compaction.c 74.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
11
#include <linux/cpu.h>
12 13 14 15
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
16
#include <linux/sched/signal.h>
17
#include <linux/backing-dev.h>
18
#include <linux/sysctl.h>
19
#include <linux/sysfs.h>
20
#include <linux/page-isolation.h>
21
#include <linux/kasan.h>
22 23
#include <linux/kthread.h>
#include <linux/freezer.h>
24
#include <linux/page_owner.h>
25
#include <linux/psi.h>
26 27
#include "internal.h"

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

43 44
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

45 46 47
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

48 49 50 51 52
#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
#define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
#define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)

53 54 55
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
56
	unsigned long high_pfn = 0;
57 58

	list_for_each_entry_safe(page, next, freelist, lru) {
59
		unsigned long pfn = page_to_pfn(page);
60 61
		list_del(&page->lru);
		__free_page(page);
62 63
		if (pfn > high_pfn)
			high_pfn = pfn;
64 65
	}

66
	return high_pfn;
67 68
}

69
static void split_map_pages(struct list_head *list)
70
{
71 72 73 74 75 76 77 78 79 80
	unsigned int i, order, nr_pages;
	struct page *page, *next;
	LIST_HEAD(tmp_list);

	list_for_each_entry_safe(page, next, list, lru) {
		list_del(&page->lru);

		order = page_private(page);
		nr_pages = 1 << order;

81
		post_alloc_hook(page, order, __GFP_MOVABLE);
82 83
		if (order)
			split_page(page, order);
84

85 86 87 88
		for (i = 0; i < nr_pages; i++) {
			list_add(&page->lru, &tmp_list);
			page++;
		}
89
	}
90 91

	list_splice(&tmp_list, list);
92 93
}

94
#ifdef CONFIG_COMPACTION
95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
int PageMovable(struct page *page)
{
	struct address_space *mapping;

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	if (!__PageMovable(page))
		return 0;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
		return 1;

	return 0;
}
EXPORT_SYMBOL(PageMovable);

void __SetPageMovable(struct page *page, struct address_space *mapping)
{
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
}
EXPORT_SYMBOL(__SetPageMovable);

void __ClearPageMovable(struct page *page)
{
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageMovable(page), page);
	/*
	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
	 * flag so that VM can catch up released page by driver after isolation.
	 * With it, VM migration doesn't try to put it back.
	 */
	page->mapping = (void *)((unsigned long)page->mapping &
				PAGE_MAPPING_MOVABLE);
}
EXPORT_SYMBOL(__ClearPageMovable);

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
/* Do not skip compaction more than 64 times */
#define COMPACT_MAX_DEFER_SHIFT 6

/*
 * Compaction is deferred when compaction fails to result in a page
 * allocation success. 1 << compact_defer_limit compactions are skipped up
 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 */
void defer_compaction(struct zone *zone, int order)
{
	zone->compact_considered = 0;
	zone->compact_defer_shift++;

	if (order < zone->compact_order_failed)
		zone->compact_order_failed = order;

	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;

	trace_mm_compaction_defer_compaction(zone, order);
}

/* Returns true if compaction should be skipped this time */
bool compaction_deferred(struct zone *zone, int order)
{
	unsigned long defer_limit = 1UL << zone->compact_defer_shift;

	if (order < zone->compact_order_failed)
		return false;

	/* Avoid possible overflow */
	if (++zone->compact_considered > defer_limit)
		zone->compact_considered = defer_limit;

	if (zone->compact_considered >= defer_limit)
		return false;

	trace_mm_compaction_deferred(zone, order);

	return true;
}

/*
 * Update defer tracking counters after successful compaction of given order,
 * which means an allocation either succeeded (alloc_success == true) or is
 * expected to succeed.
 */
void compaction_defer_reset(struct zone *zone, int order,
		bool alloc_success)
{
	if (alloc_success) {
		zone->compact_considered = 0;
		zone->compact_defer_shift = 0;
	}
	if (order >= zone->compact_order_failed)
		zone->compact_order_failed = order + 1;

	trace_mm_compaction_defer_reset(zone, order);
}

/* Returns true if restarting compaction after many failures */
bool compaction_restarting(struct zone *zone, int order)
{
	if (order < zone->compact_order_failed)
		return false;

	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
		zone->compact_considered >= 1UL << zone->compact_defer_shift;
}

204 205 206 207 208 209 210 211 212 213
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

214 215 216 217
static void reset_cached_positions(struct zone *zone)
{
	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
218
	zone->compact_cached_free_pfn =
219
				pageblock_start_pfn(zone_end_pfn(zone) - 1);
220 221
}

222
/*
223 224 225
 * Compound pages of >= pageblock_order should consistenly be skipped until
 * released. It is always pointless to compact pages of such order (if they are
 * migratable), and the pageblocks they occupy cannot contain any free pages.
226
 */
227
static bool pageblock_skip_persistent(struct page *page)
228
{
229
	if (!PageCompound(page))
230
		return false;
231 232 233 234 235 236 237

	page = compound_head(page);

	if (compound_order(page) >= pageblock_order)
		return true;

	return false;
238 239
}

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
static bool
__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
							bool check_target)
{
	struct page *page = pfn_to_online_page(pfn);
	struct page *end_page;
	unsigned long block_pfn;

	if (!page)
		return false;
	if (zone != page_zone(page))
		return false;
	if (pageblock_skip_persistent(page))
		return false;

	/*
	 * If skip is already cleared do no further checking once the
	 * restart points have been set.
	 */
	if (check_source && check_target && !get_pageblock_skip(page))
		return true;

	/*
	 * If clearing skip for the target scanner, do not select a
	 * non-movable pageblock as the starting point.
	 */
	if (!check_source && check_target &&
	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
		return false;

	/*
	 * Only clear the hint if a sample indicates there is either a
	 * free page or an LRU page in the block. One or other condition
	 * is necessary for the block to be a migration source/target.
	 */
	block_pfn = pageblock_start_pfn(pfn);
	pfn = max(block_pfn, zone->zone_start_pfn);
	page = pfn_to_page(pfn);
	if (zone != page_zone(page))
		return false;
	pfn = block_pfn + pageblock_nr_pages;
	pfn = min(pfn, zone_end_pfn(zone));
	end_page = pfn_to_page(pfn);

	do {
		if (pfn_valid_within(pfn)) {
			if (check_source && PageLRU(page)) {
				clear_pageblock_skip(page);
				return true;
			}

			if (check_target && PageBuddy(page)) {
				clear_pageblock_skip(page);
				return true;
			}
		}

		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
		pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
	} while (page < end_page);

	return false;
}

304 305 306 307 308
/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
309
static void __reset_isolation_suitable(struct zone *zone)
310
{
311 312 313 314 315 316 317 318 319
	unsigned long migrate_pfn = zone->zone_start_pfn;
	unsigned long free_pfn = zone_end_pfn(zone);
	unsigned long reset_migrate = free_pfn;
	unsigned long reset_free = migrate_pfn;
	bool source_set = false;
	bool free_set = false;

	if (!zone->compact_blockskip_flush)
		return;
320

321
	zone->compact_blockskip_flush = false;
322

323 324 325 326 327 328 329 330
	/*
	 * Walk the zone and update pageblock skip information. Source looks
	 * for PageLRU while target looks for PageBuddy. When the scanner
	 * is found, both PageBuddy and PageLRU are checked as the pageblock
	 * is suitable as both source and target.
	 */
	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
					free_pfn -= pageblock_nr_pages) {
331 332
		cond_resched();

333 334 335 336 337 338 339 340 341
		/* Update the migrate PFN */
		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
		    migrate_pfn < reset_migrate) {
			source_set = true;
			reset_migrate = migrate_pfn;
			zone->compact_init_migrate_pfn = reset_migrate;
			zone->compact_cached_migrate_pfn[0] = reset_migrate;
			zone->compact_cached_migrate_pfn[1] = reset_migrate;
		}
342

343 344 345 346 347 348 349 350
		/* Update the free PFN */
		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
		    free_pfn > reset_free) {
			free_set = true;
			reset_free = free_pfn;
			zone->compact_init_free_pfn = reset_free;
			zone->compact_cached_free_pfn = reset_free;
		}
351
	}
352

353 354 355 356 357 358
	/* Leave no distance if no suitable block was reset */
	if (reset_migrate >= reset_free) {
		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
		zone->compact_cached_free_pfn = free_pfn;
	}
359 360
}

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
/*
 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
 * locks are not required for read/writers. Returns true if it was already set.
 */
static bool test_and_set_skip(struct compact_control *cc, struct page *page,
							unsigned long pfn)
{
	bool skip;

	/* Do no update if skip hint is being ignored */
	if (cc->ignore_skip_hint)
		return false;

	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
		return false;

	skip = get_pageblock_skip(page);
	if (!skip && !cc->no_set_skip_hint)
		set_pageblock_skip(page);

	return skip;
}

static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
{
	struct zone *zone = cc->zone;

	pfn = pageblock_end_pfn(pfn);

	/* Set for isolation rather than compaction */
	if (cc->no_set_skip_hint)
		return;

	if (pfn > zone->compact_cached_migrate_pfn[0])
		zone->compact_cached_migrate_pfn[0] = pfn;
	if (cc->mode != MIGRATE_ASYNC &&
	    pfn > zone->compact_cached_migrate_pfn[1])
		zone->compact_cached_migrate_pfn[1] = pfn;
}

