slab.c 117.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
105
#include	<linux/kmemtrace.h>
L
Linus Torvalds 已提交
106
#include	<linux/rcupdate.h>
107
#include	<linux/string.h>
108
#include	<linux/uaccess.h>
109
#include	<linux/nodemask.h>
110
#include	<linux/kmemleak.h>
111
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
112
#include	<linux/mutex.h>
113
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
114
#include	<linux/rtmutex.h>
115
#include	<linux/reciprocal_div.h>
116
#include	<linux/debugobjects.h>
L
Linus Torvalds 已提交
117 118 119 120 121 122

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
123
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
144
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
145 146 147 148 149 150 151

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 153 154
 * alignment larger than the alignment of a 64-bit integer.
 * ARCH_KMALLOC_MINALIGN allows that.
 * Note that increasing this value may disable some debug features.
L
Linus Torvalds 已提交
155
 */
156
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
L
Linus Torvalds 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
176
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
177
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
178
			 SLAB_CACHE_DMA | \
179
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
180
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
182
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE)
L
Linus Torvalds 已提交
183
#else
184
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
185
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
186
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
187
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
188
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE)
L
Linus Torvalds 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

210
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
211 212
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
213 214
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
215 216 217 218 219 220 221 222 223

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
224 225 226 227 228 229
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
249
	struct rcu_head head;
250
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
251
	void *addr;
L
Linus Torvalds 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
271
	spinlock_t lock;
272
	void *entry[];	/*
A
Andrew Morton 已提交
273 274 275 276
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
277 278
};

A
Andrew Morton 已提交
279 280 281
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
282 283 284 285
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
286
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
287 288 289
};

/*
290
 * The slab lists for all objects.
L
Linus Torvalds 已提交
291 292
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
293 294 295 296 297
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
298
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
299 300 301
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
302 303
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
304 305
};

306 307 308
/*
 * Need this for bootstrapping a per node allocator.
 */
309
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
310 311
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
312 313
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
314

315 316 317 318
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
319
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
320
static void cache_reap(struct work_struct *unused);
321

322
/*
A
Andrew Morton 已提交
323 324
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
325
 */
326
static __always_inline int index_of(const size_t size)
327
{
328 329
	extern void __bad_size(void);

330 331 332 333 334 335 336 337
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
338
#include <linux/kmalloc_sizes.h>
339
#undef CACHE
340
		__bad_size();
341
	} else
342
		__bad_size();
343 344 345
	return 0;
}

346 347
static int slab_early_init = 1;

348 349
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
350

P
Pekka Enberg 已提交
351
static void kmem_list3_init(struct kmem_list3 *parent)
352 353 354 355 356 357
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
358
	parent->colour_next = 0;
359 360 361 362 363
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
364 365 366 367
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
368 369
	} while (0)

A
Andrew Morton 已提交
370 371
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
372 373 374 375
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
376 377

/*
378
 * struct kmem_cache
L
Linus Torvalds 已提交
379 380 381
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
382

383
struct kmem_cache {
L
Linus Torvalds 已提交
384
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
385
	struct array_cache *array[NR_CPUS];
386
/* 2) Cache tunables. Protected by cache_chain_mutex */
P
Pekka Enberg 已提交
387 388 389
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
390

391
	unsigned int buffer_size;
392
	u32 reciprocal_buffer_size;
393 394
/* 3) touched by every alloc & free from the backend */

A
Andrew Morton 已提交
395 396
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
L
Linus Torvalds 已提交
397

398
/* 4) cache_grow/shrink */
L
Linus Torvalds 已提交
399
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
400
	unsigned int gfporder;
L
Linus Torvalds 已提交
401 402

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
403
	gfp_t gfpflags;
L
Linus Torvalds 已提交
404

A
Andrew Morton 已提交
405
	size_t colour;			/* cache colouring range */
P
Pekka Enberg 已提交
406
	unsigned int colour_off;	/* colour offset */
407
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
408
	unsigned int slab_size;
A
Andrew Morton 已提交
409
	unsigned int dflags;		/* dynamic flags */
L
Linus Torvalds 已提交
410 411

	/* constructor func */
412
	void (*ctor)(void *obj);
L
Linus Torvalds 已提交
413

414
/* 5) cache creation/removal */
P
Pekka Enberg 已提交
415 416
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
417

418
/* 6) statistics */
L
Linus Torvalds 已提交
419
#if STATS
P
Pekka Enberg 已提交
420 421 422 423 424 425 426 427 428
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
429
	unsigned long node_overflow;
P
Pekka Enberg 已提交
430 431 432 433
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
434 435
#endif
#if DEBUG
436 437 438 439 440 441 442 443
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
444
#endif
E
Eric Dumazet 已提交
445 446 447 448 449 450 451 452 453 454 455
	/*
	 * We put nodelists[] at the end of kmem_cache, because we want to size
	 * this array to nr_node_ids slots instead of MAX_NUMNODES
	 * (see kmem_cache_init())
	 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
	 * is statically defined, so we reserve the max number of nodes.
	 */
	struct kmem_list3 *nodelists[MAX_NUMNODES];
	/*
	 * Do not add fields after nodelists[]
	 */
L
Linus Torvalds 已提交
456 457 458 459 460 461
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
462 463 464
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
465
 *
A
Adrian Bunk 已提交
466
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
467 468 469 470 471 472 473 474 475 476
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
477
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
478 479 480 481 482
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
483 484
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
485
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
486
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
487 488 489 490 491
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
492 493 494 495 496 497 498 499 500
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
501
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
502 503 504
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
505
#define	STATS_INC_NODEFREES(x)	do { } while (0)
506
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
507
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
508 509 510 511 512 513 514 515
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
516 517
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
518
 * 0		: objp
519
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
520 521
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
522
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
523
 * 		redzone word.
524 525
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
526 527
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
528
 */
529
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
530
{
531
	return cachep->obj_offset;
L
Linus Torvalds 已提交
532 533
}

534
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
535
{
536
	return cachep->obj_size;
L
Linus Torvalds 已提交
537 538
}

539
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
540 541
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
542 543
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
544 545
}

546
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
547 548 549
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
550 551
		return (unsigned long long *)(objp + cachep->buffer_size -
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
552
					      REDZONE_ALIGN);
553 554
	return (unsigned long long *) (objp + cachep->buffer_size -
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
555 556
}

557
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
558 559
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
560
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
561 562 563 564
}

#else

565 566
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
567 568
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
569 570 571 572
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

E
Eduard - Gabriel Munteanu 已提交
573 574 575 576 577 578 579 580
#ifdef CONFIG_KMEMTRACE
size_t slab_buffer_size(struct kmem_cache *cachep)
{
	return cachep->buffer_size;
}
EXPORT_SYMBOL(slab_buffer_size);
#endif

L
Linus Torvalds 已提交
581 582 583 584 585 586 587
/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
588 589 590 591
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
592
 */
593 594 595 596 597 598 599
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
600
	page = compound_head(page);
601
	BUG_ON(!PageSlab(page));
602 603 604 605 606 607 608 609 610 611
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
612
	BUG_ON(!PageSlab(page));
613 614
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
615

616 617
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
618
	struct page *page = virt_to_head_page(obj);
619 620 621 622 623
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
624
	struct page *page = virt_to_head_page(obj);
625 626 627
	return page_get_slab(page);
}

628 629 630 631 632 633
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

634 635 636 637 638 639 640 641
/*
 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 *   Using the fact that buffer_size is a constant for a particular cache,
 *   we can replace (offset / cache->buffer_size) by
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
642
{
643 644
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
645 646
}

A
Andrew Morton 已提交
647 648 649
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
667
	{NULL,}
L
Linus Torvalds 已提交
668 669 670 671
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
672
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
673
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
674
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
675 676

/* internal cache of cache description objs */
677
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
678 679 680
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
681
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
682
	.name = "kmem_cache",
L
Linus Torvalds 已提交
683 684
};

