (delta > 0 && h->surplus_huge_pages_node[nid] >=
						h->nr_huge_pages_node[nid])
			continue;

		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
	} while (nid != prev_nid);

	prev_nid = nid;
	return ret;
}

1172
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1173
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1174
{
1175
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1176

1177 1178 1179
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1180 1181 1182 1183
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1184 1185 1186 1187 1188 1189
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1190
	 */
L
Linus Torvalds 已提交
1191
	spin_lock(&hugetlb_lock);
1192 1193
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, -1))
1194 1195 1196
			break;
	}

1197
	while (count > persistent_huge_pages(h)) {
1198 1199 1200 1201 1202 1203
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1204
		ret = alloc_fresh_huge_page(h);
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1217 1218 1219 1220 1221 1222 1223 1224
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1225
	 */
1226
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1227
	min_count = max(count, min_count);
1228 1229 1230
	try_to_free_low(h, min_count);
	while (min_count < persistent_huge_pages(h)) {
		struct page *page = dequeue_huge_page(h);
L
Linus Torvalds 已提交
1231 1232
		if (!page)
			break;
1233
		update_and_free_page(h, page);
L
Linus Torvalds 已提交
1234
	}
1235 1236
	while (count < persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, 1))
1237 1238 1239
			break;
	}
out:
1240
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1241
	spin_unlock(&hugetlb_lock);
1242
	return ret;
L
Linus Torvalds 已提交
1243 1244
}

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

static struct hstate *kobj_to_hstate(struct kobject *kobj)
{
	int i;
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
		if (hstate_kobjs[i] == kobj)
			return &hstates[i];
	BUG();
	return NULL;
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->nr_huge_pages);
}
static ssize_t nr_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj);

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	h->max_huge_pages = set_max_huge_pages(h, input);

	return count;
}
HSTATE_ATTR(nr_hugepages);

static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj);

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->free_huge_pages);
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->surplus_huge_pages);
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
{
	int retval;

	hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
							hugepages_kobj);
	if (!hstate_kobjs[h - hstates])
		return -ENOMEM;

	retval = sysfs_create_group(hstate_kobjs[h - hstates],
							&hstate_attr_group);
	if (retval)
		kobject_put(hstate_kobjs[h - hstates]);

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h);
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

static void __exit hugetlb_exit(void)
{
	struct hstate *h;

	for_each_hstate(h) {
		kobject_put(hstate_kobjs[h - hstates]);
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1398 1399 1400 1401 1402 1403
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1404

1405 1406 1407 1408
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1409
	}
1410 1411 1412
	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1413 1414 1415

	hugetlb_init_hstates();

1416 1417
	gather_bootmem_prealloc();

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
	report_hugepages();

	hugetlb_sysfs_init();

	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1430 1431
	unsigned long i;

1432 1433 1434 1435 1436 1437 1438 1439 1440
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
	BUG_ON(order == 0);
	h = &hstates[max_hstate++];
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1441 1442 1443 1444 1445
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
	h->hugetlb_next_nid = first_node(node_online_map);
1446 1447
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1448

1449 1450 1451
	parsed_hstate = h;
}

1452
static int __init hugetlb_nrpages_setup(char *s)
1453 1454
{
	unsigned long *mhp;
1455
	static unsigned long *last_mhp;
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465

	/*
	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
	 * so this hugepages= parameter goes to the "default hstate".
	 */
	if (!max_hstate)
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1466 1467 1468 1469 1470 1471
	if (mhp == last_mhp) {
		printk(KERN_WARNING "hugepages= specified twice without "
			"interleaving hugepagesz=, ignoring\n");
		return 1;
	}

1472 1473 1474
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1485 1486
	return 1;
}
1487 1488 1489 1490 1491 1492 1493 1494
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1495

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
L
Linus Torvalds 已提交
1508 1509 1510 1511
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			   struct file *file, void __user *buffer,
			   size_t *length, loff_t *ppos)
{
1512 1513 1514 1515 1516 1517 1518 1519
	struct hstate *h = &default_hstate;
	unsigned long tmp;

	if (!write)
		tmp = h->max_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
L
Linus Torvalds 已提交
1520
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1521 1522 1523 1524

	if (write)
		h->max_huge_pages = set_max_huge_pages(h, tmp);