416 417
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
418
 * future. The information is later cleared by __reset_isolation_suitable().
419
 */
420
static void update_pageblock_skip(struct compact_control *cc,
421
			struct page *page, unsigned long pfn)
422
{
423
	struct zone *zone = cc->zone;
424

425
	if (cc->no_set_skip_hint)
426 427
		return;

428 429 430
	if (!page)
		return;

431
	set_pageblock_skip(page);
432

433
	/* Update where async and sync compaction should restart */
434 435
	if (pfn < zone->compact_cached_free_pfn)
		zone->compact_cached_free_pfn = pfn;
436 437 438 439 440 441 442 443
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

444
static inline bool pageblock_skip_persistent(struct page *page)
445 446 447 448 449
{
	return false;
}

static inline void update_pageblock_skip(struct compact_control *cc,
450
			struct page *page, unsigned long pfn)
451 452
{
}
453 454 455 456 457 458 459 460 461 462

static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
{
}

static bool test_and_set_skip(struct compact_control *cc, struct page *page,
							unsigned long pfn)
{
	return false;
}
463 464
#endif /* CONFIG_COMPACTION */

465 466
/*
 * Compaction requires the taking of some coarse locks that are potentially
467 468 469 470
 * very heavily contended. For async compaction, trylock and record if the
 * lock is contended. The lock will still be acquired but compaction will
 * abort when the current block is finished regardless of success rate.
 * Sync compaction acquires the lock.
471
 *
472
 * Always returns true which makes it easier to track lock state in callers.
473
 */
474
static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
475
						struct compact_control *cc)
476
{
477 478 479 480 481 482
	/* Track if the lock is contended in async mode */
	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
		if (spin_trylock_irqsave(lock, *flags))
			return true;

		cc->contended = true;
483
	}
484

485
	spin_lock_irqsave(lock, *flags);
486
	return true;
487 488
}

489 490
/*
 * Compaction requires the taking of some coarse locks that are potentially
491 492 493 494 495 496 497
 * very heavily contended. The lock should be periodically unlocked to avoid
 * having disabled IRQs for a long time, even when there is nobody waiting on
 * the lock. It might also be that allowing the IRQs will result in
 * need_resched() becoming true. If scheduling is needed, async compaction
 * aborts. Sync compaction schedules.
 * Either compaction type will also abort if a fatal signal is pending.
 * In either case if the lock was locked, it is dropped and not regained.
498
 *
499 500 501 502
 * Returns true if compaction should abort due to fatal signal pending, or
 *		async compaction due to need_resched()
 * Returns false when compaction can continue (sync compaction might have
 *		scheduled)
503
 */
504 505
static bool compact_unlock_should_abort(spinlock_t *lock,
		unsigned long flags, bool *locked, struct compact_control *cc)
506
{
507 508 509 510
	if (*locked) {
		spin_unlock_irqrestore(lock, flags);
		*locked = false;
	}
511

512
	if (fatal_signal_pending(current)) {
513
		cc->contended = true;
514 515
		return true;
	}
516

517
	cond_resched();
518 519 520 521

	return false;
}

522
/*
523 524 525
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 * (even though it may still end up isolating some pages).
526
 */
527
static unsigned long isolate_freepages_block(struct compact_control *cc,
528
				unsigned long *start_pfn,
529 530
				unsigned long end_pfn,
				struct list_head *freelist,
531
				unsigned int stride,
532
				bool strict)
533
{
534
	int nr_scanned = 0, total_isolated = 0;
535
	struct page *cursor;
536
	unsigned long flags = 0;
537
	bool locked = false;
538
	unsigned long blockpfn = *start_pfn;
539
	unsigned int order;
540

541 542 543 544
	/* Strict mode is for isolation, speed is secondary */
	if (strict)
		stride = 1;

545 546
	cursor = pfn_to_page(blockpfn);

547
	/* Isolate free pages. */
548
	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
549
		int isolated;
550 551
		struct page *page = cursor;

552 553 554 555 556 557 558 559 560 561
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort if fatal signal
		 * pending or async compaction detects need_resched()
		 */
		if (!(blockpfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&cc->zone->lock, flags,
								&locked, cc))
			break;

562
		nr_scanned++;
563
		if (!pfn_valid_within(blockpfn))
564 565
			goto isolate_fail;

566 567 568 569 570 571 572
		/*
		 * For compound pages such as THP and hugetlbfs, we can save
		 * potentially a lot of iterations if we skip them at once.
		 * The check is racy, but we can consider only valid values
		 * and the only danger is skipping too much.
		 */
		if (PageCompound(page)) {
573 574
			const unsigned int order = compound_order(page);

575
			if (likely(order < MAX_ORDER)) {
576 577
				blockpfn += (1UL << order) - 1;
				cursor += (1UL << order) - 1;
578 579 580 581
			}
			goto isolate_fail;
		}

582
		if (!PageBuddy(page))
583
			goto isolate_fail;
584 585

		/*
586 587 588 589 590
		 * If we already hold the lock, we can skip some rechecking.
		 * Note that if we hold the lock now, checked_pageblock was
		 * already set in some previous iteration (or strict is true),
		 * so it is correct to skip the suitable migration target
		 * recheck as well.
591
		 */
592
		if (!locked) {
593
			locked = compact_lock_irqsave(&cc->zone->lock,
594
								&flags, cc);
595

596 597 598 599
			/* Recheck this is a buddy page under lock */
			if (!PageBuddy(page))
				goto isolate_fail;
		}
600

601 602 603
		/* Found a free page, will break it into order-0 pages */
		order = page_order(page);
		isolated = __isolate_free_page(page, order);
604 605
		if (!isolated)
			break;
606
		set_page_private(page, order);
607

608
		total_isolated += isolated;
609
		cc->nr_freepages += isolated;
610 611
		list_add_tail(&page->lru, freelist);

612 613 614
		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
			blockpfn += isolated;
			break;
615
		}
616 617 618 619
		/* Advance to the end of split page */
		blockpfn += isolated - 1;
		cursor += isolated - 1;
		continue;
620 621 622 623 624 625 626

isolate_fail:
		if (strict)
			break;
		else
			continue;

627 628
	}

629 630 631
	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

632 633 634 635 636 637 638
	/*
	 * There is a tiny chance that we have read bogus compound_order(),
	 * so be careful to not go outside of the pageblock.
	 */
	if (unlikely(blockpfn > end_pfn))
		blockpfn = end_pfn;

639 640 641
	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
					nr_scanned, total_isolated);

642 643 644
	/* Record how far we have got within the block */
	*start_pfn = blockpfn;

645 646 647 648 649
	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
650
	if (strict && blockpfn < end_pfn)
651 652
		total_isolated = 0;

653
	cc->total_free_scanned += nr_scanned;
654
	if (total_isolated)
655
		count_compact_events(COMPACTISOLATED, total_isolated);
656 657 658
	return total_isolated;
}

659 660
/**
 * isolate_freepages_range() - isolate free pages.
661
 * @cc:        Compaction control structure.
662 663 664 665 666 667 668 669 670 671 672
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
673
unsigned long
674 675
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
676
{
677
	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
678 679
	LIST_HEAD(freelist);

680
	pfn = start_pfn;
681
	block_start_pfn = pageblock_start_pfn(pfn);
682 683
	if (block_start_pfn < cc->zone->zone_start_pfn)
		block_start_pfn = cc->zone->zone_start_pfn;
684
	block_end_pfn = pageblock_end_pfn(pfn);
685 686

	for (; pfn < end_pfn; pfn += isolated,
687
				block_start_pfn = block_end_pfn,
688
				block_end_pfn += pageblock_nr_pages) {
689 690
		/* Protect pfn from changing by isolate_freepages_block */
		unsigned long isolate_start_pfn = pfn;
691 692 693

		block_end_pfn = min(block_end_pfn, end_pfn);

694 695 696 697 698 699
		/*
		 * pfn could pass the block_end_pfn if isolated freepage
		 * is more than pageblock order. In this case, we adjust
		 * scanning range to right one.
		 */
		if (pfn >= block_end_pfn) {
700 701
			block_start_pfn = pageblock_start_pfn(pfn);
			block_end_pfn = pageblock_end_pfn(pfn);
702 703 704
			block_end_pfn = min(block_end_pfn, end_pfn);
		}

705 706
		if (!pageblock_pfn_to_page(block_start_pfn,
					block_end_pfn, cc->zone))
707 708
			break;

709
		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
710
					block_end_pfn, &freelist, 0, true);
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

727
	/* __isolate_free_page() does not map the pages */
728
	split_map_pages(&freelist);
729 730 731 732 733 734 735 736 737 738 739

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

740 741 742
/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
743
	unsigned long active, inactive, isolated;
744

M
Mel Gorman 已提交
745 746 747 748 749 750
	inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
			node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
	active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
			node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
	isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
			node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
751

752
	return isolated > (inactive + active) / 2;
753 754
}

755
/**
756 757
 * isolate_migratepages_block() - isolate all migrate-able pages within
 *				  a single pageblock
758
 * @cc:		Compaction control structure.
759 760 761
 * @low_pfn:	The first PFN to isolate
 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 * @isolate_mode: Isolation mode to be used.
762 763
 *
 * Isolate all pages that can be migrated from the range specified by
764 765 766 767
 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 * first page that was not scanned (which may be both less, equal to or more
 * than end_pfn).
768
 *
769 770 771
 * The pages are isolated on cc->migratepages list (not required to be empty),
 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 * is neither read nor updated.
772
 */
773 774 775
static unsigned long
isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
			unsigned long end_pfn, isolate_mode_t isolate_mode)
776
{
777
	struct zone *zone = cc->zone;
778
	unsigned long nr_scanned = 0, nr_isolated = 0;
779
	struct lruvec *lruvec;
780
	unsigned long flags = 0;
781
	bool locked = false;
782
	struct page *page = NULL, *valid_page = NULL;
783
	unsigned long start_pfn = low_pfn;
784 785
	bool skip_on_failure = false;
	unsigned long next_skip_pfn = 0;
786
	bool skip_updated = false;
787 788 789 790 791 792 793