685 686
#define BAD_ALIEN_MAGIC 0x01020304ul

687 688 689 690 691 692 693 694
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
695 696 697 698
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
699
 */
700 701 702 703
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

static inline void init_lock_keys(void)
704 705 706

{
	int q;
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
	struct cache_sizes *s = malloc_sizes;

	while (s->cs_size != ULONG_MAX) {
		for_each_node(q) {
			struct array_cache **alc;
			int r;
			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
			if (!l3 || OFF_SLAB(s->cs_cachep))
				continue;
			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
			alc = l3->alien;
			/*
			 * FIXME: This check for BAD_ALIEN_MAGIC
			 * should go away when common slab code is taught to
			 * work even without alien caches.
			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
			 * for alloc_alien_cache,
			 */
			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
				continue;
			for_each_node(r) {
				if (alc[r])
					lockdep_set_class(&alc[r]->lock,
					     &on_slab_alc_key);
			}
		}
		s++;
734 735 736
	}
}
#else
737
static inline void init_lock_keys(void)
738 739 740 741
{
}
#endif

742
/*
743
 * Guard access to the cache-chain.
744
 */
I
Ingo Molnar 已提交
745
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
746 747 748 749 750 751 752 753
static struct list_head cache_chain;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
754 755
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
756 757 758
	FULL
} g_cpucache_up;

759 760 761 762 763 764 765 766
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up == FULL;
}

767
static DEFINE_PER_CPU(struct delayed_work, reap_work);
L
Linus Torvalds 已提交
768

769
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
770 771 772 773
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
774 775
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
776 777 778 779 780
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
781 782 783
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
784
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
785
#endif
786 787 788
	if (!size)
		return ZERO_SIZE_PTR;

L
Linus Torvalds 已提交
789 790 791 792
	while (size > csizep->cs_size)
		csizep++;

	/*
793
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
794 795 796
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
797
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
798 799
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
800
#endif
L
Linus Torvalds 已提交
801 802 803
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
804
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
805 806 807 808
{
	return __find_general_cachep(size, gfpflags);
}

809
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
810
{
811 812
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
813

A
Andrew Morton 已提交
814 815 816
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
817 818 819 820 821 822 823
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
824

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
873 874
}

875
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
876

A
Andrew Morton 已提交
877 878
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
879 880
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
881
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
882 883 884
	dump_stack();
}

885 886 887 888 889 890 891 892 893
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
894
static int numa_platform __read_mostly = 1;
895 896 897 898 899 900 901
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
917
		node = first_node(node_online_map);
918

919
	per_cpu(reap_node, cpu) = node;
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
937 938 939 940 941 942 943
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
944
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
945
{
946
	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
L
Linus Torvalds 已提交
947 948 949 950 951 952

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
953
	if (keventd_up() && reap_work->work.func == NULL) {
954
		init_reap_node(cpu);
955
		INIT_DELAYED_WORK(reap_work, cache_reap);
956 957
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
958 959 960
	}
}

961
static struct array_cache *alloc_arraycache(int node, int entries,
962
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
963
{
P
Pekka Enberg 已提交
964
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
965 966
	struct array_cache *nc = NULL;

967
	nc = kmalloc_node(memsize, gfp, node);
968 969 970 971 972 973 974 975
	/*
	 * The array_cache structures contain pointers to free object.
	 * However, when such objects are allocated or transfered to another
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
976 977 978 979 980
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
981
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
982 983 984 985
	}
	return nc;
}

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

1010 1011 1012 1013 1014
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

1015
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1035
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1036 1037 1038 1039 1040 1041 1042
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1043
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1044
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1045

1046
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1047 1048
{
	struct array_cache **ac_ptr;
1049
	int memsize = sizeof(void *) * nr_node_ids;
1050 1051 1052 1053
	int i;

	if (limit > 1)
		limit = 12;
1054
	ac_ptr = kmalloc_node(memsize, gfp, node);
1055 1056 1057 1058 1059 1060
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
1061
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1062
			if (!ac_ptr[i]) {
1063
				for (i--; i >= 0; i--)
1064 1065 1066 1067 1068 1069 1070 1071 1072
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1073
static void free_alien_cache(struct array_cache **ac_ptr)
1074 1075 1076 1077 1078 1079
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1080
	    kfree(ac_ptr[i]);
1081 1082 1083
	kfree(ac_ptr);
}

1084
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1085
				struct array_cache *ac, int node)
1086 1087 1088 1089 1090
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1091 1092 1093 1094 1095
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1096 1097
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1098

1099
		free_block(cachep, ac->entry, ac->avail, node);
1100 1101 1102 1103 1104
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1105 1106 1107 1108 1109 1110 1111 1112 1113
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1114 1115

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1116 1117 1118 1119 1120 1121
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1122 1123
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1124
{
P
Pekka Enberg 已提交
1125
	int i = 0;
1126 1127 1128 1129
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1130
		ac = alien[i];
1131 1132 1133 1134 1135 1136 1137
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1138

1139
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1140 1141 1142 1143 1144
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1145 1146 1147
	int node;

	node = numa_node_id();
1148 1149 1150 1151 1152

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1153
	if (likely(slabp->nodeid == node))
1154 1155
		return 0;

P
Pekka Enberg 已提交
1156
	l3 = cachep->nodelists[node];
1157 1158 1159
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1160
		spin_lock(&alien->lock);
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1174 1175
#endif

1176 1177 1178 1179 1180
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
1181
	const struct cpumask *mask = cpumask_of_node(node);
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202

	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1203
		if (!cpus_empty(*mask)) {
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1242
{
1243
	struct kmem_cache *cachep;
1244 1245
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
1246
	const int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1247

1248 1249 1250 1251 1252 1253 1254 1255
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */

	list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1256
		/*
1257 1258 1259
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
1260
		 */
1261 1262 1263 1264 1265 1266 1267
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				goto bad;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1268

A
Andrew Morton 已提交
1269
			/*
1270 1271 1272
			 * The l3s don't come and go as CPUs come and
			 * go.  cache_chain_mutex is sufficient
			 * protection here.
1273
			 */
1274
			cachep->nodelists[node] = l3;
1275 1276
		}

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1294
					cachep->batchcount, GFP_KERNEL);
1295 1296 1297 1298 1299
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1300
				0xbaadf00d, GFP_KERNEL);
1301 1302
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1303
				goto bad;
1304
			}
1305 1306
		}
		if (use_alien_caches) {
1307
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1308 1309 1310
			if (!alien) {
				kfree(shared);
				kfree(nc);
1311
				goto bad;
1312
			}
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1327
#ifdef CONFIG_NUMA
1328 1329 1330
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
L
Linus Torvalds 已提交
1331
		}
1332 1333 1334 1335 1336 1337 1338
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
	}
	return 0;
bad:
1339
	cpuup_canceled(cpu);
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1352
		mutex_lock(&cache_chain_mutex);
1353
		err = cpuup_prepare(cpu);
1354
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1355 1356
		break;
	case CPU_ONLINE:
1357
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1358 1359 1360
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1361
  	case CPU_DOWN_PREPARE:
1362
  	case CPU_DOWN_PREPARE_FROZEN:
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
		/*
		 * Shutdown cache reaper. Note that the cache_chain_mutex is
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
		cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
		/* Now the cache_reaper is guaranteed to be not running. */
		per_cpu(reap_work, cpu).work.func = NULL;
  		break;
  	case CPU_DOWN_FAILED:
1374
  	case CPU_DOWN_FAILED_FROZEN:
1375 1376
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1377
	case CPU_DEAD:
1378
	case CPU_DEAD_FROZEN:
1379 1380 1381 1382 1383 1384 1385 1386
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1387
		/* fall through */
1388
#endif
L
Linus Torvalds 已提交
1389
	case CPU_UP_CANCELED:
1390
	case CPU_UP_CANCELED_FROZEN:
1391
		mutex_lock(&cache_chain_mutex);
1392
		cpuup_canceled(cpu);
I
Ingo Molnar 已提交
1393
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1394 1395
		break;
	}
1396
	return err ? NOTIFY_BAD : NOTIFY_OK;
L
Linus Torvalds 已提交
1397 1398
}

