perf_event.c 128.9 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17
#include <linux/poll.h>
18
#include <linux/slab.h>
19
#include <linux/hash.h>
T
Thomas Gleixner 已提交
20
#include <linux/sysfs.h>
21
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
22
#include <linux/percpu.h>
23
#include <linux/ptrace.h>
24
#include <linux/vmstat.h>
25
#include <linux/vmalloc.h>
26 27
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
28 29 30
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
31
#include <linux/kernel_stat.h>
32
#include <linux/perf_event.h>
L
Li Zefan 已提交
33
#include <linux/ftrace_event.h>
34
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
35

36 37
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
38
/*
39
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
40
 */
41
static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
T
Thomas Gleixner 已提交
42

43
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
44 45 46
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

47 48 49 50
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
51

52
/*
53
 * perf event paranoia level:
54 55
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
56
 *   1 - disallow cpu events for unpriv
57
 *   2 - disallow kernel profiling for unpriv
58
 */
59
int sysctl_perf_event_paranoid __read_mostly = 1;
60

61
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62 63

/*
64
 * max perf event sample rate
65
 */
66
int sysctl_perf_event_sample_rate __read_mostly = 100000;
67

68
static atomic64_t perf_event_id;
69

T
Thomas Gleixner 已提交
70
/*
71
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
72
 */
73
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
74 75 76 77

/*
 * Architecture provided APIs - weak aliases:
 */
78
extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
79
{
80
	return NULL;
T
Thomas Gleixner 已提交
81 82
}

83 84 85
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

86
int __weak
87
hw_perf_group_sched_in(struct perf_event *group_leader,
88
	       struct perf_cpu_context *cpuctx,
89
	       struct perf_event_context *ctx)
90 91 92
{
	return 0;
}
T
Thomas Gleixner 已提交
93

94
void __weak perf_event_print_debug(void)	{ }
95

96
static DEFINE_PER_CPU(int, perf_disable_count);
97 98 99

void perf_disable(void)
{
P
Peter Zijlstra 已提交
100 101
	if (!__get_cpu_var(perf_disable_count)++)
		hw_perf_disable();
102 103 104 105
}

void perf_enable(void)
{
P
Peter Zijlstra 已提交
106
	if (!--__get_cpu_var(perf_disable_count))
107 108 109
		hw_perf_enable();
}

110
static void get_ctx(struct perf_event_context *ctx)
111
{
112
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
113 114
}

115 116
static void free_ctx(struct rcu_head *head)
{
117
	struct perf_event_context *ctx;
118

119
	ctx = container_of(head, struct perf_event_context, rcu_head);
120 121 122
	kfree(ctx);
}

123
static void put_ctx(struct perf_event_context *ctx)
124
{
125 126 127
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
128 129 130
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
131
	}
132 133
}

134
static void unclone_ctx(struct perf_event_context *ctx)
135 136 137 138 139 140 141
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

142
/*
143
 * If we inherit events we want to return the parent event id
144 145
 * to userspace.
 */
146
static u64 primary_event_id(struct perf_event *event)
147
{
148
	u64 id = event->id;
149

150 151
	if (event->parent)
		id = event->parent->id;
152 153 154 155

	return id;
}

156
/*
157
 * Get the perf_event_context for a task and lock it.
158 159 160
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
161
static struct perf_event_context *
162
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
163
{
164
	struct perf_event_context *ctx;
165 166 167

	rcu_read_lock();
 retry:
168
	ctx = rcu_dereference(task->perf_event_ctxp);
169 170 171 172
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
173
		 * perf_event_task_sched_out, though the
174 175 176 177 178 179
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
180
		raw_spin_lock_irqsave(&ctx->lock, *flags);
181
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
182
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
183 184
			goto retry;
		}
185 186

		if (!atomic_inc_not_zero(&ctx->refcount)) {
187
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
188 189
			ctx = NULL;
		}
190 191 192 193 194 195 196 197 198 199
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
200
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
201
{
202
	struct perf_event_context *ctx;
203 204 205 206 207
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
208
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
209 210 211 212
	}
	return ctx;
}

213
static void perf_unpin_context(struct perf_event_context *ctx)
214 215 216
{
	unsigned long flags;

217
	raw_spin_lock_irqsave(&ctx->lock, flags);
218
	--ctx->pin_count;
219
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
220 221 222
	put_ctx(ctx);
}

223 224
static inline u64 perf_clock(void)
{
225
	return cpu_clock(raw_smp_processor_id());
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

251 252 253 254 255 256
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
257 258 259 260 261 262 263 264 265

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

266 267 268 269 270 271 272 273 274
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

275
/*
276
 * Add a event from the lists for its context.
277 278
 * Must be called with ctx->mutex and ctx->lock held.
 */
279
static void
280
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
281
{
282
	struct perf_event *group_leader = event->group_leader;
283 284

	/*
285 286
	 * Depending on whether it is a standalone or sibling event,
	 * add it straight to the context's event list, or to the group
287 288
	 * leader's sibling list:
	 */
289 290 291
	if (group_leader == event) {
		struct list_head *list;

292 293 294
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

295 296 297
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
	} else {
298 299 300 301
		if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
		    !is_software_event(event))
			group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

302
		list_add_tail(&event->group_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
303 304
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
305

306 307 308
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
309
		ctx->nr_stat++;
310 311
}

312
/*
313
 * Remove a event from the lists for its context.
314
 * Must be called with ctx->mutex and ctx->lock held.
315
 */
316
static void
317
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
318
{
319
	struct perf_event *sibling, *tmp;
320

321
	if (list_empty(&event->group_entry))
322
		return;
323 324
	ctx->nr_events--;
	if (event->attr.inherit_stat)
325
		ctx->nr_stat--;
326

327 328
	list_del_init(&event->group_entry);
	list_del_rcu(&event->event_entry);
329

330 331
	if (event->group_leader != event)
		event->group_leader->nr_siblings--;
P
Peter Zijlstra 已提交
332

333
	update_event_times(event);
334 335 336 337 338 339 340 341 342 343

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
344

345
	/*
346 347
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
348 349
	 * to the context list directly:
	 */
350
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
351
		struct list_head *list;
352

353 354
		list = ctx_group_list(event, ctx);
		list_move_tail(&sibling->group_entry, list);
355
		sibling->group_leader = sibling;
356 357 358

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
359 360 361
	}
}

362
static void
363
event_sched_out(struct perf_event *event,
364
		  struct perf_cpu_context *cpuctx,
365
		  struct perf_event_context *ctx)
366
{
367
	if (event->state != PERF_EVENT_STATE_ACTIVE)
368 369
		return;

370 371 372 373
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
374
	}
375 376 377
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
378

379
	if (!is_software_event(event))
380 381
		cpuctx->active_oncpu--;
	ctx->nr_active--;
382
	if (event->attr.exclusive || !cpuctx->active_oncpu)
383 384 385
		cpuctx->exclusive = 0;
}

386
static void
387
group_sched_out(struct perf_event *group_event,
388
		struct perf_cpu_context *cpuctx,
389
		struct perf_event_context *ctx)
390
{
391
	struct perf_event *event;
392

393
	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
394 395
		return;

396
	event_sched_out(group_event, cpuctx, ctx);
397 398 399 400

	/*
	 * Schedule out siblings (if any):
	 */
401 402
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
403

404
	if (group_event->attr.exclusive)
405 406 407
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
408
/*
409
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
410
 *
411
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
412 413
 * remove it from the context list.
 */
414
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
415 416
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
417 418
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
419 420 421 422 423 424

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
425
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
426 427
		return;

428
	raw_spin_lock(&ctx->lock);
429 430
	/*
	 * Protect the list operation against NMI by disabling the
431
	 * events on a global level.
432 433
	 */
	perf_disable();
T
Thomas Gleixner 已提交
434

435
	event_sched_out(event, cpuctx, ctx);
436

437
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
438 439 440

	if (!ctx->task) {
		/*
441
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
442 443 444
		 * reservation:
		 */
		cpuctx->max_pertask =
445 446
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
447 448
	}

449
	perf_enable();
450
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
451 452 453 454
}


/*
455
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
456
 *
457
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
458
 *
459
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
460
 * call when the task is on a CPU.
461
 *
462 463
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
464 465
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
466
 * When called from perf_event_exit_task, it's OK because the
467
 * context has been detached from its task.
T
Thomas Gleixner 已提交
468
 */
469
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
470
{
471
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
472 473 474 475
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
476
		 * Per cpu events are removed via an smp call and
477
		 * the removal is always successful.
T
Thomas Gleixner 已提交
478
		 */
479 480 481
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
482 483 484 485
		return;
	}

retry:
486 487
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
488

489
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
490 491 492
	/*
	 * If the context is active we need to retry the smp call.
	 */
493
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
494
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
495 496 497 498 499
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
500
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
501 502
	 * succeed.
	 */
P
Peter Zijlstra 已提交
503
	if (!list_empty(&event->group_entry))
504
		list_del_event(event, ctx);
505
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
506 507
}

508
/*
509
 * Update total_time_enabled and total_time_running for all events in a group.
510
 */
511
static void update_group_times(struct perf_event *leader)
512
{
513
	struct perf_event *event;
514

515 516 517
	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
518 519
}

520
/*
521
 * Cross CPU call to disable a performance event
522
 */
523
static void __perf_event_disable(void *info)
524
{
525
	struct perf_event *event = info;
526
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
527
	struct perf_event_context *ctx = event->ctx;
528 529

	/*
530 531
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
532
	 */
533
	if (ctx->task && cpuctx->task_ctx != ctx)
534 535
		return;

536
	raw_spin_lock(&ctx->lock);
537 538

	/*
539
	 * If the event is on, turn it off.
540 541
	 * If it is in error state, leave it in error state.
	 */
542
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
543
		update_context_time(ctx);
544 545 546
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
547
		else
548 549
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
550 551
	}

552
	raw_spin_unlock(&ctx->lock);
553 554 555
}

/*
556
 * Disable a event.
557
 *
558 559
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
560
 * remains valid.  This condition is satisifed when called through
561 562 563 564
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
565
 * is the current context on this CPU and preemption is disabled,
566
 * hence we can't get into perf_event_task_sched_out for this context.
567
 */
568
void perf_event_disable(struct perf_event *event)
569
{
570
	struct perf_event_context *ctx = event->ctx;
571 572 573 574
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
575
		 * Disable the event on the cpu that it's on
576
		 */
577 578
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
579 580 581 582
		return;
	}

 retry:
583
	task_oncpu_function_call(task, __perf_event_disable, event);
584

585
	raw_spin_lock_irq(&ctx->lock);
586
	/*
587
	 * If the event is still active, we need to retry the cross-call.
588
	 */
589
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
590
		raw_spin_unlock_irq(&ctx->lock);
591 592 593 594 595 596 597
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
598 599 600
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
601
	}
602

603
	raw_spin_unlock_irq(&ctx->lock);
604 605
}

606
static int
607
event_sched_in(struct perf_event *event,
608
		 struct perf_cpu_context *cpuctx,
609
		 struct perf_event_context *ctx)
610
{
611
	if (event->state <= PERF_EVENT_STATE_OFF)
612 613
		return 0;

614
	event->state = PERF_EVENT_STATE_ACTIVE;
615
	event->oncpu = smp_processor_id();
616 617 618 619 620
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

621 622 623
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
624 625 626
		return -EAGAIN;
	}

627
	event->tstamp_running += ctx->time - event->tstamp_stopped;
628

629
	if (!is_software_event(event))
630
		cpuctx->active_oncpu++;
631 632
	ctx->nr_active++;

633
	if (event->attr.exclusive)
634 635
		cpuctx->exclusive = 1;

636 637 638
	return 0;
}

639
static int
640
group_sched_in(struct perf_event *group_event,
641
	       struct perf_cpu_context *cpuctx,
642
	       struct perf_event_context *ctx)
643
{
644
	struct perf_event *event, *partial_group;
645 646
	int ret;

647
	if (group_event->state == PERF_EVENT_STATE_OFF)
648 649
		return 0;

650
	ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
651 652 653
	if (ret)
		return ret < 0 ? ret : 0;

654
	if (event_sched_in(group_event, cpuctx, ctx))
655 656 657 658 659
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
660
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
661
		if (event_sched_in(event, cpuctx, ctx)) {
662
			partial_group = event;
663 664 665 666 667 668 669 670 671 672 673
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
674 675
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
676
			break;
677
		event_sched_out(event, cpuctx, ctx);
678
	}
679
	event_sched_out(group_event, cpuctx, ctx);
680 681 682 683

	return -EAGAIN;
}

684
/*
685
 * Work out whether we can put this event group on the CPU now.
686
 */
687
static int group_can_go_on(struct perf_event *event,
688 689 690 691
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
692
	 * Groups consisting entirely of software events can always go on.
693
	 */
694
	if (event->group_flags & PERF_GROUP_SOFTWARE)
695 696 697
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
698
	 * events can go on.
699 700 701 702 703
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
704
	 * events on the CPU, it can't go on.
705
	 */
706
	if (event->attr.exclusive && cpuctx->active_oncpu)
707 708 709 710 711 712 713 714
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