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
794
		/* async migration should just abort */
795
		if (cc->mode == MIGRATE_ASYNC)
796
			return 0;
797

798 799 800
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
801
			return 0;
802 803
	}

804
	cond_resched();
805

806 807 808 809 810
	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
		skip_on_failure = true;
		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
	}

811 812
	/* Time to isolate some pages for migration */
	for (; low_pfn < end_pfn; low_pfn++) {
813

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
		if (skip_on_failure && low_pfn >= next_skip_pfn) {
			/*
			 * We have isolated all migration candidates in the
			 * previous order-aligned block, and did not skip it due
			 * to failure. We should migrate the pages now and
			 * hopefully succeed compaction.
			 */
			if (nr_isolated)
				break;

			/*
			 * We failed to isolate in the previous order-aligned
			 * block. Set the new boundary to the end of the
			 * current block. Note we can't simply increase
			 * next_skip_pfn by 1 << order, as low_pfn might have
			 * been incremented by a higher number due to skipping
			 * a compound or a high-order buddy page in the
			 * previous loop iteration.
			 */
			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
		}

836 837 838 839 840 841
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort async compaction
		 * if contended.
		 */
		if (!(low_pfn % SWAP_CLUSTER_MAX)
842
		    && compact_unlock_should_abort(zone_lru_lock(zone), flags,
843 844
								&locked, cc))
			break;
845

846
		if (!pfn_valid_within(low_pfn))
847
			goto isolate_fail;
848
		nr_scanned++;
849 850

		page = pfn_to_page(low_pfn);
851

852 853 854 855 856 857 858 859 860 861 862
		/*
		 * Check if the pageblock has already been marked skipped.
		 * Only the aligned PFN is checked as the caller isolates
		 * COMPACT_CLUSTER_MAX at a time so the second call must
		 * not falsely conclude that the block should be skipped.
		 */
		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
				low_pfn = end_pfn;
				goto isolate_abort;
			}
863
			valid_page = page;
864
		}
865

866
		/*
867 868 869 870
		 * Skip if free. We read page order here without zone lock
		 * which is generally unsafe, but the race window is small and
		 * the worst thing that can happen is that we skip some
		 * potential isolation targets.
871
		 */
872 873 874 875 876 877 878 879 880 881
		if (PageBuddy(page)) {
			unsigned long freepage_order = page_order_unsafe(page);

			/*
			 * Without lock, we cannot be sure that what we got is
			 * a valid page order. Consider only values in the
			 * valid order range to prevent low_pfn overflow.
			 */
			if (freepage_order > 0 && freepage_order < MAX_ORDER)
				low_pfn += (1UL << freepage_order) - 1;
882
			continue;
883
		}
884

885
		/*
886 887 888 889 890
		 * Regardless of being on LRU, compound pages such as THP and
		 * hugetlbfs are not to be compacted. We can potentially save
		 * a lot of iterations if we skip them at once. The check is
		 * racy, but we can consider only valid values and the only
		 * danger is skipping too much.
891
		 */
892
		if (PageCompound(page)) {
893
			const unsigned int order = compound_order(page);
894

895
			if (likely(order < MAX_ORDER))
896
				low_pfn += (1UL << order) - 1;
897
			goto isolate_fail;
898 899
		}

900 901 902 903 904 905 906 907 908 909 910 911 912
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU and non-lru movable pages.
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			/*
			 * __PageMovable can return false positive so we need
			 * to verify it under page_lock.
			 */
			if (unlikely(__PageMovable(page)) &&
					!PageIsolated(page)) {
				if (locked) {
913
					spin_unlock_irqrestore(zone_lru_lock(zone),
914 915 916 917
									flags);
					locked = false;
				}

918
				if (!isolate_movable_page(page, isolate_mode))
919 920 921
					goto isolate_success;
			}

922
			goto isolate_fail;
923
		}
924

925 926 927 928 929 930 931
		/*
		 * Migration will fail if an anonymous page is pinned in memory,
		 * so avoid taking lru_lock and isolating it unnecessarily in an
		 * admittedly racy check.
		 */
		if (!page_mapping(page) &&
		    page_count(page) > page_mapcount(page))
932
			goto isolate_fail;
933

934 935 936 937 938 939 940
		/*
		 * Only allow to migrate anonymous pages in GFP_NOFS context
		 * because those do not depend on fs locks.
		 */
		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
			goto isolate_fail;

941 942
		/* If we already hold the lock, we can skip some rechecking */
		if (!locked) {
943
			locked = compact_lock_irqsave(zone_lru_lock(zone),
944
								&flags, cc);
945 946 947 948 949 950 951

			/* Try get exclusive access under lock */
			if (!skip_updated) {
				skip_updated = true;
				if (test_and_set_skip(cc, page, low_pfn))
					goto isolate_abort;
			}
952

953
			/* Recheck PageLRU and PageCompound under lock */
954
			if (!PageLRU(page))
955
				goto isolate_fail;
956 957 958 959 960 961 962

			/*
			 * Page become compound since the non-locked check,
			 * and it's on LRU. It can only be a THP so the order
			 * is safe to read and it's 0 for tail pages.
			 */
			if (unlikely(PageCompound(page))) {
963
				low_pfn += (1UL << compound_order(page)) - 1;
964
				goto isolate_fail;
965
			}
966 967
		}

M
Mel Gorman 已提交
968
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
969

970
		/* Try isolate the page */
971
		if (__isolate_lru_page(page, isolate_mode) != 0)
972
			goto isolate_fail;
973

974
		VM_BUG_ON_PAGE(PageCompound(page), page);
975

976
		/* Successfully isolated */
977
		del_page_from_lru_list(page, lruvec, page_lru(page));
978 979
		inc_node_page_state(page,
				NR_ISOLATED_ANON + page_is_file_cache(page));
980 981

isolate_success:
982
		list_add(&page->lru, &cc->migratepages);
983
		cc->nr_migratepages++;
984
		nr_isolated++;
985

986 987
		/*
		 * Avoid isolating too much unless this block is being
988 989 990
		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
		 * or a lock is contended. For contention, isolate quickly to
		 * potentially remove one source of contention.
991
		 */
992 993
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
		    !cc->rescan && !cc->contended) {
994
			++low_pfn;
995
			break;
996
		}
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

		continue;
isolate_fail:
		if (!skip_on_failure)
			continue;

		/*
		 * We have isolated some pages, but then failed. Release them
		 * instead of migrating, as we cannot form the cc->order buddy
		 * page anyway.
		 */
		if (nr_isolated) {
			if (locked) {
1010
				spin_unlock_irqrestore(zone_lru_lock(zone), flags);
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
				locked = false;
			}
			putback_movable_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
			nr_isolated = 0;
		}

		if (low_pfn < next_skip_pfn) {
			low_pfn = next_skip_pfn - 1;
			/*
			 * The check near the loop beginning would have updated
			 * next_skip_pfn too, but this is a bit simpler.
			 */
			next_skip_pfn += 1UL << cc->order;
		}
1026 1027
	}

1028 1029 1030 1031 1032 1033 1034
	/*
	 * The PageBuddy() check could have potentially brought us outside
	 * the range to be scanned.
	 */
	if (unlikely(low_pfn > end_pfn))
		low_pfn = end_pfn;

1035
isolate_abort:
1036
	if (locked)
1037
		spin_unlock_irqrestore(zone_lru_lock(zone), flags);
1038

1039
	/*
1040 1041 1042 1043 1044 1045
	 * Updated the cached scanner pfn once the pageblock has been scanned
	 * Pages will either be migrated in which case there is no point
	 * scanning in the near future or migration failed in which case the
	 * failure reason may persist. The block is marked for skipping if
	 * there were no pages isolated in the block or if the block is
	 * rescanned twice in a row.
1046
	 */
1047
	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1048 1049 1050 1051
		if (valid_page && !skip_updated)
			set_pageblock_skip(valid_page);
		update_cached_migrate(cc, low_pfn);
	}
1052

1053 1054
	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
						nr_scanned, nr_isolated);
1055

1056
	cc->total_migrate_scanned += nr_scanned;
1057
	if (nr_isolated)
1058
		count_compact_events(COMPACTISOLATED, nr_isolated);
1059

1060 1061 1062
	return low_pfn;
}

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
/**
 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 * @cc:        Compaction control structure.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Returns zero if isolation fails fatally due to e.g. pending signal.
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 */
unsigned long
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
							unsigned long end_pfn)
{
1077
	unsigned long pfn, block_start_pfn, block_end_pfn;
1078 1079 1080

	/* Scan block by block. First and last block may be incomplete */
	pfn = start_pfn;
1081
	block_start_pfn = pageblock_start_pfn(pfn);
1082 1083
	if (block_start_pfn < cc->zone->zone_start_pfn)
		block_start_pfn = cc->zone->zone_start_pfn;
1084
	block_end_pfn = pageblock_end_pfn(pfn);
1085 1086

	for (; pfn < end_pfn; pfn = block_end_pfn,
1087
				block_start_pfn = block_end_pfn,
1088 1089 1090 1091
				block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, end_pfn);