1399 1400 1401
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1402

1403 1404 1405
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1406 1407
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1408 1409 1410
{
	struct kmem_list3 *ptr;

1411
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1412 1413 1414
	BUG_ON(!ptr);

	memcpy(ptr, list, sizeof(struct kmem_list3));
1415 1416 1417 1418 1419
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1420 1421 1422 1423
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
}

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
		cachep->nodelists[node] = &initkmem_list3[index + node];
		cachep->nodelists[node]->next_reap = jiffies +
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

A
Andrew Morton 已提交
1440 1441 1442
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1443 1444 1445 1446 1447 1448
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1449
	int i;
1450
	int order;
P
Pekka Enberg 已提交
1451
	int node;
1452

1453
	if (num_possible_nodes() == 1) {
1454
		use_alien_caches = 0;
1455 1456
		numa_platform = 0;
	}
1457

1458 1459 1460 1461 1462
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
1463
	set_up_list3s(&cache_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1474 1475 1476
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1477 1478 1479
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1480
	 * 2) Create the first kmalloc cache.
1481
	 *    The struct kmem_cache for the new cache is allocated normally.
1482 1483 1484
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1485 1486
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1487 1488 1489
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1490 1491
	 */

P
Pekka Enberg 已提交
1492 1493
	node = numa_node_id();

L
Linus Torvalds 已提交
1494 1495 1496 1497 1498
	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1499
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
L
Linus Torvalds 已提交
1500

E
Eric Dumazet 已提交
1501 1502 1503 1504 1505 1506 1507 1508 1509
	/*
	 * struct kmem_cache size depends on nr_node_ids, which
	 * can be less than MAX_NUMNODES.
	 */
	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
				 nr_node_ids * sizeof(struct kmem_list3 *);
#if DEBUG
	cache_cache.obj_size = cache_cache.buffer_size;
#endif
A
Andrew Morton 已提交
1510 1511
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
1512 1513
	cache_cache.reciprocal_buffer_size =
		reciprocal_value(cache_cache.buffer_size);
L
Linus Torvalds 已提交
1514

1515 1516 1517 1518 1519 1520
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1521
	BUG_ON(!cache_cache.num);
1522
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1523 1524 1525
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1526 1527 1528 1529 1530

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1531 1532 1533 1534
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1535 1536 1537
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1538 1539 1540
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1541
					NULL);
1542

A
Andrew Morton 已提交
1543
	if (INDEX_AC != INDEX_L3) {
1544
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1545 1546 1547 1548
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1549
				NULL);
A
Andrew Morton 已提交
1550
	}
1551

1552 1553
	slab_early_init = 0;

L
Linus Torvalds 已提交
1554
	while (sizes->cs_size != ULONG_MAX) {
1555 1556
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1557 1558 1559
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1560 1561
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1562
		if (!sizes->cs_cachep) {
1563
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1564 1565 1566
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1567
					NULL);
A
Andrew Morton 已提交
1568
		}
1569 1570 1571
#ifdef CONFIG_ZONE_DMA
		sizes->cs_dmacachep = kmem_cache_create(
					names->name_dma,
A
Andrew Morton 已提交
1572 1573 1574 1575
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
1576
					NULL);
1577
#endif
L
Linus Torvalds 已提交
1578 1579 1580 1581 1582
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1583
		struct array_cache *ptr;
1584

1585
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1586

1587 1588
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1589
		       sizeof(struct arraycache_init));
1590 1591 1592 1593 1594
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1595
		cache_cache.array[smp_processor_id()] = ptr;
1596

1597
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1598

1599
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1600
		       != &initarray_generic.cache);
1601
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1602
		       sizeof(struct arraycache_init));
1603 1604 1605 1606 1607
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1608
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1609
		    ptr;
L
Linus Torvalds 已提交
1610
	}
1611 1612
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1613 1614
		int nid;

1615
		for_each_online_node(nid) {
1616
			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1617

1618
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1619
				  &initkmem_list3[SIZE_AC + nid], nid);
1620 1621 1622

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1623
					  &initkmem_list3[SIZE_L3 + nid], nid);
1624 1625 1626
			}
		}
	}
L
Linus Torvalds 已提交
1627

1628
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1629
	{
1630
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1631
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1632
		list_for_each_entry(cachep, &cache_chain, next)
1633
			if (enable_cpucache(cachep, GFP_NOWAIT))
1634
				BUG();
I
Ingo Molnar 已提交
1635
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1636 1637
	}

1638 1639 1640 1641
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();


L
Linus Torvalds 已提交
1642 1643 1644
	/* Done! */
	g_cpucache_up = FULL;

A
Andrew Morton 已提交
1645 1646 1647
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1648 1649 1650
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1651 1652 1653
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1654 1655 1656 1657 1658 1659 1660
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1661 1662
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1663
	 */
1664
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1665
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1677
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1678 1679
{
	struct page *page;
1680
	int nr_pages;
L
Linus Torvalds 已提交
1681 1682
	int i;

1683
#ifndef CONFIG_MMU
1684 1685 1686
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1687
	 */
1688
	flags |= __GFP_COMP;
1689
#endif
1690

1691
	flags |= cachep->gfpflags;
1692 1693
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1694 1695

	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1696 1697 1698
	if (!page)
		return NULL;

1699
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1700
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1701 1702 1703 1704 1705
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1706 1707 1708
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
	return page_address(page);
L
Linus Torvalds 已提交
1709 1710 1711 1712 1713
}

/*
 * Interface to system's page release.
 */
1714
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1715
{
P
Pekka Enberg 已提交
1716
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1717 1718 1719
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1720 1721 1722 1723 1724 1725
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1726
	while (i--) {
N
Nick Piggin 已提交
1727 1728
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1729 1730 1731 1732 1733 1734 1735 1736 1737
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1738
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1739
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1740 1741 1742 1743 1744 1745 1746 1747 1748

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1749
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1750
			    unsigned long caller)
L
Linus Torvalds 已提交
1751
{
1752
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1753

1754
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1755

P
Pekka Enberg 已提交
1756
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1757 1758
		return;

P
Pekka Enberg 已提交
1759 1760 1761 1762
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1763 1764 1765 1766 1767 1768 1769
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1770
				*addr++ = svalue;
L
Linus Torvalds 已提交
1771 1772 1773 1774 1775 1776 1777
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1778
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1779 1780 1781
}
#endif

1782
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1783
{
1784 1785
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1786 1787

	memset(addr, val, size);
P
Pekka Enberg 已提交
1788
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1789 1790 1791 1792 1793
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1794 1795 1796
	unsigned char error = 0;
	int bad_count = 0;

L
Linus Torvalds 已提交
1797
	printk(KERN_ERR "%03x:", offset);
D
Dave Jones 已提交
1798 1799 1800 1801 1802
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
P
Pekka Enberg 已提交
1803
		printk(" %02x", (unsigned char)data[offset + i]);
D
Dave Jones 已提交
1804
	}
L
Linus Torvalds 已提交
1805
	printk("\n");
D
Dave Jones 已提交
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1820 1821 1822 1823 1824
}
#endif

#if DEBUG

1825
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1826 1827 1828 1829 1830
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1831
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1832 1833
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1834 1835 1836 1837
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1838
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1839
		print_symbol("(%s)",
A
Andrew Morton 已提交
1840
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1841 1842
		printk("\n");
	}
1843 1844
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1845
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1846 1847
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1848 1849
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1850 1851 1852 1853
		dump_line(realobj, i, limit);
	}
}

1854
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1855 1856 1857 1858 1859
{
	char *realobj;
	int size, i;
	int lines = 0;