715 716
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
717
{
718 719 720 721
	list_add_event(event, ctx);
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
722 723
}

T
Thomas Gleixner 已提交
724
/*
725
 * Cross CPU call to install and enable a performance event
726 727
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
728 729 730 731
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
732 733 734
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
735
	int err;
T
Thomas Gleixner 已提交
736 737 738 739 740

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
741
	 * Or possibly this is the right context but it isn't
742
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
743
	 */
744
	if (ctx->task && cpuctx->task_ctx != ctx) {
745
		if (cpuctx->task_ctx || ctx->task != current)
746 747 748
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
749

750
	raw_spin_lock(&ctx->lock);
751
	ctx->is_active = 1;
752
	update_context_time(ctx);
T
Thomas Gleixner 已提交
753 754 755

	/*
	 * Protect the list operation against NMI by disabling the
756
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
757
	 */
758
	perf_disable();
T
Thomas Gleixner 已提交
759

760
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
761

762 763 764
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

765
	/*
766
	 * Don't put the event on if it is disabled or if
767 768
	 * it is in a group and the group isn't on.
	 */
769 770
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
771 772
		goto unlock;

773
	/*
774 775 776
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
777
	 */
778
	if (!group_can_go_on(event, cpuctx, 1))
779 780
		err = -EEXIST;
	else
781
		err = event_sched_in(event, cpuctx, ctx);
782

783 784
	if (err) {
		/*
785
		 * This event couldn't go on.  If it is in a group
786
		 * then we have to pull the whole group off.
787
		 * If the event group is pinned then put it in error state.
788
		 */
789
		if (leader != event)
790
			group_sched_out(leader, cpuctx, ctx);
791
		if (leader->attr.pinned) {
792
			update_group_times(leader);
793
			leader->state = PERF_EVENT_STATE_ERROR;
794
		}
795
	}
T
Thomas Gleixner 已提交
796

797
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
798 799
		cpuctx->max_pertask--;

800
 unlock:
801
	perf_enable();
802

803
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
804 805 806
}

/*
807
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
808
 *
809 810
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
811
 *
812
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
813 814
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
815 816
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
817 818
 */
static void
819 820
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
821 822 823 824 825 826
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
827
		 * Per cpu events are installed via an smp call and
828
		 * the install is always successful.
T
Thomas Gleixner 已提交
829 830
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
831
					 event, 1);
T
Thomas Gleixner 已提交
832 833 834 835 836
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
837
				 event);
T
Thomas Gleixner 已提交
838

839
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
840 841 842
	/*
	 * we need to retry the smp call.
	 */
843
	if (ctx->is_active && list_empty(&event->group_entry)) {
844
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
845 846 847 848 849
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
850
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
851 852
	 * succeed.
	 */
853 854
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
855
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
856 857
}

858
/*
859
 * Put a event into inactive state and update time fields.
860 861 862 863 864 865
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
866 867
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
868
{
869
	struct perf_event *sub;
870

871 872 873 874
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
875 876 877 878
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

879
/*
880
 * Cross CPU call to enable a performance event
881
 */
882
static void __perf_event_enable(void *info)
883
{
884
	struct perf_event *event = info;
885
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
886 887
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
888
	int err;
889

890
	/*
891 892
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
893
	 */
894
	if (ctx->task && cpuctx->task_ctx != ctx) {
895
		if (cpuctx->task_ctx || ctx->task != current)
896 897 898
			return;
		cpuctx->task_ctx = ctx;
	}
899

900
	raw_spin_lock(&ctx->lock);
901
	ctx->is_active = 1;
902
	update_context_time(ctx);
903

904
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
905
		goto unlock;
906
	__perf_event_mark_enabled(event, ctx);
907

908 909 910
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

911
	/*
912
	 * If the event is in a group and isn't the group leader,
913
	 * then don't put it on unless the group is on.
914
	 */
915
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
916
		goto unlock;
917

918
	if (!group_can_go_on(event, cpuctx, 1)) {
919
		err = -EEXIST;
920
	} else {
921
		perf_disable();
922
		if (event == leader)
923
			err = group_sched_in(event, cpuctx, ctx);
924
		else
925
			err = event_sched_in(event, cpuctx, ctx);
926
		perf_enable();
927
	}
928 929 930

	if (err) {
		/*
931
		 * If this event can't go on and it's part of a
932 933
		 * group, then the whole group has to come off.
		 */
934
		if (leader != event)
935
			group_sched_out(leader, cpuctx, ctx);
936
		if (leader->attr.pinned) {
937
			update_group_times(leader);
938
			leader->state = PERF_EVENT_STATE_ERROR;
939
		}
940 941 942
	}

 unlock:
943
	raw_spin_unlock(&ctx->lock);
944 945 946
}

/*
947
 * Enable a event.
948
 *
949 950
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
951
 * remains valid.  This condition is satisfied when called through
952 953
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
954
 */
955
void perf_event_enable(struct perf_event *event)
956
{
957
	struct perf_event_context *ctx = event->ctx;
958 959 960 961
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
962
		 * Enable the event on the cpu that it's on
963
		 */
964 965
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
966 967 968
		return;
	}

969
	raw_spin_lock_irq(&ctx->lock);
970
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
971 972 973
		goto out;

	/*
974 975
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
976 977 978 979
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
980 981
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
982 983

 retry:
984
	raw_spin_unlock_irq(&ctx->lock);
985
	task_oncpu_function_call(task, __perf_event_enable, event);
986

987
	raw_spin_lock_irq(&ctx->lock);
988 989

	/*
990
	 * If the context is active and the event is still off,
991 992
	 * we need to retry the cross-call.
	 */
993
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
994 995 996 997 998 999
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1000 1001
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1002

1003
 out:
1004
	raw_spin_unlock_irq(&ctx->lock);
1005 1006
}

1007
static int perf_event_refresh(struct perf_event *event, int refresh)
1008
{
1009
	/*
1010
	 * not supported on inherited events
1011
	 */
1012
	if (event->attr.inherit)
1013 1014
		return -EINVAL;

1015 1016
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1017 1018

	return 0;
1019 1020
}

1021 1022 1023 1024 1025 1026 1027 1028 1029
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1030
{
1031
	struct perf_event *event;
1032

1033
	raw_spin_lock(&ctx->lock);
1034
	ctx->is_active = 0;
1035
	if (likely(!ctx->nr_events))
1036
		goto out;
1037
	update_context_time(ctx);
1038

1039
	perf_disable();
1040 1041 1042 1043
	if (!ctx->nr_active)
		goto out_enable;

	if (event_type & EVENT_PINNED)
1044 1045 1046
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);

1047
	if (event_type & EVENT_FLEXIBLE)
1048
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1049
			group_sched_out(event, cpuctx, ctx);
1050 1051

 out_enable:
1052
	perf_enable();
1053
 out:
1054
	raw_spin_unlock(&ctx->lock);
1055 1056
}

1057 1058 1059
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1060 1061 1062 1063
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1064
 * in them directly with an fd; we can only enable/disable all
1065
 * events via prctl, or enable/disable all events in a family
1066 1067
 * via ioctl, which will have the same effect on both contexts.
 */
1068 1069
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1070 1071
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1072
		&& ctx1->parent_gen == ctx2->parent_gen
1073
		&& !ctx1->pin_count && !ctx2->pin_count;
1074 1075
}

1076 1077
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1078 1079 1080
{
	u64 value;

1081
	if (!event->attr.inherit_stat)
1082 1083 1084
		return;

	/*
1085
	 * Update the event value, we cannot use perf_event_read()
1086 1087
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1088
	 * we know the event must be on the current CPU, therefore we
1089 1090
	 * don't need to use it.
	 */
1091 1092
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1093 1094
		event->pmu->read(event);
		/* fall-through */
1095

1096 1097
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1098 1099 1100 1101 1102 1103 1104
		break;

	default:
		break;
	}

	/*
1105
	 * In order to keep per-task stats reliable we need to flip the event
1106 1107
	 * values when we flip the contexts.
	 */
1108 1109 1110
	value = atomic64_read(&next_event->count);
	value = atomic64_xchg(&event->count, value);
	atomic64_set(&next_event->count, value);
1111

1112 1113
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1114

1115
	/*
1116
	 * Since we swizzled the values, update the user visible data too.
1117
	 */
1118 1119
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1120 1121 1122 1123 1124
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1125 1126
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1127
{
1128
	struct perf_event *event, *next_event;
1129 1130 1131 1132

	if (!ctx->nr_stat)
		return;

1133 1134
	update_context_time(ctx);

1135 1136
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1137

1138 1139
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1140

1141 1142
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1143

1144
		__perf_event_sync_stat(event, next_event);
1145

1146 1147
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1148 1149 1150
	}
}

T
Thomas Gleixner 已提交
1151
/*
1152
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1153 1154
 * with interrupts disabled.
 *
1155
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1156
 *
I
Ingo Molnar 已提交
1157
 * This does not protect us against NMI, but disable()
1158 1159 1160
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1161
 */
1162
void perf_event_task_sched_out(struct task_struct *task,
1163
				 struct task_struct *next)
T
Thomas Gleixner 已提交
1164
{
1165
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1166 1167 1168
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1169
	int do_switch = 1;
T
Thomas Gleixner 已提交
1170

1171
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1172

1173
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1174 1175
		return;

1176 1177
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1178
	next_ctx = next->perf_event_ctxp;
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1190 1191
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1192
		if (context_equiv(ctx, next_ctx)) {
1193 1194
			/*
			 * XXX do we need a memory barrier of sorts
1195
			 * wrt to rcu_dereference() of perf_event_ctxp
1196
			 */
1197 1198
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1199 1200 1201
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1202

1203
			perf_event_sync_stat(ctx, next_ctx);
1204
		}
1205 1206
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1207
	}
1208
	rcu_read_unlock();
1209

1210
	if (do_switch) {
1211
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1212 1213
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1214 1215
}

1216 1217
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1218 1219 1220
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1221 1222
	if (!cpuctx->task_ctx)
		return;
1223 1224 1225 1226

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1227
	ctx_sched_out(ctx, cpuctx, event_type);
1228 1229 1230
	cpuctx->task_ctx = NULL;
}

1231 1232 1233
/*
 * Called with IRQs disabled
 */
1234
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1235
{
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	task_ctx_sched_out(ctx, EVENT_ALL);
}

/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1246 1247
}

1248
static void
1249
ctx_pinned_sched_in(struct perf_event_context *ctx,
1250
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1251
{
1252
	struct perf_event *event;
T
Thomas Gleixner 已提交
1253

1254 1255
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1256
			continue;
1257
		if (event->cpu != -1 && event->cpu != smp_processor_id())
1258 1259
			continue;

1260
		if (group_can_go_on(event, cpuctx, 1))
1261
			group_sched_in(event, cpuctx, ctx);
1262 1263 1264 1265 1266

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1267 1268 1269
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1270
		}
1271
	}
1272 1273 1274 1275
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1276
		      struct perf_cpu_context *cpuctx)
1277 1278 1279
{
	struct perf_event *event;
	int can_add_hw = 1;
1280

1281 1282 1283
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1284
			continue;
1285 1286
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1287
		 * of events:
1288
		 */
1289
		if (event->cpu != -1 && event->cpu != smp_processor_id())
T
Thomas Gleixner 已提交
1290 1291
			continue;

1292
		if (group_can_go_on(event, cpuctx, can_add_hw))
1293
			if (group_sched_in(event, cpuctx, ctx))
1294
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1295
	}
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	perf_disable();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1317
		ctx_pinned_sched_in(ctx, cpuctx);
1318 1319 1320

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1321
		ctx_flexible_sched_in(ctx, cpuctx);
1322

1323
	perf_enable();
1324
 out:
1325
	raw_spin_unlock(&ctx->lock);
1326 1327
}

1328 1329 1330 1331 1332 1333 1334 1335
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
static void task_ctx_sched_in(struct task_struct *task,
			      enum event_type_t event_type)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;

	if (likely(!ctx))
		return;
	if (cpuctx->task_ctx == ctx)
		return;
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
1349
/*
1350
 * Called from scheduler to add the events of the current task
1351 1352
 * with interrupts disabled.
 *
1353
 * We restore the event value and then enable it.
1354 1355
 *
 * This does not protect us against NMI, but enable()
1356 1357 1358
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1359
 */
1360
void perf_event_task_sched_in(struct task_struct *task)
1361
{
1362 1363
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;
T
Thomas Gleixner 已提交
1364