1092 1093
		if (!pageblock_pfn_to_page(block_start_pfn,
					block_end_pfn, cc->zone))
1094 1095 1096 1097 1098
			continue;

		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
							ISOLATE_UNEVICTABLE);

1099
		if (!pfn)
1100
			break;
1101 1102 1103

		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
			break;
1104 1105 1106 1107 1108
	}

	return pfn;
}

1109 1110
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
1111

1112 1113 1114
static bool suitable_migration_source(struct compact_control *cc,
							struct page *page)
{
1115 1116
	int block_mt;

1117 1118 1119
	if (pageblock_skip_persistent(page))
		return false;

1120
	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1121 1122
		return true;

1123 1124 1125 1126 1127 1128
	block_mt = get_pageblock_migratetype(page);

	if (cc->migratetype == MIGRATE_MOVABLE)
		return is_migrate_movable(block_mt);
	else
		return block_mt == cc->migratetype;
1129 1130
}

1131
/* Returns true if the page is within a block suitable for migration to */
1132 1133
static bool suitable_migration_target(struct compact_control *cc,
							struct page *page)
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
{
	/* If the page is a large free page, then disallow migration */
	if (PageBuddy(page)) {
		/*
		 * We are checking page_order without zone->lock taken. But
		 * the only small danger is that we skip a potentially suitable
		 * pageblock, so it's not worth to check order for valid range.
		 */
		if (page_order_unsafe(page) >= pageblock_order)
			return false;
	}

1146 1147 1148
	if (cc->ignore_block_suitable)
		return true;

1149
	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1150
	if (is_migrate_movable(get_pageblock_migratetype(page)))
1151 1152 1153 1154 1155 1156
		return true;

	/* Otherwise skip the block */
	return false;
}

1157 1158 1159 1160 1161 1162
static inline unsigned int
freelist_scan_limit(struct compact_control *cc)
{
	return (COMPACT_CLUSTER_MAX >> cc->fast_search_fail) + 1;
}

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
/*
 * Test whether the free scanner has reached the same or lower pageblock than
 * the migration scanner, and compaction should thus terminate.
 */
static inline bool compact_scanners_met(struct compact_control *cc)
{
	return (cc->free_pfn >> pageblock_order)
		<= (cc->migrate_pfn >> pageblock_order);
}

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
/*
 * Used when scanning for a suitable migration target which scans freelists
 * in reverse. Reorders the list such as the unscanned pages are scanned
 * first on the next iteration of the free scanner
 */
static void
move_freelist_head(struct list_head *freelist, struct page *freepage)
{
	LIST_HEAD(sublist);

	if (!list_is_last(freelist, &freepage->lru)) {
		list_cut_before(&sublist, freelist, &freepage->lru);
		if (!list_empty(&sublist))
			list_splice_tail(&sublist, freelist);
	}
}

/*
 * Similar to move_freelist_head except used by the migration scanner
 * when scanning forward. It's possible for these list operations to
 * move against each other if they search the free list exactly in
 * lockstep.
 */
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
static void
move_freelist_tail(struct list_head *freelist, struct page *freepage)
{
	LIST_HEAD(sublist);

	if (!list_is_first(freelist, &freepage->lru)) {
		list_cut_position(&sublist, freelist, &freepage->lru);
		if (!list_empty(&sublist))
			list_splice_tail(&sublist, freelist);
	}
}

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
static void
fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
{
	unsigned long start_pfn, end_pfn;
	struct page *page = pfn_to_page(pfn);

	/* Do not search around if there are enough pages already */
	if (cc->nr_freepages >= cc->nr_migratepages)
		return;

	/* Minimise scanning during async compaction */
	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
		return;

	/* Pageblock boundaries */
	start_pfn = pageblock_start_pfn(pfn);
	end_pfn = min(start_pfn + pageblock_nr_pages, zone_end_pfn(cc->zone));

	/* Scan before */
	if (start_pfn != pfn) {
1228
		isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1229 1230 1231 1232 1233 1234 1235
		if (cc->nr_freepages >= cc->nr_migratepages)
			return;
	}

	/* Scan after */
	start_pfn = pfn + nr_isolated;
	if (start_pfn != end_pfn)
1236
		isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1237 1238 1239 1240 1241 1242

	/* Skip this pageblock in the future as it's full or nearly full */
	if (cc->nr_freepages < cc->nr_migratepages)
		set_pageblock_skip(page);
}

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
/* Search orders in round-robin fashion */
static int next_search_order(struct compact_control *cc, int order)
{
	order--;
	if (order < 0)
		order = cc->order - 1;

	/* Search wrapped around? */
	if (order == cc->search_order) {
		cc->search_order--;
		if (cc->search_order < 0)
			cc->search_order = cc->order - 1;
		return -1;
	}

	return order;
}

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
static unsigned long
fast_isolate_freepages(struct compact_control *cc)
{
	unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
	unsigned int nr_scanned = 0;
	unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
	unsigned long nr_isolated = 0;
	unsigned long distance;
	struct page *page = NULL;
	bool scan_start = false;
	int order;

	/* Full compaction passes in a negative order */
	if (cc->order <= 0)
		return cc->free_pfn;

	/*
	 * If starting the scan, use a deeper search and use the highest
	 * PFN found if a suitable one is not found.
	 */
1281
	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
		limit = pageblock_nr_pages >> 1;
		scan_start = true;
	}

	/*
	 * Preferred point is in the top quarter of the scan space but take
	 * a pfn from the top half if the search is problematic.
	 */
	distance = (cc->free_pfn - cc->migrate_pfn);
	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));

	if (WARN_ON_ONCE(min_pfn > low_pfn))
		low_pfn = min_pfn;

1297 1298 1299 1300 1301 1302 1303 1304 1305
	/*
	 * Search starts from the last successful isolation order or the next
	 * order to search after a previous failure
	 */
	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);

	for (order = cc->search_order;
	     !page && order >= 0;
	     order = next_search_order(cc, order)) {
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
		struct free_area *area = &cc->zone->free_area[order];
		struct list_head *freelist;
		struct page *freepage;
		unsigned long flags;
		unsigned int order_scanned = 0;

		if (!area->nr_free)
			continue;

		spin_lock_irqsave(&cc->zone->lock, flags);
		freelist = &area->free_list[MIGRATE_MOVABLE];
		list_for_each_entry_reverse(freepage, freelist, lru) {
			unsigned long pfn;

			order_scanned++;
			nr_scanned++;
			pfn = page_to_pfn(freepage);

			if (pfn >= highest)
				highest = pageblock_start_pfn(pfn);

			if (pfn >= low_pfn) {
				cc->fast_search_fail = 0;
1329
				cc->search_order = order;
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
				page = freepage;
				break;
			}

			if (pfn >= min_pfn && pfn > high_pfn) {
				high_pfn = pfn;

				/* Shorten the scan if a candidate is found */
				limit >>= 1;
			}

			if (order_scanned >= limit)
				break;
		}

		/* Use a minimum pfn if a preferred one was not found */
		if (!page && high_pfn) {
			page = pfn_to_page(high_pfn);

			/* Update freepage for the list reorder below */
			freepage = page;
		}

		/* Reorder to so a future search skips recent pages */
		move_freelist_head(freelist, freepage);

		/* Isolate the page if available */
		if (page) {
			if (__isolate_free_page(page, order)) {
				set_page_private(page, order);
				nr_isolated = 1 << order;
				cc->nr_freepages += nr_isolated;
				list_add_tail(&page->lru, &cc->freepages);
				count_compact_events(COMPACTISOLATED, nr_isolated);
			} else {
				/* If isolation fails, abort the search */
				order = -1;
				page = NULL;
			}
		}

		spin_unlock_irqrestore(&cc->zone->lock, flags);

		/*
		 * Smaller scan on next order so the total scan ig related
		 * to freelist_scan_limit.
		 */
		if (order_scanned >= limit)
			limit = min(1U, limit >> 1);
	}

	if (!page) {
		cc->fast_search_fail++;
		if (scan_start) {
			/*
			 * Use the highest PFN found above min. If one was
			 * not found, be pessemistic for direct compaction
			 * and use the min mark.
			 */
			if (highest) {
				page = pfn_to_page(highest);
				cc->free_pfn = highest;
			} else {
				if (cc->direct_compaction) {
					page = pfn_to_page(min_pfn);
					cc->free_pfn = min_pfn;
				}
			}
		}
	}

1401 1402
	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
		highest -= pageblock_nr_pages;
1403
		cc->zone->compact_cached_free_pfn = highest;
1404
	}
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414

	cc->total_free_scanned += nr_scanned;
	if (!page)
		return cc->free_pfn;

	low_pfn = page_to_pfn(page);
	fast_isolate_around(cc, low_pfn, nr_isolated);
	return low_pfn;
}

1415
/*
1416 1417
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
1418
 */
1419
static void isolate_freepages(struct compact_control *cc)
1420
{
1421
	struct zone *zone = cc->zone;
1422
	struct page *page;
1423
	unsigned long block_start_pfn;	/* start of current pageblock */
1424
	unsigned long isolate_start_pfn; /* exact pfn we start at */
1425 1426
	unsigned long block_end_pfn;	/* end of current pageblock */
	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1427
	struct list_head *freelist = &cc->freepages;
1428
	unsigned int stride;
1429

1430 1431 1432 1433 1434
	/* Try a small search of the free lists for a candidate */
	isolate_start_pfn = fast_isolate_freepages(cc);
	if (cc->nr_freepages)
		goto splitmap;