L
Linus Torvalds 已提交
1525 1526
	return 0;
}
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539

int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
	proc_dointvec(table, write, file, buffer, length, ppos);
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

1540 1541 1542 1543
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
1544
	struct hstate *h = &default_hstate;
1545 1546 1547 1548 1549 1550 1551
	unsigned long tmp;

	if (!write)
		tmp = h->nr_overcommit_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1552
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1553 1554 1555 1556 1557 1558 1559

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}

1560 1561 1562
	return 0;
}

L
Linus Torvalds 已提交
1563 1564
#endif /* CONFIG_SYSCTL */

1565
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
1566
{
1567
	struct hstate *h = &default_hstate;
1568
	seq_printf(m,
1569 1570 1571 1572 1573
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
1574 1575 1576 1577 1578
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
1579 1580 1581 1582
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
1583
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
1584 1585
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
1586 1587
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
1588 1589 1590
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
1591 1592 1593 1594 1595
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
1596 1597
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
1598 1599
}

1600
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
1623
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
1624 1625
			goto out;

1626 1627
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
1628 1629 1630 1631 1632 1633
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
1634
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
1635 1636 1637 1638 1639 1640

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
	 * has a reference to the reservation map it cannot dissappear until
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

1657 1658
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
1659
	struct hstate *h = hstate_vma(vma);
1660 1661 1662 1663 1664 1665
	struct resv_map *reservations = vma_resv_map(vma);
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
1666 1667
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
1668 1669 1670 1671 1672 1673

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

		kref_put(&reservations->refs, resv_map_release);

1674
		if (reserve) {
1675
			hugetlb_acct_memory(h, -reserve);
1676 1677
			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
		}
1678
	}
1679 1680
}

L
Linus Torvalds 已提交
1681 1682 1683 1684 1685 1686
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
1687
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
1688 1689
{
	BUG();
N
Nick Piggin 已提交
1690
	return 0;
L
Linus Torvalds 已提交
1691 1692 1693
}

struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
1694
	.fault = hugetlb_vm_op_fault,
1695
	.open = hugetlb_vm_op_open,
1696
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
1697 1698
};

1699 1700
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
1701 1702 1703
{
	pte_t entry;

1704
	if (writable) {
D
David Gibson 已提交
1705 1706 1707
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
1708
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
1709 1710 1711 1712 1713 1714 1715
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

1716 1717 1718 1719 1720
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

1721 1722
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1723 1724
		update_mmu_cache(vma, address, entry);
	}
1725 1726 1727
}


D
David Gibson 已提交
1728 1729 1730 1731 1732
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
1733
	unsigned long addr;
1734
	int cow;
1735 1736
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
1737 1738

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
1739

1740
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
1741 1742 1743
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
1744
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
1745 1746
		if (!dst_pte)
			goto nomem;
1747 1748 1749 1750 1751

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
1752
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
1753
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1754
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
1755
			if (cow)
1756 1757
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
1758 1759 1760 1761 1762
			ptepage = pte_page(entry);
			get_page(ptepage);
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
1763
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
1764 1765 1766 1767 1768 1769 1770
	}
	return 0;

nomem:
	return -ENOMEM;
}

1771
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1772
			    unsigned long end, struct page *ref_page)
D
David Gibson 已提交
1773 1774 1775
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
1776
	pte_t *ptep;
D
David Gibson 已提交
1777 1778
	pte_t pte;
	struct page *page;
1779
	struct page *tmp;
1780 1781 1782
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);

1783 1784 1785 1786 1787
	/*
	 * A page gathering list, protected by per file i_mmap_lock. The
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
1788
	LIST_HEAD(page_list);
D
David Gibson 已提交
1789 1790

	WARN_ON(!is_vm_hugetlb_page(vma));
1791 1792
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
1793

A
Andrea Arcangeli 已提交
1794
	mmu_notifier_invalidate_range_start(mm, start, end);
1795
	spin_lock(&mm->page_table_lock);
1796
	for (address = start; address < end; address += sz) {
1797
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
1798
		if (!ptep)
1799 1800
			continue;