1365 1366
	if (likely(!ctx))
		return;
1367

1368 1369 1370
	if (cpuctx->task_ctx == ctx)
		return;

1371 1372
	perf_disable();

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1385 1386

	perf_enable();
1387 1388
}

1389 1390
#define MAX_INTERRUPTS (~0ULL)

1391
static void perf_log_throttle(struct perf_event *event, int enable);
1392

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

	return div64_u64(dividend, divisor);
}

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
static void perf_event_stop(struct perf_event *event)
{
	if (!event->pmu->stop)
		return event->pmu->disable(event);

	return event->pmu->stop(event);
}

static int perf_event_start(struct perf_event *event)
{
	if (!event->pmu->start)
		return event->pmu->enable(event);

	return event->pmu->start(event);
}

1479
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1480
{
1481
	struct hw_perf_event *hwc = &event->hw;
1482 1483 1484
	u64 period, sample_period;
	s64 delta;

1485
	period = perf_calculate_period(event, nsec, count);
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1496 1497 1498

	if (atomic64_read(&hwc->period_left) > 8*sample_period) {
		perf_disable();
1499
		perf_event_stop(event);
1500
		atomic64_set(&hwc->period_left, 0);
1501
		perf_event_start(event);
1502 1503
		perf_enable();
	}
1504 1505
}

1506
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1507
{
1508 1509
	struct perf_event *event;
	struct hw_perf_event *hwc;
1510 1511
	u64 interrupts, now;
	s64 delta;
1512

1513
	raw_spin_lock(&ctx->lock);
1514
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1515
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1516 1517
			continue;

1518 1519 1520
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1521
		hwc = &event->hw;
1522 1523 1524

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1525

1526
		/*
1527
		 * unthrottle events on the tick
1528
		 */
1529
		if (interrupts == MAX_INTERRUPTS) {
1530
			perf_log_throttle(event, 1);
1531
			perf_disable();
1532
			event->pmu->unthrottle(event);
1533
			perf_enable();
1534 1535
		}

1536
		if (!event->attr.freq || !event->attr.sample_freq)
1537 1538
			continue;

1539
		perf_disable();
1540 1541 1542 1543
		event->pmu->read(event);
		now = atomic64_read(&event->count);
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1544

1545 1546
		if (delta > 0)
			perf_adjust_period(event, TICK_NSEC, delta);
1547
		perf_enable();
1548
	}
1549
	raw_spin_unlock(&ctx->lock);
1550 1551
}

1552
/*
1553
 * Round-robin a context's events:
1554
 */
1555
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1556
{
1557
	raw_spin_lock(&ctx->lock);
1558 1559 1560 1561

	/* Rotate the first entry last of non-pinned groups */
	list_rotate_left(&ctx->flexible_groups);

1562
	raw_spin_unlock(&ctx->lock);
1563 1564
}

1565
void perf_event_task_tick(struct task_struct *curr)
1566
{
1567
	struct perf_cpu_context *cpuctx;
1568
	struct perf_event_context *ctx;
1569
	int rotate = 0;
1570

1571
	if (!atomic_read(&nr_events))
1572 1573
		return;

1574
	cpuctx = &__get_cpu_var(perf_cpu_context);
1575 1576 1577
	if (cpuctx->ctx.nr_events &&
	    cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
		rotate = 1;
1578

1579 1580 1581
	ctx = curr->perf_event_ctxp;
	if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
		rotate = 1;
1582

1583
	perf_ctx_adjust_freq(&cpuctx->ctx);
1584
	if (ctx)
1585
		perf_ctx_adjust_freq(ctx);
1586

1587 1588 1589 1590
	if (!rotate)
		return;

	perf_disable();
1591
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1592
	if (ctx)
1593
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1594

1595
	rotate_ctx(&cpuctx->ctx);
1596 1597
	if (ctx)
		rotate_ctx(ctx);
1598

1599
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1600
	if (ctx)
1601
		task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1602
	perf_enable();
T
Thomas Gleixner 已提交
1603 1604
}

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1620
/*
1621
 * Enable all of a task's events that have been marked enable-on-exec.
1622 1623
 * This expects task == current.
 */
1624
static void perf_event_enable_on_exec(struct task_struct *task)
1625
{
1626 1627
	struct perf_event_context *ctx;
	struct perf_event *event;
1628 1629
	unsigned long flags;
	int enabled = 0;
1630
	int ret;
1631 1632

	local_irq_save(flags);
1633 1634
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1635 1636
		goto out;

1637
	__perf_event_task_sched_out(ctx);
1638

1639
	raw_spin_lock(&ctx->lock);
1640

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1651 1652 1653
	}

	/*
1654
	 * Unclone this context if we enabled any event.
1655
	 */
1656 1657
	if (enabled)
		unclone_ctx(ctx);
1658

1659
	raw_spin_unlock(&ctx->lock);
1660

1661
	perf_event_task_sched_in(task);
1662 1663 1664 1665
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1666
/*
1667
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1668
 */
1669
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1670
{
1671
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1672 1673
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1674

1675 1676 1677 1678
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1679 1680
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1681 1682 1683 1684
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1685
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1686
	update_context_time(ctx);
1687
	update_event_times(event);
1688
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1689

P
Peter Zijlstra 已提交
1690
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1691 1692
}

1693
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1694 1695
{
	/*
1696 1697
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1698
	 */
1699 1700 1701 1702
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1703 1704 1705
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1706
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1707
		update_context_time(ctx);
1708
		update_event_times(event);
1709
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1710 1711
	}

1712
	return atomic64_read(&event->count);
T
Thomas Gleixner 已提交
1713 1714
}

1715
/*
1716
 * Initialize the perf_event context in a task_struct:
1717 1718
 */
static void
1719
__perf_event_init_context(struct perf_event_context *ctx,
1720 1721
			    struct task_struct *task)
{
1722
	raw_spin_lock_init(&ctx->lock);
1723
	mutex_init(&ctx->mutex);
1724 1725
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
1726 1727 1728 1729 1730
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1731
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1732
{
1733
	struct perf_event_context *ctx;
1734
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1735
	struct task_struct *task;
1736
	unsigned long flags;
1737
	int err;
T
Thomas Gleixner 已提交
1738

1739
	if (pid == -1 && cpu != -1) {
1740
		/* Must be root to operate on a CPU event: */
1741
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1742 1743
			return ERR_PTR(-EACCES);

1744
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
1745 1746 1747
			return ERR_PTR(-EINVAL);

		/*
1748
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1749 1750 1751
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
1752
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
1753 1754 1755 1756
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1757
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1774
	/*
1775
	 * Can't attach events to a dying task.
1776 1777 1778 1779 1780
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1781
	/* Reuse ptrace permission checks for now. */
1782 1783 1784 1785 1786
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1787
	ctx = perf_lock_task_context(task, &flags);
1788
	if (ctx) {
1789
		unclone_ctx(ctx);
1790
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1791 1792
	}

1793
	if (!ctx) {
1794
		ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1795 1796 1797
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1798
		__perf_event_init_context(ctx, task);
1799
		get_ctx(ctx);
1800
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1801 1802 1803 1804 1805
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1806
			goto retry;
1807
		}
1808
		get_task_struct(task);
1809 1810
	}

1811
	put_task_struct(task);
T
Thomas Gleixner 已提交
1812
	return ctx;
1813 1814 1815 1816

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1817 1818
}

L
Li Zefan 已提交
1819 1820
static void perf_event_free_filter(struct perf_event *event);

1821
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
1822
{
1823
	struct perf_event *event;
P
Peter Zijlstra 已提交
1824

1825 1826 1827
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
1828
	perf_event_free_filter(event);
1829
	kfree(event);
P
Peter Zijlstra 已提交
1830 1831
}

1832
static void perf_pending_sync(struct perf_event *event);
1833

1834
static void free_event(struct perf_event *event)
1835
{
1836
	perf_pending_sync(event);
1837

1838 1839 1840 1841 1842 1843 1844 1845
	if (!event->parent) {
		atomic_dec(&nr_events);
		if (event->attr.mmap)
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
1846
	}
1847

1848 1849 1850
	if (event->output) {
		fput(event->output->filp);
		event->output = NULL;
1851 1852
	}

1853 1854
	if (event->destroy)
		event->destroy(event);
1855

1856 1857
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
1858 1859
}

1860
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
1861
{
1862
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1863

1864
	WARN_ON_ONCE(ctx->parent_ctx);
1865
	mutex_lock(&ctx->mutex);
1866
	perf_event_remove_from_context(event);
1867
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1868

1869 1870 1871 1872
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
1873

1874
	free_event(event);
T
Thomas Gleixner 已提交
1875 1876 1877

	return 0;
}
1878
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
1879

1880 1881 1882 1883
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
1884
{
1885
	struct perf_event *event = file->private_data;
1886

1887
	file->private_data = NULL;
1888

1889
	return perf_event_release_kernel(event);
1890 1891
}

1892
static int perf_event_read_size(struct perf_event *event)
1893 1894 1895 1896 1897
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

1898
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1899 1900
		size += sizeof(u64);

1901
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1902 1903
		size += sizeof(u64);

1904
	if (event->attr.read_format & PERF_FORMAT_ID)
1905 1906
		entry += sizeof(u64);

1907 1908
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
1909 1910 1911 1912 1913 1914 1915 1916
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

1917
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1918
{
1919
	struct perf_event *child;
1920 1921
	u64 total = 0;

1922 1923 1924
	*enabled = 0;
	*running = 0;

1925
	mutex_lock(&event->child_mutex);
1926
	total += perf_event_read(event);
1927 1928 1929 1930 1931 1932
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
1933
		total += perf_event_read(child);
1934 1935 1936
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
1937
	mutex_unlock(&event->child_mutex);
1938 1939 1940

	return total;
}
1941
EXPORT_SYMBOL_GPL(perf_event_read_value);
1942

1943
static int perf_event_read_group(struct perf_event *event,
1944 1945
				   u64 read_format, char __user *buf)
{
1946
	struct perf_event *leader = event->group_leader, *sub;
1947 1948
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
1949
	u64 values[5];
1950
	u64 count, enabled, running;
1951

1952
	mutex_lock(&ctx->mutex);
1953
	count = perf_event_read_value(leader, &enabled, &running);
1954 1955

	values[n++] = 1 + leader->nr_siblings;
1956 1957 1958 1959
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1960 1961 1962
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
1963 1964 1965 1966

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
1967
		goto unlock;
1968

1969
	ret = size;
1970

1971
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1972
		n = 0;
1973

1974
		values[n++] = perf_event_read_value(sub, &enabled, &running);
1975 1976 1977 1978 1979
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

1980
		if (copy_to_user(buf + ret, values, size)) {
1981 1982 1983
			ret = -EFAULT;
			goto unlock;
		}
1984 1985

		ret += size;
1986
	}
1987 1988
unlock:
	mutex_unlock(&ctx->mutex);
1989

1990
	return ret;
1991 1992
}

1993
static int perf_event_read_one(struct perf_event *event,
1994 1995
				 u64 read_format, char __user *buf)
{
1996
	u64 enabled, running;
1997 1998 1999
	u64 values[4];
	int n = 0;

2000 2001 2002 2003 2004
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2005
	if (read_format & PERF_FORMAT_ID)
2006
		values[n++] = primary_event_id(event);
2007 2008 2009 2010 2011 2012 2013

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2014
/*
2015
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2016 2017
 */
static ssize_t
2018
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2019
{
2020
	u64 read_format = event->attr.read_format;
2021
	int ret;
T
Thomas Gleixner 已提交
2022

2023
	/*
2024
	 * Return end-of-file for a read on a event that is in
2025 2026 2027
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2028
	if (event->state == PERF_EVENT_STATE_ERROR)
2029 2030
		return 0;

2031
	if (count < perf_event_read_size(event))
2032 2033
		return -ENOSPC;

2034
	WARN_ON_ONCE(event->ctx->parent_ctx);
2035
	if (read_format & PERF_FORMAT_GROUP)
2036
		ret = perf_event_read_group(event, read_format, buf);
2037
	else
2038
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2039

2040
	return ret;
T
Thomas Gleixner 已提交
2041 2042 2043 2044 2045
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2046
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2047

2048
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2049 2050 2051 2052
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2053
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2054
	struct perf_mmap_data *data;
2055
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2056 2057

	rcu_read_lock();
2058
	data = rcu_dereference(event->data);
P
Peter Zijlstra 已提交
2059
	if (data)
2060
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
2061
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2062