1435 1436
	/*
	 * Initialise the free scanner. The starting point is where we last
1437
	 * successfully isolated from, zone-cached value, or the end of the
1438 1439
	 * zone when isolating for the first time. For looping we also need
	 * this pfn aligned down to the pageblock boundary, because we do
1440 1441 1442
	 * block_start_pfn -= pageblock_nr_pages in the for loop.
	 * For ending point, take care when isolating in last pageblock of a
	 * a zone which ends in the middle of a pageblock.
1443 1444
	 * The low boundary is the end of the pageblock the migration scanner
	 * is using.
1445
	 */
1446
	isolate_start_pfn = cc->free_pfn;
1447
	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1448 1449
	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
						zone_end_pfn(zone));
1450
	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1451
	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1452

1453 1454 1455 1456 1457
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
1458
	for (; block_start_pfn >= low_pfn;
1459
				block_end_pfn = block_start_pfn,
1460 1461
				block_start_pfn -= pageblock_nr_pages,
				isolate_start_pfn = block_start_pfn) {
1462 1463
		unsigned long nr_isolated;

1464 1465
		/*
		 * This can iterate a massively long zone without finding any
1466
		 * suitable migration targets, so periodically check resched.
1467
		 */
1468
		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1469
			cond_resched();
1470

1471 1472 1473
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
		if (!page)
1474 1475 1476
			continue;

		/* Check the block is suitable for migration */
1477
		if (!suitable_migration_target(cc, page))
1478
			continue;
1479

1480 1481 1482 1483
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

1484
		/* Found a block suitable for isolating free pages from. */
1485 1486
		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
					block_end_pfn, freelist, stride, false);
1487

1488 1489 1490 1491
		/* Update the skip hint if the full pageblock was scanned */
		if (isolate_start_pfn == block_end_pfn)
			update_pageblock_skip(cc, page, block_start_pfn);

1492 1493
		/* Are enough freepages isolated? */
		if (cc->nr_freepages >= cc->nr_migratepages) {
1494 1495 1496 1497 1498
			if (isolate_start_pfn >= block_end_pfn) {
				/*
				 * Restart at previous pageblock if more
				 * freepages can be isolated next time.
				 */
1499 1500
				isolate_start_pfn =
					block_start_pfn - pageblock_nr_pages;
1501
			}
1502
			break;
1503
		} else if (isolate_start_pfn < block_end_pfn) {
1504
			/*
1505 1506
			 * If isolation failed early, do not continue
			 * needlessly.
1507
			 */
1508
			break;
1509
		}
1510 1511 1512 1513 1514 1515 1516

		/* Adjust stride depending on isolation */
		if (nr_isolated) {
			stride = 1;
			continue;
		}
		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1517 1518
	}

1519
	/*
1520 1521 1522 1523
	 * Record where the free scanner will restart next time. Either we
	 * broke from the loop and set isolate_start_pfn based on the last
	 * call to isolate_freepages_block(), or we met the migration scanner
	 * and the loop terminated due to isolate_start_pfn < low_pfn
1524
	 */
1525
	cc->free_pfn = isolate_start_pfn;
1526 1527 1528 1529

splitmap:
	/* __isolate_free_page() does not map the pages */
	split_map_pages(freelist);
1530 1531 1532 1533 1534 1535 1536
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
1537
					unsigned long data)
1538 1539 1540 1541 1542
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

	if (list_empty(&cc->freepages)) {
1543
		isolate_freepages(cc);
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
 * This is a migrate-callback that "frees" freepages back to the isolated
 * freelist.  All pages on the freelist are from the same zone, so there is no
 * special handling needed for NUMA.
 */
static void compaction_free(struct page *page, unsigned long data)
{
	struct compact_control *cc = (struct compact_control *)data;

	list_add(&page->lru, &cc->freepages);
	cc->nr_freepages++;
}

1569 1570 1571 1572 1573 1574 1575
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

1576 1577 1578 1579 1580 1581
/*
 * Allow userspace to control policy on scanning the unevictable LRU for
 * compactable pages.
 */
int sysctl_compact_unevictable_allowed __read_mostly = 1;

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
static inline void
update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
{
	if (cc->fast_start_pfn == ULONG_MAX)
		return;

	if (!cc->fast_start_pfn)
		cc->fast_start_pfn = pfn;

	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
}

static inline unsigned long
reinit_migrate_pfn(struct compact_control *cc)
{
	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
		return cc->migrate_pfn;

	cc->migrate_pfn = cc->fast_start_pfn;
	cc->fast_start_pfn = ULONG_MAX;

	return cc->migrate_pfn;
}

/*
 * Briefly search the free lists for a migration source that already has
 * some free pages to reduce the number of pages that need migration
 * before a pageblock is free.
 */
static unsigned long fast_find_migrateblock(struct compact_control *cc)
{
	unsigned int limit = freelist_scan_limit(cc);
	unsigned int nr_scanned = 0;
	unsigned long distance;
	unsigned long pfn = cc->migrate_pfn;
	unsigned long high_pfn;
	int order;

	/* Skip hints are relied on to avoid repeats on the fast search */
	if (cc->ignore_skip_hint)
		return pfn;

	/*
	 * If the migrate_pfn is not at the start of a zone or the start
	 * of a pageblock then assume this is a continuation of a previous
	 * scan restarted due to COMPACT_CLUSTER_MAX.
	 */
	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
		return pfn;

	/*
	 * For smaller orders, just linearly scan as the number of pages
	 * to migrate should be relatively small and does not necessarily
	 * justify freeing up a large block for a small allocation.
	 */
	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return pfn;

	/*
	 * Only allow kcompactd and direct requests for movable pages to
	 * quickly clear out a MOVABLE pageblock for allocation. This
	 * reduces the risk that a large movable pageblock is freed for
	 * an unmovable/reclaimable small allocation.
	 */
	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
		return pfn;

	/*
	 * When starting the migration scanner, pick any pageblock within the
	 * first half of the search space. Otherwise try and pick a pageblock
	 * within the first eighth to reduce the chances that a migration
	 * target later becomes a source.
	 */
	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
		distance >>= 2;
	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);

	for (order = cc->order - 1;
	     order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
	     order--) {
		struct free_area *area = &cc->zone->free_area[order];
		struct list_head *freelist;
		unsigned long flags;
		struct page *freepage;

		if (!area->nr_free)
			continue;

		spin_lock_irqsave(&cc->zone->lock, flags);
		freelist = &area->free_list[MIGRATE_MOVABLE];
		list_for_each_entry(freepage, freelist, lru) {
			unsigned long free_pfn;

			nr_scanned++;
			free_pfn = page_to_pfn(freepage);
			if (free_pfn < high_pfn) {
				/*
				 * Avoid if skipped recently. Ideally it would
				 * move to the tail but even safe iteration of
				 * the list assumes an entry is deleted, not
				 * reordered.
				 */
				if (get_pageblock_skip(freepage)) {
					if (list_is_last(freelist, &freepage->lru))
						break;

					continue;
				}

				/* Reorder to so a future search skips recent pages */
				move_freelist_tail(freelist, freepage);

1695
				update_fast_start_pfn(cc, free_pfn);
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
				pfn = pageblock_start_pfn(free_pfn);
				cc->fast_search_fail = 0;
				set_pageblock_skip(freepage);
				break;
			}

			if (nr_scanned >= limit) {
				cc->fast_search_fail++;
				move_freelist_tail(freelist, freepage);
				break;
			}
		}
		spin_unlock_irqrestore(&cc->zone->lock, flags);
	}

	cc->total_migrate_scanned += nr_scanned;

	/*
	 * If fast scanning failed then use a cached entry for a page block
	 * that had free pages as the basis for starting a linear scan.
	 */
	if (pfn == cc->migrate_pfn)
		pfn = reinit_migrate_pfn(cc);

	return pfn;
}

1723
/*
1724 1725 1726
 * Isolate all pages that can be migrated from the first suitable block,
 * starting at the block pointed to by the migrate scanner pfn within
 * compact_control.
1727 1728 1729 1730
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
1731 1732 1733
	unsigned long block_start_pfn;
	unsigned long block_end_pfn;
	unsigned long low_pfn;
1734 1735
	struct page *page;
	const isolate_mode_t isolate_mode =
1736
		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1737
		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1738
	bool fast_find_block;
1739

1740 1741
	/*
	 * Start at where we last stopped, or beginning of the zone as
1742 1743
	 * initialized by compact_zone(). The first failure will use
	 * the lowest PFN as the starting point for linear scanning.
1744
	 */
1745
	low_pfn = fast_find_migrateblock(cc);
1746
	block_start_pfn = pageblock_start_pfn(low_pfn);
1747 1748
	if (block_start_pfn < zone->zone_start_pfn)
		block_start_pfn = zone->zone_start_pfn;
1749

1750 1751 1752 1753 1754 1755 1756
	/*
	 * fast_find_migrateblock marks a pageblock skipped so to avoid
	 * the isolation_suitable check below, check whether the fast
	 * search was successful.
	 */
	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;

1757
	/* Only scan within a pageblock boundary */
1758
	block_end_pfn = pageblock_end_pfn(low_pfn);
1759

1760 1761 1762 1763
	/*
	 * Iterate over whole pageblocks until we find the first suitable.
	 * Do not cross the free scanner.
	 */
1764
	for (; block_end_pfn <= cc->free_pfn;
1765
			fast_find_block = false,
1766 1767 1768
			low_pfn = block_end_pfn,
			block_start_pfn = block_end_pfn,
			block_end_pfn += pageblock_nr_pages) {
1769