1801 1802 1803
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			pte = huge_ptep_get(ptep);
			if (huge_pte_none(pte))
				continue;
			page = pte_page(pte);
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

1825
		pte = huge_ptep_get_and_clear(mm, address, ptep);
1826
		if (huge_pte_none(pte))
D
David Gibson 已提交
1827
			continue;
1828

D
David Gibson 已提交
1829
		page = pte_page(pte);
1830 1831
		if (pte_dirty(pte))
			set_page_dirty(page);
1832
		list_add(&page->lru, &page_list);
D
David Gibson 已提交
1833
	}
L
Linus Torvalds 已提交
1834
	spin_unlock(&mm->page_table_lock);
1835
	flush_tlb_range(vma, start, end);
A
Andrea Arcangeli 已提交
1836
	mmu_notifier_invalidate_range_end(mm, start, end);
1837 1838 1839 1840
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
1841
}
D
David Gibson 已提交
1842

1843
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1844
			  unsigned long end, struct page *ref_page)
1845
{
1846 1847 1848
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
	__unmap_hugepage_range(vma, start, end, ref_page);
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1849 1850
}

1851 1852 1853 1854 1855 1856
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
1857 1858
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
1859
{
1860
	struct hstate *h = hstate_vma(vma);
1861 1862 1863 1864 1865 1866 1867 1868 1869
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
1870
	address = address & huge_page_mask(h);
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
		+ (vma->vm_pgoff >> PAGE_SHIFT);
	mapping = (struct address_space *)page_private(page);

	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
			unmap_hugepage_range(iter_vma,
1889
				address, address + huge_page_size(h),
1890 1891 1892 1893 1894 1895
				page);
	}

	return 1;
}

1896
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1897 1898
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
1899
{
1900
	struct hstate *h = hstate_vma(vma);
1901
	struct page *old_page, *new_page;
1902
	int avoidcopy;
1903
	int outside_reserve = 0;
1904 1905 1906

	old_page = pte_page(pte);

1907
retry_avoidcopy:
1908 1909 1910 1911 1912
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
	avoidcopy = (page_count(old_page) == 1);
	if (avoidcopy) {
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
1913
		return 0;
1914 1915
	}

1916 1917 1918 1919 1920 1921 1922 1923 1924
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
1925
	if (!(vma->vm_flags & VM_MAYSHARE) &&
1926 1927 1928 1929
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

1930
	page_cache_get(old_page);
1931
	new_page = alloc_huge_page(vma, address, outside_reserve);
1932

1933
	if (IS_ERR(new_page)) {
1934
		page_cache_release(old_page);
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(page_count(old_page) != 1);
				BUG_ON(huge_pte_none(pte));
				goto retry_avoidcopy;
			}
			WARN_ON_ONCE(1);
		}

1953
		return -PTR_ERR(new_page);
1954 1955 1956
	}

	spin_unlock(&mm->page_table_lock);
1957
	copy_huge_page(new_page, old_page, address, vma);
N
Nick Piggin 已提交
1958
	__SetPageUptodate(new_page);
1959 1960
	spin_lock(&mm->page_table_lock);

1961
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1962
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1963
		/* Break COW */
1964
		huge_ptep_clear_flush(vma, address, ptep);
1965 1966 1967 1968 1969 1970 1971
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
		/* Make the old page be freed below */
		new_page = old_page;
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
1972
	return 0;
1973 1974
}

1975
/* Return the pagecache page at a given address within a VMA */
1976 1977
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
1978 1979
{
	struct address_space *mapping;
1980
	pgoff_t idx;
1981 1982

	mapping = vma->vm_file->f_mapping;
1983
	idx = vma_hugecache_offset(h, vma, address);
1984 1985 1986 1987

	return find_lock_page(mapping, idx);
}

1988
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1989
			unsigned long address, pte_t *ptep, unsigned int flags)
1990
{
1991
	struct hstate *h = hstate_vma(vma);
1992
	int ret = VM_FAULT_SIGBUS;
1993
	pgoff_t idx;
A
Adam Litke 已提交
1994 1995 1996
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
1997
	pte_t new_pte;
A
Adam Litke 已提交
1998