2063
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2064 2065 2066 2067

	return events;
}

2068
static void perf_event_reset(struct perf_event *event)
2069
{
2070 2071 2072
	(void)perf_event_read(event);
	atomic64_set(&event->count, 0);
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2073 2074
}

2075
/*
2076 2077 2078 2079
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2080
 */
2081 2082
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2083
{
2084
	struct perf_event *child;
P
Peter Zijlstra 已提交
2085

2086 2087 2088 2089
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2090
		func(child);
2091
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2092 2093
}

2094 2095
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2096
{
2097 2098
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2099

2100 2101
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2102
	event = event->group_leader;
2103

2104 2105 2106 2107
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2108
	mutex_unlock(&ctx->mutex);
2109 2110
}

2111
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2112
{
2113
	struct perf_event_context *ctx = event->ctx;
2114 2115 2116 2117
	unsigned long size;
	int ret = 0;
	u64 value;

2118
	if (!event->attr.sample_period)
2119 2120 2121 2122 2123 2124 2125 2126 2127
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2128
	raw_spin_lock_irq(&ctx->lock);
2129 2130
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2131 2132 2133 2134
			ret = -EINVAL;
			goto unlock;
		}

2135
		event->attr.sample_freq = value;
2136
	} else {
2137 2138
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2139 2140
	}
unlock:
2141
	raw_spin_unlock_irq(&ctx->lock);
2142 2143 2144 2145

	return ret;
}

L
Li Zefan 已提交
2146 2147
static int perf_event_set_output(struct perf_event *event, int output_fd);
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2148

2149 2150
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2151 2152
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2153
	u32 flags = arg;
2154 2155

	switch (cmd) {
2156 2157
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2158
		break;
2159 2160
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2161
		break;
2162 2163
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2164
		break;
P
Peter Zijlstra 已提交
2165

2166 2167
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2168

2169 2170
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2171

2172 2173
	case PERF_EVENT_IOC_SET_OUTPUT:
		return perf_event_set_output(event, arg);
2174

L
Li Zefan 已提交
2175 2176 2177
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2178
	default:
P
Peter Zijlstra 已提交
2179
		return -ENOTTY;
2180
	}
P
Peter Zijlstra 已提交
2181 2182

	if (flags & PERF_IOC_FLAG_GROUP)
2183
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2184
	else
2185
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2186 2187

	return 0;
2188 2189
}

2190
int perf_event_task_enable(void)
2191
{
2192
	struct perf_event *event;
2193

2194 2195 2196 2197
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2198 2199 2200 2201

	return 0;
}

2202
int perf_event_task_disable(void)
2203
{
2204
	struct perf_event *event;
2205

2206 2207 2208 2209
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2210 2211 2212 2213

	return 0;
}

2214 2215
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2216 2217
#endif

2218
static int perf_event_index(struct perf_event *event)
2219
{
2220
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2221 2222
		return 0;

2223
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2224 2225
}

2226 2227 2228 2229 2230
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2231
void perf_event_update_userpage(struct perf_event *event)
2232
{
2233
	struct perf_event_mmap_page *userpg;
2234
	struct perf_mmap_data *data;
2235 2236

	rcu_read_lock();
2237
	data = rcu_dereference(event->data);
2238 2239 2240 2241
	if (!data)
		goto unlock;

	userpg = data->user_page;
2242

2243 2244 2245 2246 2247
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2248
	++userpg->lock;
2249
	barrier();
2250 2251 2252 2253
	userpg->index = perf_event_index(event);
	userpg->offset = atomic64_read(&event->count);
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&event->hw.prev_count);
2254

2255 2256
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2257

2258 2259
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2260

2261
	barrier();
2262
	++userpg->lock;
2263
	preempt_enable();
2264
unlock:
2265
	rcu_read_unlock();
2266 2267
}

2268
static unsigned long perf_data_size(struct perf_mmap_data *data)
2269
{
2270 2271
	return data->nr_pages << (PAGE_SHIFT + data->data_order);
}
2272

2273
#ifndef CONFIG_PERF_USE_VMALLOC
2274

2275 2276 2277
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2278

2279 2280 2281 2282 2283
static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > data->nr_pages)
		return NULL;
2284

2285 2286
	if (pgoff == 0)
		return virt_to_page(data->user_page);
2287

2288
	return virt_to_page(data->data_pages[pgoff - 1]);
2289 2290
}

2291 2292
static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2293 2294 2295 2296 2297
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

2298
	WARN_ON(atomic_read(&event->mmap_count));
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

2317
	data->data_order = 0;
2318 2319
	data->nr_pages = nr_pages;

2320
	return data;
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
2332
	return NULL;
2333 2334
}

2335 2336
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2337
	struct page *page = virt_to_page((void *)addr);
2338 2339 2340 2341 2342

	page->mapping = NULL;
	__free_page(page);
}

2343
static void perf_mmap_data_free(struct perf_mmap_data *data)
2344 2345 2346
{
	int i;

2347
	perf_mmap_free_page((unsigned long)data->user_page);
2348
	for (i = 0; i < data->nr_pages; i++)
2349
		perf_mmap_free_page((unsigned long)data->data_pages[i]);
2350
	kfree(data);
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
}

#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > (1UL << data->data_order))
		return NULL;

	return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void perf_mmap_data_free_work(struct work_struct *work)
{
	struct perf_mmap_data *data;
	void *base;
	int i, nr;

	data = container_of(work, struct perf_mmap_data, work);
	nr = 1 << data->data_order;

	base = data->user_page;
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2391
	kfree(data);
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
}

static void perf_mmap_data_free(struct perf_mmap_data *data)
{
	schedule_work(&data->work);
}

static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	void *all_buf;

	WARN_ON(atomic_read(&event->mmap_count));
2407

2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
	size = sizeof(struct perf_mmap_data);
	size += sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	INIT_WORK(&data->work, perf_mmap_data_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	data->user_page = all_buf;
	data->data_pages[0] = all_buf + PAGE_SIZE;
	data->data_order = ilog2(nr_pages);
	data->nr_pages = 1;

	return data;

fail_all_buf:
	kfree(data);

fail:
	return NULL;
}

#endif

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
	data = rcu_dereference(event->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

	vmf->page = perf_mmap_to_page(data, vmf->pgoff);
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static void
perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
{
	long max_size = perf_data_size(data);

	atomic_set(&data->lock, -1);

	if (event->attr.watermark) {
		data->watermark = min_t(long, max_size,
					event->attr.wakeup_watermark);
	}

	if (!data->watermark)
2485
		data->watermark = max_size / 2;
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496


	rcu_assign_pointer(event->data, data);
}

static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data;

	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
	perf_mmap_data_free(data);
2497 2498
}

2499
static void perf_mmap_data_release(struct perf_event *event)
2500
{
2501
	struct perf_mmap_data *data = event->data;
2502

2503
	WARN_ON(atomic_read(&event->mmap_count));
2504

2505
	rcu_assign_pointer(event->data, NULL);
2506
	call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2507 2508 2509 2510
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2511
	struct perf_event *event = vma->vm_file->private_data;
2512

2513
	atomic_inc(&event->mmap_count);
2514 2515 2516 2517
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2518
	struct perf_event *event = vma->vm_file->private_data;
2519

2520 2521
	WARN_ON_ONCE(event->ctx->parent_ctx);
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2522
		unsigned long size = perf_data_size(event->data);
2523 2524
		struct user_struct *user = current_user();

2525
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2526
		vma->vm_mm->locked_vm -= event->data->nr_locked;
2527
		perf_mmap_data_release(event);
2528
		mutex_unlock(&event->mmap_mutex);
2529
	}
2530 2531
}

2532
static const struct vm_operations_struct perf_mmap_vmops = {
2533 2534 2535 2536
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2537 2538 2539 2540
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2541
	struct perf_event *event = file->private_data;
2542
	unsigned long user_locked, user_lock_limit;
2543
	struct user_struct *user = current_user();
2544
	unsigned long locked, lock_limit;
2545
	struct perf_mmap_data *data;
2546 2547
	unsigned long vma_size;
	unsigned long nr_pages;
2548
	long user_extra, extra;
2549
	int ret = 0;
2550

2551
	if (!(vma->vm_flags & VM_SHARED))
2552
		return -EINVAL;
2553 2554 2555 2556

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2557 2558 2559 2560 2561
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2562 2563
		return -EINVAL;

2564
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2565 2566
		return -EINVAL;

2567 2568
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2569

2570 2571 2572
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
	if (event->output) {
2573 2574 2575 2576
		ret = -EINVAL;
		goto unlock;
	}

2577 2578
	if (atomic_inc_not_zero(&event->mmap_count)) {
		if (nr_pages != event->data->nr_pages)
2579 2580 2581 2582
			ret = -EINVAL;
		goto unlock;
	}

2583
	user_extra = nr_pages + 1;
2584
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2585 2586 2587 2588 2589 2590

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2591
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2592

2593 2594 2595
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2596

2597
	lock_limit = rlimit(RLIMIT_MEMLOCK);
2598
	lock_limit >>= PAGE_SHIFT;
2599
	locked = vma->vm_mm->locked_vm + extra;
2600

2601 2602
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2603 2604 2605
		ret = -EPERM;
		goto unlock;
	}
2606

2607
	WARN_ON(event->data);
2608 2609 2610 2611

	data = perf_mmap_data_alloc(event, nr_pages);
	ret = -ENOMEM;
	if (!data)
2612 2613
		goto unlock;

2614 2615 2616
	ret = 0;
	perf_mmap_data_init(event, data);

2617
	atomic_set(&event->mmap_count, 1);
2618
	atomic_long_add(user_extra, &user->locked_vm);
2619
	vma->vm_mm->locked_vm += extra;
2620
	event->data->nr_locked = extra;
2621
	if (vma->vm_flags & VM_WRITE)
2622
		event->data->writable = 1;
2623

2624
unlock:
2625
	mutex_unlock(&event->mmap_mutex);
2626 2627 2628

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2629 2630

	return ret;
2631 2632
}

P
Peter Zijlstra 已提交
2633 2634 2635
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2636
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2637 2638 2639
	int retval;

	mutex_lock(&inode->i_mutex);
2640
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2641 2642 2643 2644 2645 2646 2647 2648
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2649
static const struct file_operations perf_fops = {
2650
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
2651 2652 2653
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2654 2655
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2656
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2657
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2658 2659
};

2660
/*
2661
 * Perf event wakeup
2662 2663 2664 2665 2666
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2667
void perf_event_wakeup(struct perf_event *event)
2668
{
2669
	wake_up_all(&event->waitq);
2670

2671 2672 2673
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2674
	}
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2686
static void perf_pending_event(struct perf_pending_entry *entry)
2687
{
2688 2689
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2690

2691 2692 2693
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2694 2695
	}

2696 2697 2698
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2699 2700 2701
	}
}

2702
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2703

2704
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2705 2706 2707
	PENDING_TAIL,
};

2708 2709
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2710
{
2711
	struct perf_pending_entry **head;
2712

2713
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2714 2715
		return;

2716 2717 2718
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2719 2720

	do {
2721 2722
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2723

2724
	set_perf_event_pending();
2725

2726
	put_cpu_var(perf_pending_head);
2727 2728 2729 2730
}

static int __perf_pending_run(void)
{
2731
	struct perf_pending_entry *list;
2732 2733
	int nr = 0;

2734
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2735
	while (list != PENDING_TAIL) {
2736 2737
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2738 2739 2740

		list = list->next;

2741 2742
		func = entry->func;
		entry->next = NULL;
2743 2744 2745 2746 2747 2748 2749
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2750
		func(entry);
2751 2752 2753 2754 2755 2756
		nr++;
	}

	return nr;
}

2757
static inline int perf_not_pending(struct perf_event *event)
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2772
	return event->pending.next == NULL;
2773 2774
}

2775
static void perf_pending_sync(struct perf_event *event)
2776
{
2777
	wait_event(event->waitq, perf_not_pending(event));
2778 2779
}

2780
void perf_event_do_pending(void)
2781 2782 2783 2784
{
	__perf_pending_run();
}

2785 2786 2787 2788
/*
 * Callchain support -- arch specific
 */

2789
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2790 2791 2792 2793
{
	return NULL;
}

2794 2795 2796 2797
__weak
void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
{
}
2798

2799

2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

2821 2822 2823
/*
 * Output
 */
2824 2825
static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
			      unsigned long offset, unsigned long head)
2826 2827 2828 2829 2830 2831
{
	unsigned long mask;

	if (!data->writable)
		return true;