1770 1771 1772
		/*
		 * This can potentially iterate a massively long zone with
		 * many pageblocks unsuitable, so periodically check if we
1773
		 * need to schedule.
1774
		 */
1775
		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1776
			cond_resched();
1777

1778 1779
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
1780
		if (!page)
1781 1782
			continue;

1783 1784 1785 1786 1787 1788 1789 1790 1791
		/*
		 * If isolation recently failed, do not retry. Only check the
		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
		 * to be visited multiple times. Assume skip was checked
		 * before making it "skip" so other compaction instances do
		 * not scan the same block.
		 */
		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
		    !fast_find_block && !isolation_suitable(cc, page))
1792 1793 1794
			continue;

		/*
1795 1796 1797 1798 1799 1800
		 * For async compaction, also only scan in MOVABLE blocks
		 * without huge pages. Async compaction is optimistic to see
		 * if the minimum amount of work satisfies the allocation.
		 * The cached PFN is updated as it's possible that all
		 * remaining blocks between source and target are unsuitable
		 * and the compaction scanners fail to meet.
1801
		 */
1802 1803
		if (!suitable_migration_source(cc, page)) {
			update_cached_migrate(cc, block_end_pfn);
1804
			continue;
1805
		}
1806 1807

		/* Perform the isolation */
1808 1809
		low_pfn = isolate_migratepages_block(cc, low_pfn,
						block_end_pfn, isolate_mode);
1810

1811
		if (!low_pfn)
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
			return ISOLATE_ABORT;

		/*
		 * Either we isolated something and proceed with migration. Or
		 * we failed and compact_zone should decide if we should
		 * continue or not.
		 */
		break;
	}

1822 1823
	/* Record where migration scanner will be restarted. */
	cc->migrate_pfn = low_pfn;
1824

1825
	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1826 1827
}

1828 1829 1830 1831 1832 1833 1834 1835 1836
/*
 * order == -1 is expected when compacting via
 * /proc/sys/vm/compact_memory
 */
static inline bool is_via_compact_memory(int order)
{
	return order == -1;
}

1837
static enum compact_result __compact_finished(struct compact_control *cc)
1838
{
1839
	unsigned int order;
1840
	const int migratetype = cc->migratetype;
1841
	int ret;
1842

1843
	/* Compaction run completes if the migrate and free scanner meet */
1844
	if (compact_scanners_met(cc)) {
1845
		/* Let the next compaction start anew. */
1846
		reset_cached_positions(cc->zone);
1847

1848 1849
		/*
		 * Mark that the PG_migrate_skip information should be cleared
1850
		 * by kswapd when it goes to sleep. kcompactd does not set the
1851 1852 1853
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
1854
		if (cc->direct_compaction)
1855
			cc->zone->compact_blockskip_flush = true;
1856

1857 1858 1859 1860
		if (cc->whole_zone)
			return COMPACT_COMPLETE;
		else
			return COMPACT_PARTIAL_SKIPPED;
1861
	}
1862

1863
	if (is_via_compact_memory(cc->order))
1864 1865
		return COMPACT_CONTINUE;

1866 1867 1868 1869 1870 1871 1872 1873
	/*
	 * Always finish scanning a pageblock to reduce the possibility of
	 * fallbacks in the future. This is particularly important when
	 * migration source is unmovable/reclaimable but it's not worth
	 * special casing.
	 */
	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
		return COMPACT_CONTINUE;
1874

1875
	/* Direct compactor: Is a suitable page free? */
1876
	ret = COMPACT_NO_SUITABLE_PAGE;
1877
	for (order = cc->order; order < MAX_ORDER; order++) {
1878
		struct free_area *area = &cc->zone->free_area[order];
1879
		bool can_steal;
1880 1881

		/* Job done if page is free of the right migratetype */
1882
		if (!list_empty(&area->free_list[migratetype]))
1883
			return COMPACT_SUCCESS;
1884

1885 1886 1887 1888
#ifdef CONFIG_CMA
		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
		if (migratetype == MIGRATE_MOVABLE &&
			!list_empty(&area->free_list[MIGRATE_CMA]))
1889
			return COMPACT_SUCCESS;
1890 1891 1892 1893 1894 1895
#endif
		/*
		 * Job done if allocation would steal freepages from
		 * other migratetype buddy lists.
		 */
		if (find_suitable_fallback(area, order, migratetype,
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
						true, &can_steal) != -1) {

			/* movable pages are OK in any pageblock */
			if (migratetype == MIGRATE_MOVABLE)
				return COMPACT_SUCCESS;

			/*
			 * We are stealing for a non-movable allocation. Make
			 * sure we finish compacting the current pageblock
			 * first so it is as free as possible and we won't
			 * have to steal another one soon. This only applies
			 * to sync compaction, as async compaction operates
			 * on pageblocks of the same migratetype.
			 */
			if (cc->mode == MIGRATE_ASYNC ||
					IS_ALIGNED(cc->migrate_pfn,
							pageblock_nr_pages)) {
				return COMPACT_SUCCESS;
			}

1916 1917
			ret = COMPACT_CONTINUE;
			break;
1918
		}
1919 1920
	}

1921 1922 1923 1924
	if (cc->contended || fatal_signal_pending(current))
		ret = COMPACT_CONTENDED;

	return ret;
1925 1926
}

1927
static enum compact_result compact_finished(struct compact_control *cc)
1928 1929 1930
{
	int ret;

1931 1932
	ret = __compact_finished(cc);
	trace_mm_compaction_finished(cc->zone, cc->order, ret);
1933 1934 1935 1936
	if (ret == COMPACT_NO_SUITABLE_PAGE)
		ret = COMPACT_CONTINUE;

	return ret;
1937 1938
}

1939 1940 1941 1942
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1943
 *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1944 1945
 *   COMPACT_CONTINUE - If compaction should run now
 */
1946
static enum compact_result __compaction_suitable(struct zone *zone, int order,
1947
					unsigned int alloc_flags,
1948 1949
					int classzone_idx,
					unsigned long wmark_target)
1950 1951 1952
{
	unsigned long watermark;

1953
	if (is_via_compact_memory(order))
1954 1955
		return COMPACT_CONTINUE;

1956
	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
1957 1958 1959 1960 1961 1962
	/*
	 * If watermarks for high-order allocation are already met, there
	 * should be no need for compaction at all.
	 */
	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
								alloc_flags))
1963
		return COMPACT_SUCCESS;
1964

1965
	/*
1966
	 * Watermarks for order-0 must be met for compaction to be able to
1967 1968 1969 1970 1971 1972 1973
	 * isolate free pages for migration targets. This means that the
	 * watermark and alloc_flags have to match, or be more pessimistic than
	 * the check in __isolate_free_page(). We don't use the direct
	 * compactor's alloc_flags, as they are not relevant for freepage
	 * isolation. We however do use the direct compactor's classzone_idx to
	 * skip over zones where lowmem reserves would prevent allocation even
	 * if compaction succeeds.
1974 1975
	 * For costly orders, we require low watermark instead of min for
	 * compaction to proceed to increase its chances.
1976 1977
	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
	 * suitable migration targets
1978
	 */
1979 1980 1981
	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
				low_wmark_pages(zone) : min_wmark_pages(zone);
	watermark += compact_gap(order);
1982
	if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1983
						ALLOC_CMA, wmark_target))
1984 1985
		return COMPACT_SKIPPED;

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
	return COMPACT_CONTINUE;
}

enum compact_result compaction_suitable(struct zone *zone, int order,
					unsigned int alloc_flags,
					int classzone_idx)
{
	enum compact_result ret;
	int fragindex;

	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
				    zone_page_state(zone, NR_FREE_PAGES));
1998 1999 2000 2001
	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
2002 2003
	 * index of -1000 would imply allocations might succeed depending on
	 * watermarks, but we already failed the high-order watermark check
2004 2005 2006
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
2007 2008 2009 2010 2011 2012
	 * Only compact if a failure would be due to fragmentation. Also
	 * ignore fragindex for non-costly orders where the alternative to
	 * a successful reclaim/compaction is OOM. Fragindex and the
	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
	 * excessive compaction for costly orders, but it should not be at the
	 * expense of system stability.
2013
	 */
2014
	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2015 2016 2017 2018
		fragindex = fragmentation_index(zone, order);
		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
			ret = COMPACT_NOT_SUITABLE_ZONE;
	}
2019 2020 2021 2022 2023 2024 2025 2026

	trace_mm_compaction_suitable(zone, order, ret);
	if (ret == COMPACT_NOT_SUITABLE_ZONE)
		ret = COMPACT_SKIPPED;

	return ret;
}

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
		int alloc_flags)
{
	struct zone *zone;
	struct zoneref *z;

	/*
	 * Make sure at least one zone would pass __compaction_suitable if we continue
	 * retrying the reclaim.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
		enum compact_result compact_result;

		/*
		 * Do not consider all the reclaimable memory because we do not
		 * want to trash just for a single high order allocation which
		 * is even not guaranteed to appear even if __compaction_suitable
		 * is happy about the watermark check.
		 */
2048
		available = zone_reclaimable_pages(zone) / order;
2049 2050 2051
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
		compact_result = __compaction_suitable(zone, order, alloc_flags,
				ac_classzone_idx(ac), available);
2052
		if (compact_result != COMPACT_SKIPPED)
2053 2054 2055 2056 2057 2058
			return true;
	}

	return false;
}

2059 2060
static enum compact_result
compact_zone(struct compact_control *cc, struct capture_control *capc)
2061
{
2062
	enum compact_result ret;
2063 2064
	unsigned long start_pfn = cc->zone->zone_start_pfn;
	unsigned long end_pfn = zone_end_pfn(cc->zone);
2065
	unsigned long last_migrated_pfn;
2066
	const bool sync = cc->mode != MIGRATE_ASYNC;
2067
	bool update_cached;
2068