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
	 * COW. Warn that such a situation has occured as it may not be obvious
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
2011
	mapping = vma->vm_file->f_mapping;
2012
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2013 2014 2015 2016 2017

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2018 2019 2020
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2021
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2022 2023
		if (idx >= size)
			goto out;
2024
		page = alloc_huge_page(vma, address, 0);
2025 2026
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
2027 2028
			goto out;
		}
2029
		clear_huge_page(page, address, huge_page_size(h));
N
Nick Piggin 已提交
2030
		__SetPageUptodate(page);
2031

2032
		if (vma->vm_flags & VM_MAYSHARE) {
2033
			int err;
K
Ken Chen 已提交
2034
			struct inode *inode = mapping->host;
2035 2036 2037 2038 2039 2040 2041 2042

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
2043 2044

			spin_lock(&inode->i_lock);
2045
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2046
			spin_unlock(&inode->i_lock);
2047 2048 2049
		} else
			lock_page(page);
	}
2050

2051 2052 2053 2054 2055 2056
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2057
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2058 2059 2060 2061
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2062

2063
	spin_lock(&mm->page_table_lock);
2064
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2065 2066 2067
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2068
	ret = 0;
2069
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2070 2071
		goto backout;

2072 2073 2074 2075
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2076
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2077
		/* Optimization, do the COW without a second fault */
2078
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2079 2080
	}

2081
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2082 2083
	unlock_page(page);
out:
2084
	return ret;
A
Adam Litke 已提交
2085 2086 2087

backout:
	spin_unlock(&mm->page_table_lock);
2088
backout_unlocked:
A
Adam Litke 已提交
2089 2090 2091
	unlock_page(page);
	put_page(page);
	goto out;
2092 2093
}

2094
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2095
			unsigned long address, unsigned int flags)
2096 2097 2098
{
	pte_t *ptep;
	pte_t entry;
2099
	int ret;
2100
	struct page *pagecache_page = NULL;
2101
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2102
	struct hstate *h = hstate_vma(vma);
2103

2104
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2105 2106 2107
	if (!ptep)
		return VM_FAULT_OOM;

2108 2109 2110 2111 2112 2113
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2114 2115
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2116
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2117
		goto out_mutex;
2118
	}
2119

N
Nick Piggin 已提交
2120
	ret = 0;
2121

2122 2123 2124 2125 2126 2127 2128 2129
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2130
	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2131 2132
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2133
			goto out_mutex;
2134
		}
2135

2136
		if (!(vma->vm_flags & VM_MAYSHARE))
2137 2138 2139 2140
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2141 2142
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2143 2144 2145 2146
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


2147
	if (flags & FAULT_FLAG_WRITE) {
2148
		if (!pte_write(entry)) {
2149 2150
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2151 2152 2153 2154 2155
			goto out_page_table_lock;
		}
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
2156 2157
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2158 2159 2160
		update_mmu_cache(vma, address, entry);

out_page_table_lock:
2161
	spin_unlock(&mm->page_table_lock);
2162 2163 2164 2165 2166 2167

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}

2168
out_mutex:
2169
	mutex_unlock(&hugetlb_instantiation_mutex);
2170 2171

	return ret;
2172 2173
}

A
Andi Kleen 已提交
2174 2175 2176 2177 2178 2179 2180 2181 2182
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

K
KOSAKI Motohiro 已提交
2183 2184 2185 2186 2187 2188 2189 2190
static int huge_zeropage_ok(pte_t *ptep, int write, int shared)
{
	if (!ptep || write || shared)
		return 0;
	else
		return huge_pte_none(huge_ptep_get(ptep));
}

D
David Gibson 已提交
2191 2192
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
2193 2194
			unsigned long *position, int *length, int i,
			int write)
D
David Gibson 已提交
2195
{
2196 2197
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
2198
	int remainder = *length;
2199
	struct hstate *h = hstate_vma(vma);
K
KOSAKI Motohiro 已提交
2200 2201
	int zeropage_ok = 0;
	int shared = vma->vm_flags & VM_SHARED;
D
David Gibson 已提交
2202

2203
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2204
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2205 2206
		pte_t *pte;
		struct page *page;
D
David Gibson 已提交
2207