2832
	mask = perf_data_size(data) - 1;
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2843
static void perf_output_wakeup(struct perf_output_handle *handle)
2844
{
2845 2846
	atomic_set(&handle->data->poll, POLL_IN);

2847
	if (handle->nmi) {
2848 2849 2850
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
2851
	} else
2852
		perf_event_wakeup(handle->event);
2853 2854
}

2855 2856 2857
/*
 * Curious locking construct.
 *
2858 2859
 * We need to ensure a later event_id doesn't publish a head when a former
 * event_id isn't done writing. However since we need to deal with NMIs we
2860 2861 2862 2863 2864 2865
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
2866
 * event_id completes.
2867 2868 2869 2870
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2871
	int cur, cpu = get_cpu();
2872 2873 2874

	handle->locked = 0;

2875 2876 2877 2878 2879 2880 2881 2882
	for (;;) {
		cur = atomic_cmpxchg(&data->lock, -1, cpu);
		if (cur == -1) {
			handle->locked = 1;
			break;
		}
		if (cur == cpu)
			break;
2883 2884

		cpu_relax();
2885
	}
2886 2887 2888 2889 2890
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2891 2892
	unsigned long head;
	int cpu;
2893

2894
	data->done_head = data->head;
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2905
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2906 2907 2908
		data->user_page->data_head = head;

	/*
2909
	 * NMI can happen here, which means we can miss a done_head update.
2910 2911
	 */

2912
	cpu = atomic_xchg(&data->lock, -1);
2913 2914 2915 2916 2917
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2918
	if (unlikely(atomic_long_read(&data->done_head))) {
2919 2920 2921
		/*
		 * Since we had it locked, we can lock it again.
		 */
2922
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2923 2924 2925 2926 2927
			cpu_relax();

		goto again;
	}

2928
	if (atomic_xchg(&data->wakeup, 0))
2929 2930
		perf_output_wakeup(handle);
out:
2931
	put_cpu();
2932 2933
}

2934 2935
void perf_output_copy(struct perf_output_handle *handle,
		      const void *buf, unsigned int len)
2936 2937
{
	unsigned int pages_mask;
2938
	unsigned long offset;
2939 2940 2941 2942 2943 2944 2945 2946
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
2947 2948
		unsigned long page_offset;
		unsigned long page_size;
2949 2950 2951
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
2952 2953 2954
		page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
		page_offset = offset & (page_size - 1);
		size	    = min_t(unsigned int, page_size - page_offset, len);
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;

	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
}

2972
int perf_output_begin(struct perf_output_handle *handle,
2973
		      struct perf_event *event, unsigned int size,
2974
		      int nmi, int sample)
2975
{
2976
	struct perf_event *output_event;
2977
	struct perf_mmap_data *data;
2978
	unsigned long tail, offset, head;
2979 2980 2981 2982 2983 2984
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
2985

2986
	rcu_read_lock();
2987
	/*
2988
	 * For inherited events we send all the output towards the parent.
2989
	 */
2990 2991
	if (event->parent)
		event = event->parent;
2992

2993 2994 2995
	output_event = rcu_dereference(event->output);
	if (output_event)
		event = output_event;
2996

2997
	data = rcu_dereference(event->data);
2998 2999 3000
	if (!data)
		goto out;

3001
	handle->data	= data;
3002
	handle->event	= event;
3003 3004
	handle->nmi	= nmi;
	handle->sample	= sample;
3005

3006
	if (!data->nr_pages)
3007
		goto fail;
3008

3009 3010 3011 3012
	have_lost = atomic_read(&data->lost);
	if (have_lost)
		size += sizeof(lost_event);

3013 3014
	perf_output_lock(handle);

3015
	do {
3016 3017 3018 3019 3020 3021 3022
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
		tail = ACCESS_ONCE(data->user_page->data_tail);
		smp_rmb();
3023
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
3024
		head += size;
3025
		if (unlikely(!perf_output_space(data, tail, offset, head)))
3026
			goto fail;
3027
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3028

3029
	handle->offset	= offset;
3030
	handle->head	= head;
3031

3032
	if (head - tail > data->watermark)
3033
		atomic_set(&data->wakeup, 1);
3034

3035
	if (have_lost) {
3036
		lost_event.header.type = PERF_RECORD_LOST;
3037 3038
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3039
		lost_event.id          = event->id;
3040 3041 3042 3043 3044
		lost_event.lost        = atomic_xchg(&data->lost, 0);

		perf_output_put(handle, lost_event);
	}

3045
	return 0;
3046

3047
fail:
3048 3049
	atomic_inc(&data->lost);
	perf_output_unlock(handle);
3050 3051
out:
	rcu_read_unlock();
3052

3053 3054
	return -ENOSPC;
}
3055

3056
void perf_output_end(struct perf_output_handle *handle)
3057
{
3058
	struct perf_event *event = handle->event;
3059 3060
	struct perf_mmap_data *data = handle->data;

3061
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3062

3063
	if (handle->sample && wakeup_events) {
3064
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
3065
		if (events >= wakeup_events) {
3066
			atomic_sub(wakeup_events, &data->events);
3067
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
3068
		}
3069 3070 3071
	}

	perf_output_unlock(handle);
3072
	rcu_read_unlock();
3073 3074
}

3075
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3076 3077
{
	/*
3078
	 * only top level events have the pid namespace they were created in
3079
	 */
3080 3081
	if (event->parent)
		event = event->parent;
3082

3083
	return task_tgid_nr_ns(p, event->ns);
3084 3085
}

3086
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3087 3088
{
	/*
3089
	 * only top level events have the pid namespace they were created in
3090
	 */
3091 3092
	if (event->parent)
		event = event->parent;
3093

3094
	return task_pid_nr_ns(p, event->ns);
3095 3096
}

3097
static void perf_output_read_one(struct perf_output_handle *handle,
3098
				 struct perf_event *event)
3099
{
3100
	u64 read_format = event->attr.read_format;
3101 3102 3103
	u64 values[4];
	int n = 0;

3104
	values[n++] = atomic64_read(&event->count);
3105
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3106 3107
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3108 3109
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3110 3111
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3112 3113
	}
	if (read_format & PERF_FORMAT_ID)
3114
		values[n++] = primary_event_id(event);
3115 3116 3117 3118 3119

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3120
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3121 3122
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3123
			    struct perf_event *event)
3124
{
3125 3126
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3138
	if (leader != event)
3139 3140 3141 3142
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
3143
		values[n++] = primary_event_id(leader);
3144 3145 3146

	perf_output_copy(handle, values, n * sizeof(u64));

3147
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3148 3149
		n = 0;

3150
		if (sub != event)
3151 3152 3153 3154
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
3155
			values[n++] = primary_event_id(sub);
3156 3157 3158 3159 3160 3161

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3162
			     struct perf_event *event)
3163
{
3164 3165
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3166
	else
3167
		perf_output_read_one(handle, event);
3168 3169
}

3170 3171 3172
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3173
			struct perf_event *event)
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3204
		perf_output_read(handle, event);
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3242
			 struct perf_event *event,
3243
			 struct pt_regs *regs)
3244
{
3245
	u64 sample_type = event->attr.sample_type;
3246

3247
	data->type = sample_type;
3248

3249
	header->type = PERF_RECORD_SAMPLE;
3250 3251 3252 3253
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3254

3255
	if (sample_type & PERF_SAMPLE_IP) {
3256 3257 3258
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3259
	}
3260

3261
	if (sample_type & PERF_SAMPLE_TID) {
3262
		/* namespace issues */
3263 3264
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3265

3266
		header->size += sizeof(data->tid_entry);
3267 3268
	}

3269
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3270
		data->time = perf_clock();
3271

3272
		header->size += sizeof(data->time);
3273 3274
	}

3275
	if (sample_type & PERF_SAMPLE_ADDR)
3276
		header->size += sizeof(data->addr);
3277

3278
	if (sample_type & PERF_SAMPLE_ID) {
3279
		data->id = primary_event_id(event);
3280

3281 3282 3283 3284
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3285
		data->stream_id = event->id;
3286 3287 3288

		header->size += sizeof(data->stream_id);
	}
3289

3290
	if (sample_type & PERF_SAMPLE_CPU) {
3291 3292
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3293

3294
		header->size += sizeof(data->cpu_entry);
3295 3296
	}

3297
	if (sample_type & PERF_SAMPLE_PERIOD)
3298
		header->size += sizeof(data->period);
3299

3300
	if (sample_type & PERF_SAMPLE_READ)
3301
		header->size += perf_event_read_size(event);
3302

3303
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3304
		int size = 1;
3305

3306 3307 3308 3309 3310 3311
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3312 3313
	}

3314
	if (sample_type & PERF_SAMPLE_RAW) {
3315 3316 3317 3318 3319 3320 3321 3322
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3323
		header->size += size;
3324
	}
3325
}
3326

3327
static void perf_event_output(struct perf_event *event, int nmi,
3328 3329 3330 3331 3332
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3333

3334
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3335

3336
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3337
		return;
3338

3339
	perf_output_sample(&handle, &header, data, event);
3340

3341
	perf_output_end(&handle);
3342 3343
}

3344
/*
3345
 * read event_id
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3356
perf_event_read_event(struct perf_event *event,
3357 3358 3359
			struct task_struct *task)
{
	struct perf_output_handle handle;
3360
	struct perf_read_event read_event = {
3361
		.header = {
3362
			.type = PERF_RECORD_READ,
3363
			.misc = 0,
3364
			.size = sizeof(read_event) + perf_event_read_size(event),
3365
		},
3366 3367
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3368
	};
3369
	int ret;
3370

3371
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3372 3373 3374
	if (ret)
		return;

3375
	perf_output_put(&handle, read_event);
3376
	perf_output_read(&handle, event);
3377

3378 3379 3380
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3381
/*
P
Peter Zijlstra 已提交
3382 3383 3384
 * task tracking -- fork/exit
 *
 * enabled by: attr.comm | attr.mmap | attr.task
P
Peter Zijlstra 已提交
3385 3386
 */

P
Peter Zijlstra 已提交
3387
struct perf_task_event {
3388
	struct task_struct		*task;
3389
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3390 3391 3392 3393 3394 3395

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3396 3397
		u32				tid;
		u32				ptid;
3398
		u64				time;
3399
	} event_id;
P
Peter Zijlstra 已提交
3400 3401
};

3402
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3403
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3404 3405
{
	struct perf_output_handle handle;
P
Peter Zijlstra 已提交
3406
	struct task_struct *task = task_event->task;
3407 3408 3409 3410 3411 3412 3413 3414
	unsigned long flags;
	int size, ret;

	/*
	 * If this CPU attempts to acquire an rq lock held by a CPU spinning
	 * in perf_output_lock() from interrupt context, it's game over.
	 */
	local_irq_save(flags);
3415

3416 3417
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3418

3419 3420
	if (ret) {
		local_irq_restore(flags);
P
Peter Zijlstra 已提交
3421
		return;
3422
	}
P
Peter Zijlstra 已提交
3423

3424 3425
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3426

3427 3428
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3429

3430
	perf_output_put(&handle, task_event->event_id);
3431

P
Peter Zijlstra 已提交
3432
	perf_output_end(&handle);
3433
	local_irq_restore(flags);
P
Peter Zijlstra 已提交
3434 3435
}

3436
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3437
{
P
Peter Zijlstra 已提交
3438
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3439 3440
		return 0;

3441 3442 3443
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3444
	if (event->attr.comm || event->attr.mmap || event->attr.task)
P
Peter Zijlstra 已提交
3445 3446 3447 3448 3449
		return 1;

	return 0;
}

3450
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3451
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3452
{
3453
	struct perf_event *event;
P
Peter Zijlstra 已提交
3454

3455 3456 3457
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3458 3459 3460
	}
}

3461
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3462 3463
{
	struct perf_cpu_context *cpuctx;
3464
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3465

3466
	rcu_read_lock();
P
Peter Zijlstra 已提交
3467
	cpuctx = &get_cpu_var(perf_cpu_context);
3468
	perf_event_task_ctx(&cpuctx->ctx, task_event);
3469
	if (!ctx)
P
Peter Zijlstra 已提交
3470
		ctx = rcu_dereference(current->perf_event_ctxp);
P
Peter Zijlstra 已提交
3471
	if (ctx)
3472
		perf_event_task_ctx(ctx, task_event);
3473
	put_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3474 3475 3476
	rcu_read_unlock();
}

3477 3478
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3479
			      int new)
P
Peter Zijlstra 已提交
3480
{
P
Peter Zijlstra 已提交
3481
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3482

3483 3484 3485
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3486 3487
		return;