2069
	cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
2070
	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2071
							cc->classzone_idx);
2072
	/* Compaction is likely to fail */
2073
	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2074
		return ret;
2075 2076 2077

	/* huh, compaction_suitable is returning something unexpected */
	VM_BUG_ON(ret != COMPACT_CONTINUE);
2078

2079 2080
	/*
	 * Clear pageblock skip if there were failures recently and compaction
2081
	 * is about to be retried after being deferred.
2082
	 */
2083 2084
	if (compaction_restarting(cc->zone, cc->order))
		__reset_isolation_suitable(cc->zone);
2085

2086 2087
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
2088 2089 2090
	 * information on where the scanners should start (unless we explicitly
	 * want to compact the whole zone), but check that it is initialised
	 * by ensuring the values are within zone boundaries.
2091
	 */
2092
	cc->fast_start_pfn = 0;
2093
	if (cc->whole_zone) {
2094
		cc->migrate_pfn = start_pfn;
2095 2096
		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
	} else {
2097 2098
		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2099 2100
		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2101
			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2102 2103 2104
		}
		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
			cc->migrate_pfn = start_pfn;
2105 2106
			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2107
		}
2108

2109
		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2110 2111
			cc->whole_zone = true;
	}
2112

2113
	last_migrated_pfn = 0;
2114

2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
	/*
	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
	 * the basis that some migrations will fail in ASYNC mode. However,
	 * if the cached PFNs match and pageblocks are skipped due to having
	 * no isolation candidates, then the sync state does not matter.
	 * Until a pageblock with isolation candidates is found, keep the
	 * cached PFNs in sync to avoid revisiting the same blocks.
	 */
	update_cached = !sync &&
		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];

2126 2127
	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync);
2128

2129 2130
	migrate_prep_local();

2131
	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2132
		int err;
2133
		unsigned long start_pfn = cc->migrate_pfn;
2134

2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
		/*
		 * Avoid multiple rescans which can happen if a page cannot be
		 * isolated (dirty/writeback in async mode) or if the migrated
		 * pages are being allocated before the pageblock is cleared.
		 * The first rescan will capture the entire pageblock for
		 * migration. If it fails, it'll be marked skip and scanning
		 * will proceed as normal.
		 */
		cc->rescan = false;
		if (pageblock_start_pfn(last_migrated_pfn) ==
		    pageblock_start_pfn(start_pfn)) {
			cc->rescan = true;
		}

2149
		switch (isolate_migratepages(cc->zone, cc)) {
2150
		case ISOLATE_ABORT:
2151
			ret = COMPACT_CONTENDED;
2152
			putback_movable_pages(&cc->migratepages);
2153
			cc->nr_migratepages = 0;
2154
			last_migrated_pfn = 0;
2155 2156
			goto out;
		case ISOLATE_NONE:
2157 2158 2159 2160 2161
			if (update_cached) {
				cc->zone->compact_cached_migrate_pfn[1] =
					cc->zone->compact_cached_migrate_pfn[0];
			}

2162 2163 2164 2165 2166 2167
			/*
			 * We haven't isolated and migrated anything, but
			 * there might still be unflushed migrations from
			 * previous cc->order aligned block.
			 */
			goto check_drain;
2168
		case ISOLATE_SUCCESS:
2169
			update_cached = false;
2170
			last_migrated_pfn = start_pfn;
2171 2172
			;
		}
2173

2174
		err = migrate_pages(&cc->migratepages, compaction_alloc,
2175
				compaction_free, (unsigned long)cc, cc->mode,
2176
				MR_COMPACTION);
2177

2178 2179
		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
							&cc->migratepages);
2180

2181 2182
		/* All pages were either migrated or will be released */
		cc->nr_migratepages = 0;
2183
		if (err) {
2184
			putback_movable_pages(&cc->migratepages);
2185 2186 2187 2188
			/*
			 * migrate_pages() may return -ENOMEM when scanners meet
			 * and we want compact_finished() to detect it
			 */
2189
			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2190
				ret = COMPACT_CONTENDED;
2191 2192
				goto out;
			}
2193 2194 2195 2196 2197 2198 2199 2200 2201
			/*
			 * We failed to migrate at least one page in the current
			 * order-aligned block, so skip the rest of it.
			 */
			if (cc->direct_compaction &&
						(cc->mode == MIGRATE_ASYNC)) {
				cc->migrate_pfn = block_end_pfn(
						cc->migrate_pfn - 1, cc->order);
				/* Draining pcplists is useless in this case */
2202
				last_migrated_pfn = 0;
2203
			}
2204
		}
2205 2206 2207 2208 2209 2210 2211 2212 2213

check_drain:
		/*
		 * Has the migration scanner moved away from the previous
		 * cc->order aligned block where we migrated from? If yes,
		 * flush the pages that were freed, so that they can merge and
		 * compact_finished() can detect immediately if allocation
		 * would succeed.
		 */
2214
		if (cc->order > 0 && last_migrated_pfn) {
2215 2216
			int cpu;
			unsigned long current_block_start =
2217
				block_start_pfn(cc->migrate_pfn, cc->order);
2218

2219
			if (last_migrated_pfn < current_block_start) {
2220 2221
				cpu = get_cpu();
				lru_add_drain_cpu(cpu);
2222
				drain_local_pages(cc->zone);
2223 2224
				put_cpu();
				/* No more flushing until we migrate again */
2225
				last_migrated_pfn = 0;
2226 2227 2228
			}
		}

2229 2230 2231 2232 2233
		/* Stop if a page has been captured */
		if (capc && capc->page) {
			ret = COMPACT_SUCCESS;
			break;
		}
2234 2235
	}

2236
out:
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
	/*
	 * Release free pages and update where the free scanner should restart,
	 * so we don't leave any returned pages behind in the next attempt.
	 */
	if (cc->nr_freepages > 0) {
		unsigned long free_pfn = release_freepages(&cc->freepages);

		cc->nr_freepages = 0;
		VM_BUG_ON(free_pfn == 0);
		/* The cached pfn is always the first in a pageblock */
2247
		free_pfn = pageblock_start_pfn(free_pfn);
2248 2249 2250 2251
		/*
		 * Only go back, not forward. The cached pfn might have been
		 * already reset to zone end in compact_finished()
		 */
2252 2253
		if (free_pfn > cc->zone->compact_cached_free_pfn)
			cc->zone->compact_cached_free_pfn = free_pfn;
2254
	}
2255

2256 2257 2258
	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);

2259 2260
	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync, ret);
2261

2262 2263
	return ret;
}
2264

2265
static enum compact_result compact_zone_order(struct zone *zone, int order,
2266
		gfp_t gfp_mask, enum compact_priority prio,
2267 2268
		unsigned int alloc_flags, int classzone_idx,
		struct page **capture)
2269
{
2270
	enum compact_result ret;
2271 2272 2273
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
2274 2275
		.total_migrate_scanned = 0,
		.total_free_scanned = 0,
2276
		.order = order,
2277
		.search_order = order,
2278
		.gfp_mask = gfp_mask,
2279
		.zone = zone,
2280 2281
		.mode = (prio == COMPACT_PRIO_ASYNC) ?
					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2282 2283
		.alloc_flags = alloc_flags,
		.classzone_idx = classzone_idx,
2284
		.direct_compaction = true,
2285
		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2286 2287
		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2288
	};
2289 2290 2291 2292 2293 2294 2295
	struct capture_control capc = {
		.cc = &cc,
		.page = NULL,
	};

	if (capture)
		current->capture_control = &capc;
2296 2297 2298
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

2299
	ret = compact_zone(&cc, &capc);
2300 2301 2302 2303

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

2304 2305 2306
	*capture = capc.page;
	current->capture_control = NULL;

2307
	return ret;
2308 2309
}

2310 2311
int sysctl_extfrag_threshold = 500;

2312 2313 2314
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @gfp_mask: The GFP mask of the current allocation
2315 2316 2317
 * @order: The order of the current allocation
 * @alloc_flags: The allocation flags of the current allocation
 * @ac: The context of current allocation
2318
 * @prio: Determines how hard direct compaction should try to succeed
2319 2320 2321
 *
 * This is the main entry point for direct page compaction.
 */
2322
enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2323
		unsigned int alloc_flags, const struct alloc_context *ac,
2324
		enum compact_priority prio, struct page **capture)
2325 2326 2327 2328
{
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
2329
	enum compact_result rc = COMPACT_SKIPPED;
2330

2331 2332 2333 2334 2335
	/*
	 * Check if the GFP flags allow compaction - GFP_NOIO is really
	 * tricky context because the migration might require IO
	 */
	if (!may_perform_io)
2336
		return COMPACT_SKIPPED;
2337

2338
	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2339

2340
	/* Compact each zone in the list */
2341 2342
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
								ac->nodemask) {
2343
		enum compact_result status;
2344

2345 2346
		if (prio > MIN_COMPACT_PRIORITY
					&& compaction_deferred(zone, order)) {
2347
			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2348
			continue;
2349
		}
2350

2351
		status = compact_zone_order(zone, order, gfp_mask, prio,
2352
				alloc_flags, ac_classzone_idx(ac), capture);
2353 2354
		rc = max(status, rc);