A
Adam Litke 已提交
2208 2209 2210 2211 2212
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
		 * each hugepage.  We have to make * sure we get the
		 * first, for the page indexing below to work.
		 */
2213
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
K
KOSAKI Motohiro 已提交
2214 2215
		if (huge_zeropage_ok(pte, write, shared))
			zeropage_ok = 1;
D
David Gibson 已提交
2216

K
KOSAKI Motohiro 已提交
2217 2218
		if (!pte ||
		    (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) ||
2219
		    (write && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2220
			int ret;
D
David Gibson 已提交
2221

A
Adam Litke 已提交
2222
			spin_unlock(&mm->page_table_lock);
2223
			ret = hugetlb_fault(mm, vma, vaddr, write);
A
Adam Litke 已提交
2224
			spin_lock(&mm->page_table_lock);
2225
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2226
				continue;
D
David Gibson 已提交
2227

A
Adam Litke 已提交
2228 2229 2230 2231 2232 2233
			remainder = 0;
			if (!i)
				i = -EFAULT;
			break;
		}

2234
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2235
		page = pte_page(huge_ptep_get(pte));
2236
same_page:
2237
		if (pages) {
K
KOSAKI Motohiro 已提交
2238 2239 2240
			if (zeropage_ok)
				pages[i] = ZERO_PAGE(0);
			else
2241
				pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
2242
			get_page(pages[i]);
2243
		}
D
David Gibson 已提交
2244 2245 2246 2247 2248

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2249
		++pfn_offset;
D
David Gibson 已提交
2250 2251
		--remainder;
		++i;
2252
		if (vaddr < vma->vm_end && remainder &&
2253
				pfn_offset < pages_per_huge_page(h)) {
2254 2255 2256 2257 2258 2259
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
2260
	}
2261
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
2262 2263 2264 2265 2266
	*length = remainder;
	*position = vaddr;

	return i;
}
2267 2268 2269 2270 2271 2272 2273 2274

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
2275
	struct hstate *h = hstate_vma(vma);
2276 2277 2278 2279

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

2280
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2281
	spin_lock(&mm->page_table_lock);
2282
	for (; address < end; address += huge_page_size(h)) {
2283 2284 2285
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
2286 2287
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
2288
		if (!huge_pte_none(huge_ptep_get(ptep))) {
2289 2290 2291 2292 2293 2294
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
2295
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2296 2297 2298 2299

	flush_tlb_range(vma, start, end);
}

2300 2301
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
2302 2303
					struct vm_area_struct *vma,
					int acctflag)
2304
{
2305
	long ret, chg;
2306
	struct hstate *h = hstate_inode(inode);
2307

2308 2309 2310 2311 2312 2313 2314 2315
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
	 * and filesystem quota without using reserves
	 */
	if (acctflag & VM_NORESERVE)
		return 0;

2316 2317 2318 2319 2320 2321
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
2322
	if (!vma || vma->vm_flags & VM_MAYSHARE)
2323
		chg = region_chg(&inode->i_mapping->private_list, from, to);
2324 2325 2326 2327 2328
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

2329
		chg = to - from;
2330

2331 2332 2333 2334
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

2335 2336
	if (chg < 0)
		return chg;
2337

2338
	/* There must be enough filesystem quota for the mapping */
2339 2340
	if (hugetlb_get_quota(inode->i_mapping, chg))
		return -ENOSPC;
2341 2342

	/*
2343 2344
	 * Check enough hugepages are available for the reservation.
	 * Hand back the quota if there are not
2345
	 */
2346
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
2347 2348
	if (ret < 0) {
		hugetlb_put_quota(inode->i_mapping, chg);
2349
		return ret;
K
Ken Chen 已提交
2350
	}
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
2363
	if (!vma || vma->vm_flags & VM_MAYSHARE)
2364
		region_add(&inode->i_mapping->private_list, from, to);
2365 2366 2367 2368 2369
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
2370
	struct hstate *h = hstate_inode(inode);
2371
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
K
Ken Chen 已提交
2372 2373

	spin_lock(&inode->i_lock);
2374
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
2375 2376
	spin_unlock(&inode->i_lock);

2377
	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2378
	hugetlb_acct_memory(h, -(chg - freed));
2379
}