P
Peter Zijlstra 已提交
3488
	task_event = (struct perf_task_event){
3489 3490
		.task	  = task,
		.task_ctx = task_ctx,
3491
		.event_id    = {
P
Peter Zijlstra 已提交
3492
			.header = {
3493
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3494
				.misc = 0,
3495
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3496
			},
3497 3498
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3499 3500
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3501
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3502 3503 3504
		},
	};

3505
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3506 3507
}

3508
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3509
{
3510
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3511 3512
}

3513 3514 3515 3516 3517
/*
 * comm tracking
 */

struct perf_comm_event {
3518 3519
	struct task_struct	*task;
	char			*comm;
3520 3521 3522 3523 3524 3525 3526
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3527
	} event_id;
3528 3529
};

3530
static void perf_event_comm_output(struct perf_event *event,
3531 3532 3533
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3534 3535
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3536 3537 3538 3539

	if (ret)
		return;

3540 3541
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3542

3543
	perf_output_put(&handle, comm_event->event_id);
3544 3545 3546 3547 3548
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3549
static int perf_event_comm_match(struct perf_event *event)
3550
{
P
Peter Zijlstra 已提交
3551
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3552 3553
		return 0;

3554 3555 3556
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3557
	if (event->attr.comm)
3558 3559 3560 3561 3562
		return 1;

	return 0;
}

3563
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3564 3565
				  struct perf_comm_event *comm_event)
{
3566
	struct perf_event *event;
3567

3568 3569 3570
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3571 3572 3573
	}
}

3574
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3575 3576
{
	struct perf_cpu_context *cpuctx;
3577
	struct perf_event_context *ctx;
3578
	unsigned int size;
3579
	char comm[TASK_COMM_LEN];
3580

3581
	memset(comm, 0, sizeof(comm));
3582
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3583
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3584 3585 3586 3587

	comm_event->comm = comm;
	comm_event->comm_size = size;

3588
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3589

3590
	rcu_read_lock();
3591
	cpuctx = &get_cpu_var(perf_cpu_context);
3592 3593
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3594
	if (ctx)
3595
		perf_event_comm_ctx(ctx, comm_event);
3596
	put_cpu_var(perf_cpu_context);
3597
	rcu_read_unlock();
3598 3599
}

3600
void perf_event_comm(struct task_struct *task)
3601
{
3602 3603
	struct perf_comm_event comm_event;

3604 3605
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3606

3607
	if (!atomic_read(&nr_comm_events))
3608
		return;
3609

3610
	comm_event = (struct perf_comm_event){
3611
		.task	= task,
3612 3613
		/* .comm      */
		/* .comm_size */
3614
		.event_id  = {
3615
			.header = {
3616
				.type = PERF_RECORD_COMM,
3617 3618 3619 3620 3621
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3622 3623 3624
		},
	};

3625
	perf_event_comm_event(&comm_event);
3626 3627
}

3628 3629 3630 3631 3632
/*
 * mmap tracking
 */

struct perf_mmap_event {
3633 3634 3635 3636
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3637 3638 3639 3640 3641 3642 3643 3644 3645

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3646
	} event_id;
3647 3648
};

3649
static void perf_event_mmap_output(struct perf_event *event,
3650 3651 3652
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3653 3654
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3655 3656 3657 3658

	if (ret)
		return;

3659 3660
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3661

3662
	perf_output_put(&handle, mmap_event->event_id);
3663 3664
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3665
	perf_output_end(&handle);
3666 3667
}

3668
static int perf_event_mmap_match(struct perf_event *event,
3669 3670
				   struct perf_mmap_event *mmap_event)
{
P
Peter Zijlstra 已提交
3671
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3672 3673
		return 0;

3674 3675 3676
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3677
	if (event->attr.mmap)
3678 3679 3680 3681 3682
		return 1;

	return 0;
}

3683
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3684 3685
				  struct perf_mmap_event *mmap_event)
{
3686
	struct perf_event *event;
3687

3688 3689 3690
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_mmap_match(event, mmap_event))
			perf_event_mmap_output(event, mmap_event);
3691 3692 3693
	}
}

3694
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3695 3696
{
	struct perf_cpu_context *cpuctx;
3697
	struct perf_event_context *ctx;
3698 3699
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3700 3701 3702
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3703
	const char *name;
3704

3705 3706
	memset(tmp, 0, sizeof(tmp));

3707
	if (file) {
3708 3709 3710 3711 3712 3713
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3714 3715 3716 3717
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3718
		name = d_path(&file->f_path, buf, PATH_MAX);
3719 3720 3721 3722 3723
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3724 3725 3726
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3727
			goto got_name;
3728
		}
3729 3730 3731 3732 3733 3734

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3735 3736 3737 3738 3739
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3740
	size = ALIGN(strlen(name)+1, sizeof(u64));
3741 3742 3743 3744

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3745
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3746

3747
	rcu_read_lock();
3748
	cpuctx = &get_cpu_var(perf_cpu_context);
3749 3750
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3751
	if (ctx)
3752
		perf_event_mmap_ctx(ctx, mmap_event);
3753
	put_cpu_var(perf_cpu_context);
3754 3755
	rcu_read_unlock();

3756 3757 3758
	kfree(buf);
}

3759
void __perf_event_mmap(struct vm_area_struct *vma)
3760
{
3761 3762
	struct perf_mmap_event mmap_event;

3763
	if (!atomic_read(&nr_mmap_events))
3764 3765 3766
		return;

	mmap_event = (struct perf_mmap_event){
3767
		.vma	= vma,
3768 3769
		/* .file_name */
		/* .file_size */
3770
		.event_id  = {
3771
			.header = {
3772
				.type = PERF_RECORD_MMAP,
3773
				.misc = PERF_RECORD_MISC_USER,
3774 3775 3776 3777
				/* .size */
			},
			/* .pid */
			/* .tid */
3778 3779
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
3780
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3781 3782 3783
		},
	};

3784
	perf_event_mmap_event(&mmap_event);
3785 3786
}

3787 3788 3789 3790
/*
 * IRQ throttle logging
 */

3791
static void perf_log_throttle(struct perf_event *event, int enable)
3792 3793 3794 3795 3796 3797 3798
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3799
		u64				id;
3800
		u64				stream_id;
3801 3802
	} throttle_event = {
		.header = {
3803
			.type = PERF_RECORD_THROTTLE,
3804 3805 3806
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
3807
		.time		= perf_clock(),
3808 3809
		.id		= primary_event_id(event),
		.stream_id	= event->id,
3810 3811
	};

3812
	if (enable)
3813
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3814

3815
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3816 3817 3818 3819 3820 3821 3822
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3823
/*
3824
 * Generic event overflow handling, sampling.
3825 3826
 */

3827
static int __perf_event_overflow(struct perf_event *event, int nmi,
3828 3829
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
3830
{
3831 3832
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
3833 3834
	int ret = 0;

3835
	throttle = (throttle && event->pmu->unthrottle != NULL);
3836

3837
	if (!throttle) {
3838
		hwc->interrupts++;
3839
	} else {
3840 3841
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3842
			if (HZ * hwc->interrupts >
3843
					(u64)sysctl_perf_event_sample_rate) {
3844
				hwc->interrupts = MAX_INTERRUPTS;
3845
				perf_log_throttle(event, 0);
3846 3847 3848 3849
				ret = 1;
			}
		} else {
			/*
3850
			 * Keep re-disabling events even though on the previous
3851
			 * pass we disabled it - just in case we raced with a
3852
			 * sched-in and the event got enabled again:
3853
			 */
3854 3855 3856
			ret = 1;
		}
	}
3857

3858
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
3859
		u64 now = perf_clock();
3860
		s64 delta = now - hwc->freq_time_stamp;
3861

3862
		hwc->freq_time_stamp = now;
3863

3864 3865
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
3866 3867
	}

3868 3869
	/*
	 * XXX event_limit might not quite work as expected on inherited
3870
	 * events
3871 3872
	 */

3873 3874
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
3875
		ret = 1;
3876
		event->pending_kill = POLL_HUP;
3877
		if (nmi) {
3878 3879 3880
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
3881
		} else
3882
			perf_event_disable(event);
3883 3884
	}

3885 3886 3887 3888 3889
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

3890
	return ret;
3891 3892
}

3893
int perf_event_overflow(struct perf_event *event, int nmi,
3894 3895
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
3896
{
3897
	return __perf_event_overflow(event, nmi, 1, data, regs);
3898 3899
}

3900
/*
3901
 * Generic software event infrastructure
3902 3903
 */

3904
/*
3905 3906
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
3907 3908 3909 3910
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

3911
static u64 perf_swevent_set_period(struct perf_event *event)
3912
{
3913
	struct hw_perf_event *hwc = &event->hw;
3914 3915 3916 3917 3918
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
3919 3920

again:
3921 3922 3923
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
3924

3925 3926 3927 3928 3929
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
3930

3931
	return nr;
3932 3933
}

3934
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3935 3936
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
3937
{
3938
	struct hw_perf_event *hwc = &event->hw;
3939
	int throttle = 0;
3940

3941
	data->period = event->hw.last_period;
3942 3943
	if (!overflow)
		overflow = perf_swevent_set_period(event);
3944

3945 3946
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
3947

3948
	for (; overflow; overflow--) {
3949
		if (__perf_event_overflow(event, nmi, throttle,
3950
					    data, regs)) {
3951 3952 3953 3954 3955 3956
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
3957
		throttle = 1;
3958
	}
3959 3960
}

3961
static void perf_swevent_unthrottle(struct perf_event *event)
3962 3963
{
	/*
3964
	 * Nothing to do, we already reset hwc->interrupts.
3965
	 */
3966
}
3967

3968
static void perf_swevent_add(struct perf_event *event, u64 nr,
3969 3970
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
3971
{
3972
	struct hw_perf_event *hwc = &event->hw;
3973

3974
	atomic64_add(nr, &event->count);
3975

3976 3977 3978
	if (!regs)
		return;

3979 3980
	if (!hwc->sample_period)
		return;
3981

3982 3983 3984 3985
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

	if (atomic64_add_negative(nr, &hwc->period_left))
3986
		return;
3987

3988
	perf_swevent_overflow(event, 0, nmi, data, regs);
3989 3990
}

L
Li Zefan 已提交
3991 3992 3993
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data);

3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4008
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4009
				enum perf_type_id type,
L
Li Zefan 已提交
4010 4011 4012
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4013
{
4014
	if (event->attr.type != type)
4015
		return 0;
4016

4017
	if (event->attr.config != event_id)
4018 4019
		return 0;

4020 4021
	if (perf_exclude_event(event, regs))
		return 0;
4022

L
Li Zefan 已提交
4023 4024 4025 4026
	if (event->attr.type == PERF_TYPE_TRACEPOINT &&
	    !perf_tp_event_match(event, data))
		return 0;

4027 4028 4029
	return 1;
}

4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

static struct hlist_head *
find_swevent_head(struct perf_cpu_context *ctx, u64 type, u32 event_id)
{
	u64 hash;
	struct swevent_hlist *hlist;

	hash = swevent_hash(type, event_id);

	hlist = rcu_dereference(ctx->swevent_hlist);
	if (!hlist)
		return NULL;

	return &hlist->heads[hash];
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4056
{
4057
	struct perf_cpu_context *cpuctx;
4058
	struct perf_event *event;
4059 4060
	struct hlist_node *node;
	struct hlist_head *head;
4061

4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
	cpuctx = &__get_cpu_var(perf_cpu_context);

	rcu_read_lock();

	head = find_swevent_head(cpuctx, type, event_id);

	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4072
		if (perf_swevent_match(event, type, event_id, data, regs))
4073
			perf_swevent_add(event, nr, nmi, data, regs);
4074
	}
4075 4076
end:
	rcu_read_unlock();
4077 4078
}

4079
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4080
{
4081 4082
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
	int rctx;
4083

P
Peter Zijlstra 已提交
4084
	if (in_nmi())
4085
		rctx = 3;
4086
	else if (in_irq())
4087
		rctx = 2;
4088
	else if (in_softirq())
4089
		rctx = 1;
4090
	else
4091
		rctx = 0;
P
Peter Zijlstra 已提交
4092

4093 4094
	if (cpuctx->recursion[rctx]) {
		put_cpu_var(perf_cpu_context);
4095
		return -1;
4096
	}
P
Peter Zijlstra 已提交
4097

4098 4099
	cpuctx->recursion[rctx]++;
	barrier();
P
Peter Zijlstra 已提交
4100

4101
	return rctx;
P
Peter Zijlstra 已提交
4102
}
I
Ingo Molnar 已提交
4103
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4104

4105
void perf_swevent_put_recursion_context(int rctx)
4106
{
4107 4108
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	barrier();
4109
	cpuctx->recursion[rctx]--;
4110
	put_cpu_var(perf_cpu_context);
4111
}
I
Ingo Molnar 已提交
4112
EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
P
Peter Zijlstra 已提交
4113