2355 2356
		/* The allocation should succeed, stop compacting */
		if (status == COMPACT_SUCCESS) {
2357 2358 2359 2360 2361 2362 2363
			/*
			 * We think the allocation will succeed in this zone,
			 * but it is not certain, hence the false. The caller
			 * will repeat this with true if allocation indeed
			 * succeeds in this zone.
			 */
			compaction_defer_reset(zone, order, false);
2364

2365
			break;
2366 2367
		}

2368
		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2369
					status == COMPACT_PARTIAL_SKIPPED))
2370 2371 2372 2373 2374 2375
			/*
			 * We think that allocation won't succeed in this zone
			 * so we defer compaction there. If it ends up
			 * succeeding after all, it will be reset.
			 */
			defer_compaction(zone, order);
2376 2377 2378 2379

		/*
		 * We might have stopped compacting due to need_resched() in
		 * async compaction, or due to a fatal signal detected. In that
2380
		 * case do not try further zones
2381
		 */
2382 2383 2384
		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
					|| fatal_signal_pending(current))
			break;
2385 2386 2387 2388 2389 2390
	}

	return rc;
}


2391
/* Compact all zones within a node */
2392
static void compact_node(int nid)
2393
{
2394
	pg_data_t *pgdat = NODE_DATA(nid);
2395 2396
	int zoneid;
	struct zone *zone;
2397 2398
	struct compact_control cc = {
		.order = -1,
2399 2400
		.total_migrate_scanned = 0,
		.total_free_scanned = 0,
2401 2402 2403
		.mode = MIGRATE_SYNC,
		.ignore_skip_hint = true,
		.whole_zone = true,
2404
		.gfp_mask = GFP_KERNEL,
2405 2406
	};

2407 2408 2409 2410 2411 2412 2413

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

2414 2415 2416 2417 2418
		cc.nr_freepages = 0;
		cc.nr_migratepages = 0;
		cc.zone = zone;
		INIT_LIST_HEAD(&cc.freepages);
		INIT_LIST_HEAD(&cc.migratepages);
2419

2420
		compact_zone(&cc, NULL);
2421

2422 2423
		VM_BUG_ON(!list_empty(&cc.freepages));
		VM_BUG_ON(!list_empty(&cc.migratepages));
2424 2425 2426 2427
	}
}

/* Compact all nodes in the system */
2428
static void compact_nodes(void)
2429 2430 2431
{
	int nid;

2432 2433 2434
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

2435 2436 2437 2438 2439 2440 2441
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

2442 2443 2444 2445
/*
 * This is the entry point for compacting all nodes via
 * /proc/sys/vm/compact_memory
 */
2446 2447 2448 2449
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
2450
		compact_nodes();
2451 2452 2453

	return 0;
}
2454 2455

#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2456
static ssize_t sysfs_compact_node(struct device *dev,
2457
			struct device_attribute *attr,
2458 2459
			const char *buf, size_t count)
{
2460 2461 2462 2463 2464 2465 2466 2467
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
2468 2469 2470

	return count;
}
2471
static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2472 2473 2474

int compaction_register_node(struct node *node)
{
2475
	return device_create_file(&node->dev, &dev_attr_compact);
2476 2477 2478 2479
}

void compaction_unregister_node(struct node *node)
{
2480
	return device_remove_file(&node->dev, &dev_attr_compact);
2481 2482
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
2483

2484 2485
static inline bool kcompactd_work_requested(pg_data_t *pgdat)
{
2486
	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2487 2488 2489 2490 2491 2492 2493 2494
}

static bool kcompactd_node_suitable(pg_data_t *pgdat)
{
	int zoneid;
	struct zone *zone;
	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;

2495
	for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
		zone = &pgdat->node_zones[zoneid];

		if (!populated_zone(zone))
			continue;

		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
					classzone_idx) == COMPACT_CONTINUE)
			return true;
	}

	return false;
}

static void kcompactd_do_work(pg_data_t *pgdat)
{
	/*
	 * With no special task, compact all zones so that a page of requested
	 * order is allocatable.
	 */
	int zoneid;
	struct zone *zone;
	struct compact_control cc = {
		.order = pgdat->kcompactd_max_order,
2519
		.search_order = pgdat->kcompactd_max_order,
2520 2521
		.total_migrate_scanned = 0,
		.total_free_scanned = 0,
2522 2523
		.classzone_idx = pgdat->kcompactd_classzone_idx,
		.mode = MIGRATE_SYNC_LIGHT,
2524
		.ignore_skip_hint = false,
2525
		.gfp_mask = GFP_KERNEL,
2526 2527 2528
	};
	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
							cc.classzone_idx);
2529
	count_compact_event(KCOMPACTD_WAKE);
2530

2531
	for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
		int status;

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		if (compaction_deferred(zone, cc.order))
			continue;

		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
							COMPACT_CONTINUE)
			continue;

		cc.nr_freepages = 0;
		cc.nr_migratepages = 0;
2547 2548
		cc.total_migrate_scanned = 0;
		cc.total_free_scanned = 0;
2549 2550 2551 2552
		cc.zone = zone;
		INIT_LIST_HEAD(&cc.freepages);
		INIT_LIST_HEAD(&cc.migratepages);

2553 2554
		if (kthread_should_stop())
			return;
2555
		status = compact_zone(&cc, NULL);
2556

2557
		if (status == COMPACT_SUCCESS) {
2558
			compaction_defer_reset(zone, cc.order, false);
2559
		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2560 2561 2562 2563 2564 2565 2566 2567
			/*
			 * Buddy pages may become stranded on pcps that could
			 * otherwise coalesce on the zone's free area for
			 * order >= cc.order.  This is ratelimited by the
			 * upcoming deferral.
			 */
			drain_all_pages(zone);

2568 2569 2570 2571 2572 2573 2574
			/*
			 * We use sync migration mode here, so we defer like
			 * sync direct compaction does.
			 */
			defer_compaction(zone, cc.order);
		}

2575 2576 2577 2578 2579
		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
				     cc.total_migrate_scanned);
		count_compact_events(KCOMPACTD_FREE_SCANNED,
				     cc.total_free_scanned);

2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
		VM_BUG_ON(!list_empty(&cc.freepages));
		VM_BUG_ON(!list_empty(&cc.migratepages));
	}

	/*
	 * Regardless of success, we are done until woken up next. But remember
	 * the requested order/classzone_idx in case it was higher/tighter than
	 * our current ones
	 */
	if (pgdat->kcompactd_max_order <= cc.order)
		pgdat->kcompactd_max_order = 0;
	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
}

void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
{
	if (!order)
		return;

	if (pgdat->kcompactd_max_order < order)
		pgdat->kcompactd_max_order = order;

	if (pgdat->kcompactd_classzone_idx > classzone_idx)
		pgdat->kcompactd_classzone_idx = classzone_idx;

2606 2607 2608 2609 2610
	/*
	 * Pairs with implicit barrier in wait_event_freezable()
	 * such that wakeups are not missed.
	 */
	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
		return;

	if (!kcompactd_node_suitable(pgdat))
		return;

	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
							classzone_idx);
	wake_up_interruptible(&pgdat->kcompactd_wait);
}

/*
 * The background compaction daemon, started as a kernel thread
 * from the init process.
 */
static int kcompactd(void *p)
{
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;

	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);

	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(tsk, cpumask);

	set_freezable();

	pgdat->kcompactd_max_order = 0;
	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;

	while (!kthread_should_stop()) {
2641 2642
		unsigned long pflags;

2643 2644 2645 2646
		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
		wait_event_freezable(pgdat->kcompactd_wait,
				kcompactd_work_requested(pgdat));

2647
		psi_memstall_enter(&pflags);
2648
		kcompactd_do_work(pgdat);
2649
		psi_memstall_leave(&pflags);
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
	}

	return 0;
}

/*
 * This kcompactd start function will be called by init and node-hot-add.
 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
 */
int kcompactd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kcompactd)
		return 0;

	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
	if (IS_ERR(pgdat->kcompactd)) {
		pr_err("Failed to start kcompactd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kcompactd);
		pgdat->kcompactd = NULL;
	}
	return ret;
}

/*
 * Called by memory hotplug when all memory in a node is offlined. Caller must
 * hold mem_hotplug_begin/end().
 */
void kcompactd_stop(int nid)
{
	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;

	if (kcompactd) {
		kthread_stop(kcompactd);
		NODE_DATA(nid)->kcompactd = NULL;
	}
}

/*
 * It's optimal to keep kcompactd on the same CPUs as their memory, but
 * not required for correctness. So if the last cpu in a node goes
 * away, we get changed to run anywhere: as the first one comes back,
 * restore their cpu bindings.
 */
2696
static int kcompactd_cpu_online(unsigned int cpu)
2697 2698 2699
{
	int nid;

2700 2701 2702
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
2703

2704
		mask = cpumask_of_node(pgdat->node_id);
2705

2706 2707 2708
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2709
	}
2710
	return 0;
2711 2712 2713 2714 2715
}

static int __init kcompactd_init(void)
{
	int nid;
2716 2717 2718 2719 2720 2721 2722 2723 2724
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/compaction:online",
					kcompactd_cpu_online, NULL);
	if (ret < 0) {
		pr_err("kcompactd: failed to register hotplug callbacks.\n");
		return ret;
	}
2725 2726 2727 2728 2729 2730 2731

	for_each_node_state(nid, N_MEMORY)
		kcompactd_run(nid);
	return 0;
}
subsys_initcall(kcompactd_init)

2732
#endif /* CONFIG_COMPACTION */