1860 1861
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1862

P
Pekka Enberg 已提交
1863
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1864
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1865
		if (i == size - 1)
L
Linus Torvalds 已提交
1866 1867 1868 1869 1870 1871
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1872
				printk(KERN_ERR
1873 1874
					"Slab corruption: %s start=%p, len=%d\n",
					cachep->name, realobj, size);
L
Linus Torvalds 已提交
1875 1876 1877
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1878
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1879
			limit = 16;
P
Pekka Enberg 已提交
1880 1881
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1894
		struct slab *slabp = virt_to_slab(objp);
1895
		unsigned int objnr;
L
Linus Torvalds 已提交
1896

1897
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1898
		if (objnr) {
1899
			objp = index_to_obj(cachep, slabp, objnr - 1);
1900
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1901
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1902
			       realobj, size);
L
Linus Torvalds 已提交
1903 1904
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1905
		if (objnr + 1 < cachep->num) {
1906
			objp = index_to_obj(cachep, slabp, objnr + 1);
1907
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1908
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1909
			       realobj, size);
L
Linus Torvalds 已提交
1910 1911 1912 1913 1914 1915
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1916
#if DEBUG
R
Rabin Vincent 已提交
1917
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1918 1919 1920
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1921
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1922 1923 1924

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1925 1926
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1927
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1928
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1929 1930 1931 1932 1933 1934 1935 1936 1937
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1938
					   "was overwritten");
L
Linus Torvalds 已提交
1939 1940
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1941
					   "was overwritten");
L
Linus Torvalds 已提交
1942 1943
		}
	}
1944
}
L
Linus Torvalds 已提交
1945
#else
R
Rabin Vincent 已提交
1946
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1947 1948
{
}
L
Linus Torvalds 已提交
1949 1950
#endif

1951 1952 1953 1954 1955
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1956
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1957 1958
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1959
 */
1960
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1961 1962 1963
{
	void *addr = slabp->s_mem - slabp->colouroff;

R
Rabin Vincent 已提交
1964
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
1965 1966 1967
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1968
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1969 1970 1971 1972 1973
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1974 1975
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1976 1977 1978
	}
}

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


2000
/**
2001 2002 2003 2004 2005 2006 2007
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2008 2009 2010 2011 2012
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2013
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2014
			size_t size, size_t align, unsigned long flags)
2015
{
2016
	unsigned long offslab_limit;
2017
	size_t left_over = 0;
2018
	int gfporder;
2019

2020
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2021 2022 2023
		unsigned int num;
		size_t remainder;

2024
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2025 2026
		if (!num)
			continue;
2027

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2040

2041
		/* Found something acceptable - save it away */
2042
		cachep->num = num;
2043
		cachep->gfporder = gfporder;
2044 2045
		left_over = remainder;

2046 2047 2048 2049 2050 2051 2052 2053
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2054 2055 2056 2057
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2058
		if (gfporder >= slab_break_gfp_order)
2059 2060
			break;

2061 2062 2063
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2064
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2065 2066 2067 2068 2069
			break;
	}
	return left_over;
}

2070
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2071
{
2072
	if (g_cpucache_up == FULL)
2073
		return enable_cpucache(cachep, gfp);
2074

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
2095
			kmalloc(sizeof(struct arraycache_init), gfp);
2096 2097 2098 2099 2100 2101

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
2102
			for_each_online_node(node) {
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
						GFP_KERNEL, node);
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2121
	return 0;
2122 2123
}

L
Linus Torvalds 已提交
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2134
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2135 2136
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2137
 * the module calling this has to destroy the cache before getting unloaded.
2138 2139
 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
 * therefore applications must manage it themselves.
A
Andrew Morton 已提交
2140
 *
L
Linus Torvalds 已提交
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2153
struct kmem_cache *
L
Linus Torvalds 已提交
2154
kmem_cache_create (const char *name, size_t size, size_t align,
2155
	unsigned long flags, void (*ctor)(void *))
L
Linus Torvalds 已提交
2156 2157
{
	size_t left_over, slab_size, ralign;
2158
	struct kmem_cache *cachep = NULL, *pc;
2159
	gfp_t gfp;
L
Linus Torvalds 已提交
2160 2161 2162 2163

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2164
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2165
	    size > KMALLOC_MAX_SIZE) {
2166
		printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
A
Andrew Morton 已提交
2167
				name);
P
Pekka Enberg 已提交
2168 2169
		BUG();
	}
L
Linus Torvalds 已提交
2170

2171
	/*
2172
	 * We use cache_chain_mutex to ensure a consistent view of
R
Rusty Russell 已提交
2173
	 * cpu_online_mask as well.  Please see cpuup_callback
2174
	 */
2175 2176 2177 2178
	if (slab_is_available()) {
		get_online_cpus();
		mutex_lock(&cache_chain_mutex);
	}
2179

2180
	list_for_each_entry(pc, &cache_chain, next) {
2181 2182 2183 2184 2185 2186 2187 2188
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
2189
		res = probe_kernel_address(pc->name, tmp);
2190
		if (res) {
2191 2192
			printk(KERN_ERR
			       "SLAB: cache with size %d has lost its name\n",
2193
			       pc->buffer_size);
2194 2195 2196
			continue;
		}

P
Pekka Enberg 已提交
2197
		if (!strcmp(pc->name, name)) {
2198 2199
			printk(KERN_ERR
			       "kmem_cache_create: duplicate cache %s\n", name);
2200 2201 2202 2203 2204
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2205 2206 2207 2208 2209 2210 2211 2212 2213
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2214 2215
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2216
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2217 2218 2219 2220 2221 2222 2223
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
A
Andrew Morton 已提交
2224 2225
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2226
	 */
2227
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2228

A
Andrew Morton 已提交
2229 2230
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2231 2232 2233
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2234 2235 2236
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2237 2238
	}

A
Andrew Morton 已提交
2239 2240
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2241 2242
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2243 2244 2245 2246
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2247 2248
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2249
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2250 2251 2252 2253
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2254 2255

	/*
D
David Woodhouse 已提交
2256 2257 2258
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2259
	 */
D
David Woodhouse 已提交
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2270

2271
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2272 2273 2274
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2275
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2276 2277 2278
	if (ralign < align) {
		ralign = align;
	}
2279
	/* disable debug if necessary */
2280
	if (ralign > __alignof__(unsigned long long))
2281
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2282
	/*
2283
	 * 4) Store it.
L
Linus Torvalds 已提交
2284 2285 2286
	 */
	align = ralign;

2287 2288 2289 2290 2291
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2292
	/* Get cache's description obj. */
2293
	cachep = kmem_cache_zalloc(&cache_cache, gfp);
L
Linus Torvalds 已提交
2294
	if (!cachep)
2295
		goto oops;
L
Linus Torvalds 已提交
2296 2297

#if DEBUG
2298
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2299

2300 2301 2302 2303
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2304 2305
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2306 2307
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2308 2309
	}
	if (flags & SLAB_STORE_USER) {
2310
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2311 2312
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2313
		 */
D
David Woodhouse 已提交
2314 2315 2316 2317
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2318 2319
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2320
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2321 2322
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2323 2324 2325 2326 2327
		size = PAGE_SIZE;
	}
#endif
#endif

2328 2329 2330 2331 2332 2333
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
	 * it too early on.)
	 */
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
L
Linus Torvalds 已提交
2334 2335 2336 2337 2338 2339 2340 2341
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2342
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2343 2344

	if (!cachep->num) {
2345 2346
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
L
Linus Torvalds 已提交
2347 2348
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2349
		goto oops;
L
Linus Torvalds 已提交
2350
	}
P
Pekka Enberg 已提交
2351 2352
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2365 2366
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
2367 2368 2369 2370 2371 2372
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2373
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2374 2375 2376
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
2377
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
L
Linus Torvalds 已提交
2378
		cachep->gfpflags |= GFP_DMA;
2379
	cachep->buffer_size = size;
2380
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2381

2382
	if (flags & CFLGS_OFF_SLAB) {
2383
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2384 2385 2386 2387 2388 2389 2390
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2391
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2392
	}
L
Linus Torvalds 已提交
2393 2394 2395
	cachep->ctor = ctor;
	cachep->name = name;