4114

4115
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4116
			    struct pt_regs *regs, u64 addr)
4117
{
4118
	struct perf_sample_data data;
4119 4120 4121 4122 4123
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4124

4125
	perf_sample_data_init(&data, addr);
4126

4127
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4128 4129

	perf_swevent_put_recursion_context(rctx);
4130 4131
}

4132
static void perf_swevent_read(struct perf_event *event)
4133 4134 4135
{
}

4136
static int perf_swevent_enable(struct perf_event *event)
4137
{
4138
	struct hw_perf_event *hwc = &event->hw;
4139 4140 4141 4142
	struct perf_cpu_context *cpuctx;
	struct hlist_head *head;

	cpuctx = &__get_cpu_var(perf_cpu_context);
4143 4144 4145

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4146
		perf_swevent_set_period(event);
4147
	}
4148 4149 4150 4151 4152 4153 4154

	head = find_swevent_head(cpuctx, event->attr.type, event->attr.config);
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4155 4156 4157
	return 0;
}

4158
static void perf_swevent_disable(struct perf_event *event)
4159
{
4160
	hlist_del_rcu(&event->hlist_entry);
4161 4162
}

4163
static const struct pmu perf_ops_generic = {
4164 4165 4166 4167
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
	.read		= perf_swevent_read,
	.unthrottle	= perf_swevent_unthrottle,
4168 4169
};

4170
/*
4171
 * hrtimer based swevent callback
4172 4173
 */

4174
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4175 4176 4177
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
4178
	struct pt_regs *regs;
4179
	struct perf_event *event;
4180 4181
	u64 period;

4182
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4183
	event->pmu->read(event);
4184

4185
	perf_sample_data_init(&data, 0);
4186
	data.period = event->hw.last_period;
4187
	regs = get_irq_regs();
4188

4189
	if (regs && !perf_exclude_event(event, regs)) {
4190 4191 4192
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
4193 4194
	}

4195
	period = max_t(u64, 10000, event->hw.sample_period);
4196 4197 4198 4199 4200
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4237
/*
4238
 * Software event: cpu wall time clock
4239 4240
 */

4241
static void cpu_clock_perf_event_update(struct perf_event *event)
4242 4243 4244 4245 4246 4247
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4248
	prev = atomic64_xchg(&event->hw.prev_count, now);
4249
	atomic64_add(now - prev, &event->count);
4250 4251
}

4252
static int cpu_clock_perf_event_enable(struct perf_event *event)
4253
{
4254
	struct hw_perf_event *hwc = &event->hw;
4255 4256 4257
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4258
	perf_swevent_start_hrtimer(event);
4259 4260 4261 4262

	return 0;
}

4263
static void cpu_clock_perf_event_disable(struct perf_event *event)
4264
{
4265
	perf_swevent_cancel_hrtimer(event);
4266
	cpu_clock_perf_event_update(event);
4267 4268
}

4269
static void cpu_clock_perf_event_read(struct perf_event *event)
4270
{
4271
	cpu_clock_perf_event_update(event);
4272 4273
}

4274
static const struct pmu perf_ops_cpu_clock = {
4275 4276 4277
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4278 4279
};

4280
/*
4281
 * Software event: task time clock
4282 4283
 */

4284
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4285
{
4286
	u64 prev;
I
Ingo Molnar 已提交
4287 4288
	s64 delta;

4289
	prev = atomic64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4290
	delta = now - prev;
4291
	atomic64_add(delta, &event->count);
4292 4293
}

4294
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4295
{
4296
	struct hw_perf_event *hwc = &event->hw;
4297 4298
	u64 now;

4299
	now = event->ctx->time;
4300

4301
	atomic64_set(&hwc->prev_count, now);
4302 4303

	perf_swevent_start_hrtimer(event);
4304 4305

	return 0;
I
Ingo Molnar 已提交
4306 4307
}

4308
static void task_clock_perf_event_disable(struct perf_event *event)
4309
{
4310
	perf_swevent_cancel_hrtimer(event);
4311
	task_clock_perf_event_update(event, event->ctx->time);
4312

4313
}
I
Ingo Molnar 已提交
4314

4315
static void task_clock_perf_event_read(struct perf_event *event)
4316
{
4317 4318 4319
	u64 time;

	if (!in_nmi()) {
4320 4321
		update_context_time(event->ctx);
		time = event->ctx->time;
4322 4323
	} else {
		u64 now = perf_clock();
4324 4325
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4326 4327
	}

4328
	task_clock_perf_event_update(event, time);
4329 4330
}

4331
static const struct pmu perf_ops_task_clock = {
4332 4333 4334
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4335 4336
};

4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
{
	struct swevent_hlist *hlist;

	if (!cpuctx->swevent_hlist)
		return;

	hlist = cpuctx->swevent_hlist;
	rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);

	mutex_lock(&cpuctx->hlist_mutex);

	if (!--cpuctx->hlist_refcount)
		swevent_hlist_release(cpuctx);

	mutex_unlock(&cpuctx->hlist_mutex);
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	int err = 0;

	mutex_lock(&cpuctx->hlist_mutex);

	if (!cpuctx->swevent_hlist && cpu_online(cpu)) {
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
		rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
	}
	cpuctx->hlist_refcount++;
 exit:
	mutex_unlock(&cpuctx->hlist_mutex);

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
 fail:
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
#ifdef CONFIG_EVENT_TRACING

void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
		   int entry_size, struct pt_regs *regs)
{
	struct perf_sample_data data;
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

	/* Trace events already protected against recursion */
	do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
			 &data, regs);
}
EXPORT_SYMBOL_GPL(perf_tp_event);

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

4466
static void tp_perf_event_destroy(struct perf_event *event)
4467
{
4468
	perf_trace_disable(event->attr.config);
4469
	swevent_hlist_put(event);
4470 4471
}

4472
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4473
{
4474 4475
	int err;

4476 4477 4478 4479
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4480
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4481
			perf_paranoid_tracepoint_raw() &&
4482 4483 4484
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4485
	if (perf_trace_enable(event->attr.config))
4486 4487
		return NULL;

4488
	event->destroy = tp_perf_event_destroy;
4489 4490 4491 4492 4493
	err = swevent_hlist_get(event);
	if (err) {
		perf_trace_disable(event->attr.config);
		return ERR_PTR(err);
	}
4494 4495 4496

	return &perf_ops_generic;
}
L
Li Zefan 已提交
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4521
#else
L
Li Zefan 已提交
4522 4523 4524 4525 4526 4527 4528

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	return 1;
}

4529
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4530 4531 4532
{
	return NULL;
}
L
Li Zefan 已提交
4533 4534 4535 4536 4537 4538 4539 4540 4541 4542

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4543
#endif /* CONFIG_EVENT_TRACING */
4544

4545 4546 4547 4548 4549 4550 4551 4552 4553
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	int err;
4554 4555

	err = register_perf_hw_breakpoint(bp);
4556 4557 4558 4559 4560 4561 4562 4563
	if (err)
		return ERR_PTR(err);

	bp->destroy = bp_perf_event_destroy;

	return &perf_ops_bp;
}

4564
void perf_bp_event(struct perf_event *bp, void *data)
4565
{
4566 4567 4568
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

4569
	perf_sample_data_init(&sample, bp->attr.bp_addr);
4570 4571 4572

	if (!perf_exclude_event(bp, regs))
		perf_swevent_add(bp, 1, 1, &sample, regs);
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
}
#else
static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	return NULL;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
}
#endif

4585
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4586

4587
static void sw_perf_event_destroy(struct perf_event *event)
4588
{
4589
	u64 event_id = event->attr.config;
4590

4591
	WARN_ON(event->parent);
4592

4593
	atomic_dec(&perf_swevent_enabled[event_id]);
4594
	swevent_hlist_put(event);
4595 4596
}

4597
static const struct pmu *sw_perf_event_init(struct perf_event *event)
4598
{
4599
	const struct pmu *pmu = NULL;
4600
	u64 event_id = event->attr.config;
4601

4602
	/*
4603
	 * Software events (currently) can't in general distinguish
4604 4605 4606 4607 4608
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4609
	switch (event_id) {
4610
	case PERF_COUNT_SW_CPU_CLOCK:
4611
		pmu = &perf_ops_cpu_clock;
4612

4613
		break;
4614
	case PERF_COUNT_SW_TASK_CLOCK:
4615
		/*
4616 4617
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4618
		 */
4619
		if (event->ctx->task)
4620
			pmu = &perf_ops_task_clock;
4621
		else
4622
			pmu = &perf_ops_cpu_clock;
4623

4624
		break;
4625 4626 4627 4628 4629
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4630 4631
	case PERF_COUNT_SW_ALIGNMENT_FAULTS:
	case PERF_COUNT_SW_EMULATION_FAULTS:
4632
		if (!event->parent) {
4633 4634 4635 4636 4637 4638
			int err;

			err = swevent_hlist_get(event);
			if (err)
				return ERR_PTR(err);

4639 4640
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
4641
		}
4642
		pmu = &perf_ops_generic;
4643
		break;
4644
	}
4645

4646
	return pmu;
4647 4648
}

T
Thomas Gleixner 已提交
4649
/*
4650
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
4651
 */
4652 4653
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
4654
		   int cpu,
4655 4656 4657
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
4658
		   perf_overflow_handler_t overflow_handler,
4659
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4660
{
4661
	const struct pmu *pmu;
4662 4663
	struct perf_event *event;
	struct hw_perf_event *hwc;
4664
	long err;
T
Thomas Gleixner 已提交
4665

4666 4667
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
4668
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4669

4670
	/*
4671
	 * Single events are their own group leaders, with an
4672 4673 4674
	 * empty sibling list:
	 */
	if (!group_leader)
4675
		group_leader = event;
4676

4677 4678
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
4679

4680 4681 4682 4683
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
4684

4685
	mutex_init(&event->mmap_mutex);
4686

4687 4688 4689 4690 4691 4692
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
4693

4694
	event->parent		= parent_event;
4695

4696 4697
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
4698

4699
	event->state		= PERF_EVENT_STATE_INACTIVE;
4700

4701 4702
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
4703
	
4704
	event->overflow_handler	= overflow_handler;
4705

4706
	if (attr->disabled)
4707
		event->state = PERF_EVENT_STATE_OFF;
4708

4709
	pmu = NULL;
4710

4711
	hwc = &event->hw;
4712
	hwc->sample_period = attr->sample_period;
4713
	if (attr->freq && attr->sample_freq)
4714
		hwc->sample_period = 1;
4715
	hwc->last_period = hwc->sample_period;
4716 4717

	atomic64_set(&hwc->period_left, hwc->sample_period);
4718

4719
	/*
4720
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4721
	 */
4722
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4723 4724
		goto done;

4725
	switch (attr->type) {
4726
	case PERF_TYPE_RAW:
4727
	case PERF_TYPE_HARDWARE:
4728
	case PERF_TYPE_HW_CACHE:
4729
		pmu = hw_perf_event_init(event);
4730 4731 4732
		break;

	case PERF_TYPE_SOFTWARE:
4733
		pmu = sw_perf_event_init(event);
4734 4735 4736
		break;

	case PERF_TYPE_TRACEPOINT:
4737
		pmu = tp_perf_event_init(event);
4738
		break;
4739

4740 4741 4742 4743 4744
	case PERF_TYPE_BREAKPOINT:
		pmu = bp_perf_event_init(event);
		break;


4745 4746
	default:
		break;
4747
	}
4748 4749
done:
	err = 0;
4750
	if (!pmu)
4751
		err = -EINVAL;
4752 4753
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4754

4755
	if (err) {
4756 4757 4758
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
4759
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4760
	}
4761

4762
	event->pmu = pmu;
T
Thomas Gleixner 已提交
4763

4764 4765 4766 4767 4768 4769 4770 4771
	if (!event->parent) {
		atomic_inc(&nr_events);
		if (event->attr.mmap)
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
4772
	}
4773

4774
	return event;
T
Thomas Gleixner 已提交
4775 4776
}

4777 4778
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
4779 4780
{
	u32 size;
4781
	int ret;
4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
4806 4807 4808
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
4809 4810
	 */
	if (size > sizeof(*attr)) {
4811 4812 4813
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
4814

4815 4816
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
4817

4818
		for (; addr < end; addr++) {
4819 4820 4821 4822 4823 4824
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4825
		size = sizeof(*attr);
4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

4839
	if (attr->__reserved_1)
4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