2396
	if (setup_cpu_cache(cachep, gfp)) {
2397 2398 2399 2400
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2401 2402 2403

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2404
oops:
L
Linus Torvalds 已提交
2405 2406
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2407
		      name);
2408 2409 2410 2411
	if (slab_is_available()) {
		mutex_unlock(&cache_chain_mutex);
		put_online_cpus();
	}
L
Linus Torvalds 已提交
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2427
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2428 2429 2430
{
#ifdef CONFIG_SMP
	check_irq_off();
2431
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2432 2433
#endif
}
2434

2435
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2436 2437 2438 2439 2440 2441 2442
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2443 2444 2445 2446
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2447
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2448 2449
#endif

2450 2451 2452 2453
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2454 2455
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2456
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2457
	struct array_cache *ac;
2458
	int node = numa_node_id();
L
Linus Torvalds 已提交
2459 2460

	check_irq_off();
2461
	ac = cpu_cache_get(cachep);
2462 2463 2464
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2465 2466 2467
	ac->avail = 0;
}

2468
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2469
{
2470 2471 2472
	struct kmem_list3 *l3;
	int node;

2473
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2474
	check_irq_on();
P
Pekka Enberg 已提交
2475
	for_each_online_node(node) {
2476
		l3 = cachep->nodelists[node];
2477 2478 2479 2480 2481 2482 2483
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2484
			drain_array(cachep, l3, l3->shared, 1, node);
2485
	}
L
Linus Torvalds 已提交
2486 2487
}

2488 2489 2490 2491 2492 2493 2494 2495
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2496
{
2497 2498
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2499 2500
	struct slab *slabp;

2501 2502
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2503

2504
		spin_lock_irq(&l3->list_lock);
2505
		p = l3->slabs_free.prev;
2506 2507 2508 2509
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2510

2511
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2512
#if DEBUG
2513
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2514 2515
#endif
		list_del(&slabp->list);
2516 2517 2518 2519 2520
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2521
		spin_unlock_irq(&l3->list_lock);
2522 2523
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2524
	}
2525 2526
out:
	return nr_freed;
L
Linus Torvalds 已提交
2527 2528
}

2529
/* Called with cache_chain_mutex held to protect against cpu hotplug */
2530
static int __cache_shrink(struct kmem_cache *cachep)
2531 2532 2533 2534 2535 2536 2537 2538 2539
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2540 2541 2542 2543 2544 2545 2546
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2547 2548 2549 2550
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2551 2552 2553 2554 2555 2556 2557
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2558
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2559
{
2560
	int ret;
2561
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2562

2563
	get_online_cpus();
2564 2565 2566
	mutex_lock(&cache_chain_mutex);
	ret = __cache_shrink(cachep);
	mutex_unlock(&cache_chain_mutex);
2567
	put_online_cpus();
2568
	return ret;
L
Linus Torvalds 已提交
2569 2570 2571 2572 2573 2574 2575
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2576
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2588
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2589
{
2590
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2591 2592

	/* Find the cache in the chain of caches. */
2593
	get_online_cpus();
I
Ingo Molnar 已提交
2594
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2595 2596 2597 2598 2599 2600
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
P
Pekka Enberg 已提交
2601
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2602
		mutex_unlock(&cache_chain_mutex);
2603
		put_online_cpus();
2604
		return;
L
Linus Torvalds 已提交
2605 2606 2607
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2608
		synchronize_rcu();
L
Linus Torvalds 已提交
2609

2610
	__kmem_cache_destroy(cachep);
2611
	mutex_unlock(&cache_chain_mutex);
2612
	put_online_cpus();
L
Linus Torvalds 已提交
2613 2614 2615
}
EXPORT_SYMBOL(kmem_cache_destroy);

2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2627
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2628 2629
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2630 2631
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2632

L
Linus Torvalds 已提交
2633 2634
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2635
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2636
					      local_flags, nodeid);
2637 2638 2639 2640 2641 2642 2643 2644
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
		kmemleak_scan_area(slabp, offsetof(struct slab, list),
				   sizeof(struct list_head), local_flags);
L
Linus Torvalds 已提交
2645 2646 2647
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2648
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2649 2650 2651 2652
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2653
	slabp->s_mem = objp + colour_off;
2654
	slabp->nodeid = nodeid;
2655
	slabp->free = 0;
L
Linus Torvalds 已提交
2656 2657 2658 2659 2660
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2661
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2662 2663
}

2664
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2665
			    struct slab *slabp)
L
Linus Torvalds 已提交
2666 2667 2668 2669
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2670
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2683 2684 2685
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2686 2687
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2688
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2689 2690 2691 2692

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2693
					   " end of an object");
L
Linus Torvalds 已提交
2694 2695
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2696
					   " start of an object");
L
Linus Torvalds 已提交
2697
		}
A
Andrew Morton 已提交
2698 2699
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2700
			kernel_map_pages(virt_to_page(objp),
2701
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2702 2703
#else
		if (cachep->ctor)
2704
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2705
#endif
P
Pekka Enberg 已提交
2706
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2707
	}
P
Pekka Enberg 已提交
2708
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2709 2710
}

2711
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2712
{
2713 2714 2715 2716 2717 2718
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
			BUG_ON(!(cachep->gfpflags & GFP_DMA));
		else
			BUG_ON(cachep->gfpflags & GFP_DMA);
	}
L
Linus Torvalds 已提交
2719 2720
}

A
Andrew Morton 已提交
2721 2722
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2723
{
2724
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2738 2739
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2740
{
2741
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2742 2743 2744 2745 2746

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2747
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2748
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2749
				"'%s', objp %p\n", cachep->name, objp);
2750 2751 2752 2753 2754 2755 2756 2757
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2758 2759 2760 2761 2762 2763 2764
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2765
{
2766
	int nr_pages;
L
Linus Torvalds 已提交
2767 2768
	struct page *page;

2769
	page = virt_to_page(addr);
2770

2771
	nr_pages = 1;
2772
	if (likely(!PageCompound(page)))
2773 2774
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2775
	do {
2776 2777
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2778
		page++;
2779
	} while (--nr_pages);
L
Linus Torvalds 已提交
2780 2781 2782 2783 2784 2785
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2786 2787
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2788
{
P
Pekka Enberg 已提交
2789 2790 2791
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2792
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2793

A
Andrew Morton 已提交
2794 2795 2796
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2797
	 */
C
Christoph Lameter 已提交
2798 2799
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2800

2801
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2802
	check_irq_off();
2803 2804
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2805 2806

	/* Get colour for the slab, and cal the next value. */
2807 2808 2809 2810 2811
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2812

2813
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2826 2827 2828
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2829
	 */
2830
	if (!objp)
2831
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
2832
	if (!objp)
L
Linus Torvalds 已提交
2833 2834 2835
		goto failed;

	/* Get slab management. */
2836
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
2837
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
2838
	if (!slabp)
L
Linus Torvalds 已提交
2839 2840
		goto opps1;

2841
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2842

C
Christoph Lameter 已提交
2843
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2844 2845 2846 2847

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2848
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2849 2850

	/* Make slab active. */
2851
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2852
	STATS_INC_GROWN(cachep);
2853 2854
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2855
	return 1;
A
Andrew Morton 已提交
2856
opps1:
L
Linus Torvalds 已提交
2857
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2858
failed:
L
Linus Torvalds 已提交
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2875 2876
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2877 2878 2879
	}
}

2880 2881
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2882
	unsigned long long redzone1, redzone2;
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2898
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2899 2900 2901
			obj, redzone1, redzone2);
}

2902
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2903
				   void *caller)
L
Linus Torvalds 已提交
2904 2905 2906 2907 2908
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2909 2910
	BUG_ON(virt_to_cache(objp) != cachep);

2911
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2912
	kfree_debugcheck(objp);
2913
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2914

2915
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2916 2917

	if (cachep->flags & SLAB_RED_ZONE) {
2918
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2919 2920 2921 2922 2923 2924
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2925
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2926 2927

	BUG_ON(objnr >= cachep->num);
2928
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2929

2930 2931 2932
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2933 2934
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2935
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2936
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2937
			kernel_map_pages(virt_to_page(objp),
2938
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2949
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2950 2951 2952
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2953

L
Linus Torvalds 已提交
2954 2955 2956 2957 2958 2959 2960
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2961 2962 2963 2964
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2965
		for (i = 0;
2966
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2967
		     i++) {
A
Andrew Morton 已提交
2968
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2969
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2970
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2982
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2983 2984 2985 2986
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
2987 2988
	int node;

2989
retry:
L
Linus Torvalds 已提交
2990
	check_irq_off();
2991
	node = numa_node_id();
2992
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2993 2994
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2995 2996 2997 2998
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2999 3000 3001
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
3002
	l3 = cachep->nodelists[node];
3003 3004 3005

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
3006

3007 3008 3009 3010
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
3026 3027 3028 3029 3030 3031

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
3032
		BUG_ON(slabp->inuse >= cachep->num);
3033

L
Linus Torvalds 已提交
3034 3035 3036 3037 3038
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3039
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
P
Pekka Enberg 已提交
3040
							    node);
L
Linus Torvalds 已提交
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3052
must_grow:
L
Linus Torvalds 已提交
3053
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3054
alloc_done:
3055
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3056 3057 3058

	if (unlikely(!ac->avail)) {
		int x;
3059
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3060

A
Andrew Morton 已提交
3061
		/* cache_grow can reenable interrupts, then ac could change. */
3062
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
3063
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
3064 3065
			return NULL;

A
Andrew Morton 已提交
3066
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3067 3068 3069
			goto retry;
	}
	ac->touched = 1;
3070
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3071 3072
}

A
Andrew Morton 已提交
3073 3074
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3075 3076 3077 3078 3079 3080 3081 3082
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3083 3084
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3085
{
P
Pekka Enberg 已提交
3086
	if (!objp)
L
Linus Torvalds 已提交
3087
		return objp;
P
Pekka Enberg 已提交
3088
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3089
#ifdef CONFIG_DEBUG_PAGEALLOC
3090
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3091
			kernel_map_pages(virt_to_page(objp),
3092
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3104 3105 3106 3107
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3108
			printk(KERN_ERR
3109
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3110 3111
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3112 3113 3114 3115
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3116 3117 3118 3119 3120
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

3121
		slabp = page_get_slab(virt_to_head_page(objp));
3122 3123 3124 3125
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3126
	objp += obj_offset(cachep);
3127
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3128
		cachep->ctor(objp);
3129 3130 3131 3132 3133 3134
#if ARCH_SLAB_MINALIGN
	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
		       objp, ARCH_SLAB_MINALIGN);
	}
#endif
L
Linus Torvalds 已提交
3135 3136 3137 3138 3139 3140
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3141
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3142 3143
{
	if (cachep == &cache_cache)
A
Akinobu Mita 已提交
3144
		return false;
3145

A
Akinobu Mita 已提交
3146
	return should_failslab(obj_size(cachep), flags);
3147 3148
}

3149
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3150
{
P
Pekka Enberg 已提交
3151
	void *objp;
L
Linus Torvalds 已提交
3152 3153
	struct array_cache *ac;

3154
	check_irq_off();
3155

3156
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3157 3158 3159
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3160
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3161 3162 3163 3164
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
3165 3166 3167 3168 3169 3170
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
	kmemleak_erase(&ac->entry[ac->avail]);
3171 3172 3173
	return objp;
}

3174
#ifdef CONFIG_NUMA
3175
/*
3176
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3177 3178 3179 3180 3181 3182 3183 3184
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3185
	if (in_interrupt() || (flags & __GFP_THISNODE))
3186 3187 3188 3189 3190 3191 3192
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
3193
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3194 3195 3196
	return NULL;
}

3197 3198
/*
 * Fallback function if there was no memory available and no objects on a
3199 3200 3201 3202 3203
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3204
 */
3205
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3206
{
3207 3208
	struct zonelist *zonelist;
	gfp_t local_flags;
3209
	struct zoneref *z;
3210 3211
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3212
	void *obj = NULL;
3213
	int nid;
3214 3215 3216 3217

	if (flags & __GFP_THISNODE)
		return NULL;

3218
	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
C
Christoph Lameter 已提交
3219
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3220

3221 3222 3223 3224 3225
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3226 3227
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3228

3229
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3230
			cache->nodelists[nid] &&
3231
			cache->nodelists[nid]->free_objects) {
3232 3233
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3234 3235 3236
				if (obj)
					break;
		}
3237 3238
	}

3239
	if (!obj) {
3240 3241 3242 3243 3244 3245
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3246 3247 3248
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3249
		obj = kmem_getpages(cache, local_flags, -1);
3250 3251
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3268
				/* cache_grow already freed obj */
3269 3270 3271
				obj = NULL;
			}
		}
3272
	}
3273 3274 3275
	return obj;
}

3276 3277
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3278
 */
3279
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3280
				int nodeid)
3281 3282
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3283 3284 3285 3286 3287 3288 3289 3290
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3291
retry:
3292
	check_irq_off();
P
Pekka Enberg 已提交
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3312
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3313 3314 3315 3316 3317
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3318
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3319
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3320
	else
P
Pekka Enberg 已提交
3321
		list_add(&slabp->list, &l3->slabs_partial);
3322

P
Pekka Enberg 已提交
3323 3324
	spin_unlock(&l3->list_lock);
	goto done;
3325

A
Andrew Morton 已提交
3326
must_grow:
P
Pekka Enberg 已提交
3327
	spin_unlock(&l3->list_lock);
3328
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3329 3330
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3331

3332
	return fallback_alloc(cachep, flags);
3333

A
Andrew Morton 已提交
3334
done:
P
Pekka Enberg 已提交
3335
	return obj;
3336
}
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;

3357 3358
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3359
	if (slab_should_failslab(cachep, flags))
3360 3361
		return NULL;

3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

	if (unlikely(nodeid == -1))
		nodeid = numa_node_id();

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

	if (nodeid == numa_node_id()) {
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3390 3391
	kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
				 flags);
3392

3393 3394 3395
	if (unlikely((flags & __GFP_ZERO) && ptr))
		memset(ptr, 0, obj_size(cachep));

3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
 	if (!objp)
 		objp = ____cache_alloc_node(cache, flags, numa_node_id());

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

3437 3438
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3439
	if (slab_should_failslab(cachep, flags))
3440 3441
		return NULL;

3442 3443 3444 3445 3446
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3447 3448
	kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
				 flags);
3449 3450
	prefetchw(objp);

3451 3452 3453
	if (unlikely((flags & __GFP_ZERO) && objp))
		memset(objp, 0, obj_size(cachep));

3454 3455
	return objp;
}
3456 3457 3458 3459

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3460
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3461
		       int node)
L
Linus Torvalds 已提交
3462 3463
{
	int i;
3464
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3465 3466 3467 3468 3469

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3470
		slabp = virt_to_slab(objp);
3471
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3472
		list_del(&slabp->list);
3473
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3474
		check_slabp(cachep, slabp);
3475
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3476
		STATS_DEC_ACTIVE(cachep);
3477
		l3->free_objects++;
L
Linus Torvalds 已提交
3478 3479 3480 3481
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3482 3483
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3484 3485 3486 3487 3488 3489
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3490 3491
				slab_destroy(cachep, slabp);
			} else {
3492
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3493 3494 3495 3496 3497 3498
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3499
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3500 3501 3502 3503
		}
	}
}

3504
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3505 3506
{
	int batchcount;
3507
	struct kmem_list3 *l3;
3508
	int node = numa_node_id();
L
Linus Torvalds 已提交
3509 3510 3511 3512 3513 3514

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3515
	l3 = cachep->nodelists[node];
3516
	spin_lock(&l3->list_lock);
3517 3518
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3519
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3520 3521 3522
		if (max) {
			if (batchcount > max)
				batchcount = max;
3523
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3524
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3525 3526 3527 3528 3529
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3530
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3531
free_done:
L
Linus Torvalds 已提交
3532 3533 3534 3535 3536
#if STATS
	{
		int i = 0;
		struct list_head *p;

3537 3538
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3550
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3551
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3552
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3553 3554 3555
}

/*
A
Andrew Morton 已提交
3556 3557
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3558
 */
3559
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3560
{
3561
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3562 3563

	check_irq_off();
3564
	kmemleak_free_recursive(objp, cachep->flags);
L
Linus Torvalds 已提交
3565 3566
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

3567 3568 3569 3570 3571 3572 3573 3574
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
	if (numa_platform && cache_free_alien(cachep, objp))
3575 3576
		return;

L
Linus Torvalds 已提交
3577 3578
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3579
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3580 3581 3582 3583
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3584
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3596
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3597
{
E
Eduard - Gabriel Munteanu 已提交
3598 3599
	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

3600 3601
	trace_kmem_cache_alloc(_RET_IP_, ret,
			       obj_size(cachep), cachep->buffer_size, flags);
E
Eduard - Gabriel Munteanu 已提交
3602 3603

	return ret;
L
Linus Torvalds 已提交
3604 3605 3606
}
EXPORT_SYMBOL(kmem_cache_alloc);

E
Eduard - Gabriel Munteanu 已提交
3607 3608 3609 3610 3611 3612 3613 3614
#ifdef CONFIG_KMEMTRACE
void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
{
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
}
EXPORT_SYMBOL(kmem_cache_alloc_notrace);
#endif

L
Linus Torvalds 已提交
3615
/**
3616
 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
L
Linus Torvalds 已提交
3617 3618 3619
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
3620
 * This verifies that the untrusted pointer looks sane;
L
Linus Torvalds 已提交
3621 3622 3623 3624 3625 3626 3627
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3628
int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
L
Linus Torvalds 已提交
3629
{
P
Pekka Enberg 已提交
3630
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3631
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3632
	unsigned long align_mask = BYTES_PER_WORD - 1;
3633
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3649
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3650 3651
		goto out;
	return 1;
A
Andrew Morton 已提交
3652
out:
L
Linus Torvalds 已提交
3653 3654 3655 3656
	return 0;
}

#ifdef CONFIG_NUMA
3657 3658
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
E
Eduard - Gabriel Munteanu 已提交
3659 3660 3661
	void *ret = __cache_alloc_node(cachep, flags, nodeid,
				       __builtin_return_address(0));

3662 3663 3664
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
				    obj_size(cachep), cachep->buffer_size,
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3665 3666

	return ret;
3667
}
L
Linus Torvalds 已提交
3668 3669
EXPORT_SYMBOL(kmem_cache_alloc_node);

E
Eduard - Gabriel Munteanu 已提交
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
#ifdef CONFIG_KMEMTRACE
void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
				    gfp_t flags,
				    int nodeid)
{
	return __cache_alloc_node(cachep, flags, nodeid,
				  __builtin_return_address(0));
}
EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
#endif

3681 3682
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3683
{
3684
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3685
	void *ret;
3686 3687

	cachep = kmem_find_general_cachep(size, flags);
3688 3689
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
E
Eduard - Gabriel Munteanu 已提交
3690 3691
	ret = kmem_cache_alloc_node_notrace(cachep, flags, node);

3692 3693
	trace_kmalloc_node((unsigned long) caller, ret,
			   size, cachep->buffer_size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3694 3695

	return ret;
3696
}
3697

E
Eduard - Gabriel Munteanu 已提交
3698
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3699 3700 3701 3702 3703
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3704
EXPORT_SYMBOL(__kmalloc_node);
3705 3706

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3707
		int node, unsigned long caller)
3708
{
3709
	return __do_kmalloc_node(size, flags, node, (void *)caller);
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
#endif /* CONFIG_DEBUG_SLAB */
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3720 3721

/**
3722
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3723
 * @size: how many bytes of memory are required.
3724
 * @flags: the type of memory to allocate (see kmalloc).
3725
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3726
 */
3727 3728
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3729
{
3730
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3731
	void *ret;
L
Linus Torvalds 已提交
3732

3733 3734 3735 3736 3737 3738
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3739 3740
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
E
Eduard - Gabriel Munteanu 已提交
3741 3742
	ret = __cache_alloc(cachep, flags, caller);

3743 3744
	trace_kmalloc((unsigned long) caller, ret,
		      size, cachep->buffer_size, flags);
E
Eduard - Gabriel Munteanu 已提交
3745 3746

	return ret;
3747 3748 3749
}


E
Eduard - Gabriel Munteanu 已提交
3750
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3751 3752
void *__kmalloc(size_t size, gfp_t flags)
{
3753
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3754 3755 3756
}
EXPORT_SYMBOL(__kmalloc);

3757
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3758
{
3759
	return __do_kmalloc(size, flags, (void *)caller);
3760 3761
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3762 3763 3764 3765 3766 3767 3768

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3769 3770
#endif

L
Linus Torvalds 已提交
3771 3772 3773 3774 3775 3776 3777 3778
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3779
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3780 3781 3782 3783
{
	unsigned long flags;

	local_irq_save(flags);
3784
	debug_check_no_locks_freed(objp, obj_size(cachep));
3785 3786
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(objp, obj_size(cachep));
3787
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3788
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3789

3790
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3791 3792 3793 3794 3795 3796 3797
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3798 3799
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3800 3801 3802 3803 3804
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3805
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3806 3807
	unsigned long flags;

3808 3809
	trace_kfree(_RET_IP_, objp);

3810
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3811 3812 3813
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3814
	c = virt_to_cache(objp);
3815
	debug_check_no_locks_freed(objp, obj_size(c));
3816
	debug_check_no_obj_freed(objp, obj_size(c));
3817
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3818 3819 3820 3821
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3822
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3823
{
3824
	return obj_size(cachep);
L
Linus Torvalds 已提交
3825 3826 3827
}
EXPORT_SYMBOL(kmem_cache_size);

3828
const char *kmem_cache_name(struct kmem_cache *cachep)
3829 3830 3831 3832 3833
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3834
/*
S
Simon Arlott 已提交
3835
 * This initializes kmem_list3 or resizes various caches for all nodes.
3836
 */
3837
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3838 3839 3840
{
	int node;
	struct kmem_list3 *l3;
3841
	struct array_cache *new_shared;
3842
	struct array_cache **new_alien = NULL;
3843

3844
	for_each_online_node(node) {
3845

3846
                if (use_alien_caches) {
3847
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3848 3849 3850
                        if (!new_alien)
                                goto fail;
                }
3851

3852 3853 3854
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3855
				cachep->shared*cachep->batchcount,
3856
					0xbaadf00d, gfp);
3857 3858 3859 3860
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3861
		}
3862

A
Andrew Morton 已提交
3863 3864
		l3 = cachep->nodelists[node];
		if (l3) {
3865 3866
			struct array_cache *shared = l3->shared;

3867 3868
			spin_lock_irq(&l3->list_lock);

3869
			if (shared)
3870 3871
				free_block(cachep, shared->entry,
						shared->avail, node);
3872

3873 3874
			l3->shared = new_shared;
			if (!l3->alien) {
3875 3876 3877
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3878
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3879
					cachep->batchcount + cachep->num;
3880
			spin_unlock_irq(&l3->list_lock);
3881
			kfree(shared);
3882 3883 3884
			free_alien_cache(new_alien);
			continue;
		}
3885
		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3886 3887 3888
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3889
			goto fail;
3890
		}
3891 3892 3893

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3894
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3895
		l3->shared = new_shared;
3896
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3897
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3898
					cachep->batchcount + cachep->num;
3899 3900
		cachep->nodelists[node] = l3;
	}
3901
	return 0;
3902

A
Andrew Morton 已提交
3903
fail:
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3919
	return -ENOMEM;
3920 3921
}

L
Linus Torvalds 已提交
3922
struct ccupdate_struct {
3923
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3924 3925 3926 3927 3928
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3929
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3930 3931 3932
	struct array_cache *old;

	check_irq_off();
3933
	old = cpu_cache_get(new->cachep);
3934

L
Linus Torvalds 已提交
3935 3936 3937 3938
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3939
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3940
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3941
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3942
{
3943
	struct ccupdate_struct *new;
3944
	int i;
L
Linus Torvalds 已提交
3945

3946
	new = kzalloc(sizeof(*new), gfp);
3947 3948 3949
	if (!new)
		return -ENOMEM;

3950
	for_each_online_cpu(i) {
3951
		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3952
						batchcount, gfp);
3953
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3954
			for (i--; i >= 0; i--)
3955 3956
				kfree(new->new[i]);
			kfree(new);
3957
			return -ENOMEM;
L
Linus Torvalds 已提交
3958 3959
		}
	}
3960
	new->cachep = cachep;
L
Linus Torvalds 已提交
3961

3962
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3963

L
Linus Torvalds 已提交
3964 3965 3966
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3967
	cachep->shared = shared;
L
Linus Torvalds 已提交
3968

3969
	for_each_online_cpu(i) {
3970
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3971 3972
		if (!ccold)
			continue;
3973
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3974
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3975
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3976 3977
		kfree(ccold);
	}
3978
	kfree(new);
3979
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
3980 3981
}

3982
/* Called with cache_chain_mutex held always */
3983
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3984 3985 3986 3987
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
3988 3989
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3990 3991
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3992
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3993 3994 3995 3996
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3997
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3998
		limit = 1;
3999
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
4000
		limit = 8;
4001
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
4002
		limit = 24;
4003
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
4004 4005 4006 4007
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4008 4009
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4010 4011 4012 4013 4014 4015 4016 4017
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4018
	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4019 4020 4021
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4022 4023 4024
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4025 4026 4027 4028
	 */
	if (limit > 32)
		limit = 32;
#endif
4029
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
L
Linus Torvalds 已提交
4030 4031
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4032
		       cachep->name, -err);
4033
	return err;
L
Linus Torvalds 已提交
4034 4035
}

4036 4037
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4038 4039
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4040 4041 4042
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4043 4044 4045
{
	int tofree;

4046 4047
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4048 4049
	if (ac->touched && !force) {
		ac->touched = 0;
4050
	} else {
4051
		spin_lock_irq(&l3->list_lock);
4052 4053 4054 4055 4056 4057 4058 4059 4060
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4061
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4062 4063 4064 4065 4066
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4067
 * @w: work descriptor
L
Linus Torvalds 已提交
4068 4069 4070 4071 4072 4073
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4074 4075
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4076
 */
4077
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4078
{
4079
	struct kmem_cache *searchp;
4080
	struct kmem_list3 *l3;
4081
	int node = numa_node_id();
4082
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4083

4084
	if (!mutex_trylock(&cache_chain_mutex))
L
Linus Torvalds 已提交
4085
		/* Give up. Setup the next iteration. */
4086
		goto out;
L
Linus Torvalds 已提交
4087

4088
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
4089 4090
		check_irq_on();

4091 4092 4093 4094 4095
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4096
		l3 = searchp->nodelists[node];
4097

4098
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4099

4100
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4101

4102 4103 4104 4105
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4106
		if (time_after(l3->next_reap, jiffies))
4107
			goto next;
L
Linus Torvalds 已提交
4108

4109
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4110

4111
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4112

4113
		if (l3->free_touched)
4114
			l3->free_touched = 0;
4115 4116
		else {
			int freed;
L
Linus Torvalds 已提交
4117

4118 4119 4120 4121
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4122
next:
L
Linus Torvalds 已提交
4123 4124 4125
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
4126
	mutex_unlock(&cache_chain_mutex);
4127
	next_reap_node();
4128
out:
A
Andrew Morton 已提交
4129
	/* Set up the next iteration */
4130
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4131 4132
}

4133
#ifdef CONFIG_SLABINFO
L
Linus Torvalds 已提交
4134

4135
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4136
{
4137 4138 4139 4140
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4141
#if STATS
4142
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4143
#else
4144
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4145
#endif
4146 4147 4148 4149
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4150
#if STATS
4151
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4152
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4153
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4154
#endif
4155 4156 4157 4158 4159 4160 4161
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

I
Ingo Molnar 已提交
4162
	mutex_lock(&cache_chain_mutex);
4163 4164
	if (!n)
		print_slabinfo_header(m);
4165 4166

	return seq_list_start(&cache_chain, *pos);
L
Linus Torvalds 已提交
4167 4168 4169 4170
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4171
	return seq_list_next(p, &cache_chain, pos);
L
Linus Torvalds 已提交
4172 4173 4174 4175
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
4176
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4177 4178 4179 4180
}

static int s_show(struct seq_file *m, void *p)
{
4181
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
P
Pekka Enberg 已提交
4182 4183 4184 4185 4186
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4187
	const char *name;
L
Linus Torvalds 已提交
4188
	char *error = NULL;
4189 4190
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4191 4192 4193

	active_objs = 0;
	num_slabs = 0;
4194 4195 4196 4197 4198
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4199 4200
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4201

4202
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4203 4204 4205 4206 4207
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4208
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4209 4210 4211 4212 4213 4214 4215
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4216
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4217 4218 4219 4220 4221
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4222 4223
		if (l3->shared)
			shared_avail += l3->shared->avail;
4224

4225
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4226
	}
P
Pekka Enberg 已提交
4227 4228
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4229
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4230 4231
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4232
	name = cachep->name;
L
Linus Torvalds 已提交
4233 4234 4235 4236
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4237
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4238
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4239
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4240
		   cachep->limit, cachep->batchcount, cachep->shared);
4241
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4242
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4243
#if STATS
P
Pekka Enberg 已提交
4244
	{			/* list3 stats */
L
Linus Torvalds 已提交
4245 4246 4247 4248 4249 4250 4251
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4252
		unsigned long node_frees = cachep->node_frees;
4253
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4254

4255
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4256
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
4257
				reaped, errors, max_freeable, node_allocs,
4258
				node_frees, overflows);
L
Linus Torvalds 已提交
4259 4260 4261 4262 4263 4264 4265 4266 4267
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4268
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4289
static const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4290 4291 4292 4293
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
4304 4305
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4306
{
P
Pekka Enberg 已提交
4307
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4308
	int limit, batchcount, shared, res;
4309
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4310

L
Linus Torvalds 已提交
4311 4312 4313 4314
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4315
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4316 4317 4318 4319 4320 4321 4322 4323 4324 4325

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4326
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4327
	res = -EINVAL;
4328
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4329
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4330 4331
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4332
				res = 0;
L
Linus Torvalds 已提交
4333
			} else {
4334
				res = do_tune_cpucache(cachep, limit,
4335 4336
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4337 4338 4339 4340
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4341
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4342 4343 4344 4345
	if (res >= 0)
		res = count;
	return res;
}
4346

4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359
static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write		= slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

4360 4361 4362 4363 4364
#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	mutex_lock(&cache_chain_mutex);
4365
	return seq_list_start(&cache_chain, *pos);
4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4416
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4417

4418
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4419
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4420
		if (modname[0])
4421 4422 4423 4424 4425 4426 4427 4428 4429
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4430
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4455
		list_for_each_entry(slabp, &l3->slabs_full, list)
4456
			handle_slab(n, cachep, slabp);
4457
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4484

4485 4486 4487
	return 0;
}

4488
static const struct seq_operations slabstats_op = {
4489 4490 4491 4492 4493
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
4522
	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4523 4524
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4525
#endif
4526 4527 4528
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4529 4530
#endif

4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4543
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4544
{
4545 4546
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4547
		return 0;
L
Linus Torvalds 已提交
4548

4549
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4550
}
K
Kirill A. Shutemov 已提交
4551
EXPORT_SYMBOL(ksize);