L
Li Zefan 已提交
4857
static int perf_event_set_output(struct perf_event *event, int output_fd)
4858
{
4859
	struct perf_event *output_event = NULL;
4860
	struct file *output_file = NULL;
4861
	struct perf_event *old_output;
4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
	int fput_needed = 0;
	int ret = -EINVAL;

	if (!output_fd)
		goto set;

	output_file = fget_light(output_fd, &fput_needed);
	if (!output_file)
		return -EBADF;

	if (output_file->f_op != &perf_fops)
		goto out;

4875
	output_event = output_file->private_data;
4876 4877

	/* Don't chain output fds */
4878
	if (output_event->output)
4879 4880 4881
		goto out;

	/* Don't set an output fd when we already have an output channel */
4882
	if (event->data)
4883 4884 4885 4886 4887
		goto out;

	atomic_long_inc(&output_file->f_count);

set:
4888 4889 4890 4891
	mutex_lock(&event->mmap_mutex);
	old_output = event->output;
	rcu_assign_pointer(event->output, output_event);
	mutex_unlock(&event->mmap_mutex);
4892 4893 4894 4895

	if (old_output) {
		/*
		 * we need to make sure no existing perf_output_*()
4896
		 * is still referencing this event.
4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
		 */
		synchronize_rcu();
		fput(old_output->filp);
	}

	ret = 0;
out:
	fput_light(output_file, fput_needed);
	return ret;
}

T
Thomas Gleixner 已提交
4908
/**
4909
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
4910
 *
4911
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
4912
 * @pid:		target pid
I
Ingo Molnar 已提交
4913
 * @cpu:		target cpu
4914
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
4915
 */
4916 4917
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
4918
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
4919
{
4920 4921 4922 4923
	struct perf_event *event, *group_leader;
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
4924 4925
	struct file *group_file = NULL;
	int fput_needed = 0;
4926
	int fput_needed2 = 0;
4927
	int err;
T
Thomas Gleixner 已提交
4928

4929
	/* for future expandability... */
4930
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4931 4932
		return -EINVAL;

4933 4934 4935
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
4936

4937 4938 4939 4940 4941
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

4942
	if (attr.freq) {
4943
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
4944 4945 4946
			return -EINVAL;
	}

4947
	/*
I
Ingo Molnar 已提交
4948 4949 4950 4951 4952 4953 4954
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
4955
	 * Look up the group leader (we will attach this event to it):
4956 4957
	 */
	group_leader = NULL;
4958
	if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4959
		err = -EINVAL;
4960 4961
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
4962
			goto err_put_context;
4963
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
4964
			goto err_put_context;
4965 4966 4967

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
4968 4969 4970 4971 4972 4973 4974 4975
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
4976
		 */
I
Ingo Molnar 已提交
4977 4978
		if (group_leader->ctx != ctx)
			goto err_put_context;
4979 4980 4981
		/*
		 * Only a group leader can be exclusive or pinned
		 */
4982
		if (attr.exclusive || attr.pinned)
4983
			goto err_put_context;
4984 4985
	}

4986
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4987
				     NULL, NULL, GFP_KERNEL);
4988 4989
	err = PTR_ERR(event);
	if (IS_ERR(event))
T
Thomas Gleixner 已提交
4990 4991
		goto err_put_context;

4992
	err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4993
	if (err < 0)
4994 4995
		goto err_free_put_context;

4996 4997
	event_file = fget_light(err, &fput_needed2);
	if (!event_file)
4998 4999
		goto err_free_put_context;

5000
	if (flags & PERF_FLAG_FD_OUTPUT) {
5001
		err = perf_event_set_output(event, group_fd);
5002 5003
		if (err)
			goto err_fput_free_put_context;
5004 5005
	}

5006
	event->filp = event_file;
5007
	WARN_ON_ONCE(ctx->parent_ctx);
5008
	mutex_lock(&ctx->mutex);
5009
	perf_install_in_context(ctx, event, cpu);
5010
	++ctx->generation;
5011
	mutex_unlock(&ctx->mutex);
5012

5013
	event->owner = current;
5014
	get_task_struct(current);
5015 5016 5017
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
5018

5019
err_fput_free_put_context:
5020
	fput_light(event_file, fput_needed2);
T
Thomas Gleixner 已提交
5021

5022
err_free_put_context:
5023
	if (err < 0)
5024
		kfree(event);
T
Thomas Gleixner 已提交
5025 5026

err_put_context:
5027 5028 5029 5030
	if (err < 0)
		put_ctx(ctx);

	fput_light(group_file, fput_needed);
T
Thomas Gleixner 已提交
5031

5032
	return err;
T
Thomas Gleixner 已提交
5033 5034
}

5035 5036 5037 5038 5039 5040 5041 5042 5043
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5044 5045
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
5056 5057 5058 5059
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_exit;
	}
5060 5061

	event = perf_event_alloc(attr, cpu, ctx, NULL,
5062
				 NULL, overflow_handler, GFP_KERNEL);
5063 5064
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
5065
		goto err_put_context;
5066
	}
5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

5083 5084 5085 5086
 err_put_context:
	put_ctx(ctx);
 err_exit:
	return ERR_PTR(err);
5087 5088 5089
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

5090
/*
5091
 * inherit a event from parent task to child task:
5092
 */
5093 5094
static struct perf_event *
inherit_event(struct perf_event *parent_event,
5095
	      struct task_struct *parent,
5096
	      struct perf_event_context *parent_ctx,
5097
	      struct task_struct *child,
5098 5099
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
5100
{
5101
	struct perf_event *child_event;
5102

5103
	/*
5104 5105
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
5106 5107 5108
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
5109 5110
	if (parent_event->parent)
		parent_event = parent_event->parent;
5111

5112 5113 5114
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
5115
					   NULL, GFP_KERNEL);
5116 5117
	if (IS_ERR(child_event))
		return child_event;
5118
	get_ctx(child_ctx);
5119

5120
	/*
5121
	 * Make the child state follow the state of the parent event,
5122
	 * not its attr.disabled bit.  We hold the parent's mutex,
5123
	 * so we won't race with perf_event_{en, dis}able_family.
5124
	 */
5125 5126
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
5127
	else
5128
		child_event->state = PERF_EVENT_STATE_OFF;
5129

5130 5131 5132 5133 5134 5135 5136 5137 5138
	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		atomic64_set(&hwc->period_left, sample_period);
	}
5139

5140 5141
	child_event->overflow_handler = parent_event->overflow_handler;

5142 5143 5144
	/*
	 * Link it up in the child's context:
	 */
5145
	add_event_to_ctx(child_event, child_ctx);
5146 5147 5148

	/*
	 * Get a reference to the parent filp - we will fput it
5149
	 * when the child event exits. This is safe to do because
5150 5151 5152
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
5153
	atomic_long_inc(&parent_event->filp->f_count);
5154

5155
	/*
5156
	 * Link this into the parent event's child list
5157
	 */
5158 5159 5160 5161
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5162

5163
	return child_event;
5164 5165
}

5166
static int inherit_group(struct perf_event *parent_event,
5167
	      struct task_struct *parent,
5168
	      struct perf_event_context *parent_ctx,
5169
	      struct task_struct *child,
5170
	      struct perf_event_context *child_ctx)
5171
{
5172 5173 5174
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
5175

5176
	leader = inherit_event(parent_event, parent, parent_ctx,
5177
				 child, NULL, child_ctx);
5178 5179
	if (IS_ERR(leader))
		return PTR_ERR(leader);
5180 5181
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
5182 5183 5184
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
5185
	}
5186 5187 5188
	return 0;
}

5189
static void sync_child_event(struct perf_event *child_event,
5190
			       struct task_struct *child)
5191
{
5192
	struct perf_event *parent_event = child_event->parent;
5193
	u64 child_val;
5194

5195 5196
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5197

5198
	child_val = atomic64_read(&child_event->count);
5199 5200 5201 5202

	/*
	 * Add back the child's count to the parent's count:
	 */
5203 5204 5205 5206 5207
	atomic64_add(child_val, &parent_event->count);
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5208 5209

	/*
5210
	 * Remove this event from the parent's list
5211
	 */
5212 5213 5214 5215
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5216 5217

	/*
5218
	 * Release the parent event, if this was the last
5219 5220
	 * reference to it.
	 */
5221
	fput(parent_event->filp);
5222 5223
}

5224
static void
5225 5226
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5227
			 struct task_struct *child)
5228
{
5229
	struct perf_event *parent_event;
5230

5231
	perf_event_remove_from_context(child_event);
5232

5233
	parent_event = child_event->parent;
5234
	/*
5235
	 * It can happen that parent exits first, and has events
5236
	 * that are still around due to the child reference. These
5237
	 * events need to be zapped - but otherwise linger.
5238
	 */
5239 5240 5241
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5242
	}
5243 5244 5245
}

/*
5246
 * When a child task exits, feed back event values to parent events.
5247
 */
5248
void perf_event_exit_task(struct task_struct *child)
5249
{
5250 5251
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5252
	unsigned long flags;
5253

5254 5255
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
5256
		return;
P
Peter Zijlstra 已提交
5257
	}
5258

5259
	local_irq_save(flags);
5260 5261 5262 5263 5264 5265
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
5266 5267
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
5268 5269 5270

	/*
	 * Take the context lock here so that if find_get_context is
5271
	 * reading child->perf_event_ctxp, we wait until it has
5272 5273
	 * incremented the context's refcount before we do put_ctx below.
	 */
5274
	raw_spin_lock(&child_ctx->lock);
5275
	child->perf_event_ctxp = NULL;
5276 5277 5278
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5279
	 * the events from it.
5280 5281
	 */
	unclone_ctx(child_ctx);
5282
	update_context_time(child_ctx);
5283
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5284 5285

	/*
5286 5287 5288
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5289
	 */
5290
	perf_event_task(child, child_ctx, 0);
5291

5292 5293 5294
	/*
	 * We can recurse on the same lock type through:
	 *
5295 5296 5297
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5298 5299 5300 5301 5302 5303
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5304

5305
again:
5306 5307 5308 5309 5310
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5311
				 group_entry)
5312
		__perf_event_exit_task(child_event, child_ctx, child);
5313 5314

	/*
5315
	 * If the last event was a group event, it will have appended all
5316 5317 5318
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5319 5320
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5321
		goto again;
5322 5323 5324 5325

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5326 5327
}

5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

	list_del_event(event, ctx);
	free_event(event);
}

5346 5347 5348 5349
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5350
void perf_event_free_task(struct task_struct *task)
5351
{
5352 5353
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5354 5355 5356 5357 5358 5359

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5360 5361
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		perf_free_event(event, ctx);
5362

5363 5364 5365
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				 group_entry)
		perf_free_event(event, ctx);
5366

5367 5368 5369
	if (!list_empty(&ctx->pinned_groups) ||
	    !list_empty(&ctx->flexible_groups))
		goto again;
5370

5371
	mutex_unlock(&ctx->mutex);
5372

5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387
	put_ctx(ctx);
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
		   struct task_struct *child,
		   int *inherited_all)
{
	int ret;
	struct perf_event_context *child_ctx = child->perf_event_ctxp;

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
5388 5389
	}

5390 5391 5392 5393 5394 5395 5396
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
5397

5398 5399 5400 5401
		child_ctx = kzalloc(sizeof(struct perf_event_context),
				    GFP_KERNEL);
		if (!child_ctx)
			return -ENOMEM;
5402

5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414
		__perf_event_init_context(child_ctx, child);
		child->perf_event_ctxp = child_ctx;
		get_task_struct(child);
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
5415 5416
}

5417

5418
/*
5419
 * Initialize the perf_event context in task_struct
5420
 */
5421
int perf_event_init_task(struct task_struct *child)
5422
{
5423
	struct perf_event_context *child_ctx, *parent_ctx;
5424 5425
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5426
	struct task_struct *parent = current;
5427
	int inherited_all = 1;
5428
	int ret = 0;
5429

5430
	child->perf_event_ctxp = NULL;
5431

5432 5433
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5434

5435
	if (likely(!parent->perf_event_ctxp))
5436 5437
		return 0;

5438
	/*
5439 5440
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5441
	 */
5442 5443
	parent_ctx = perf_pin_task_context(parent);

5444 5445 5446 5447 5448 5449 5450
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5451 5452 5453 5454
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5455
	mutex_lock(&parent_ctx->mutex);
5456 5457 5458 5459 5460

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5461 5462 5463 5464 5465 5466
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
			break;
	}
5467

5468 5469 5470 5471
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
5472
			break;
5473 5474
	}

5475 5476
	child_ctx = child->perf_event_ctxp;

5477
	if (child_ctx && inherited_all) {
5478 5479 5480
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5481 5482
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5483
		 * because the list of events and the generation
5484
		 * count can't have changed since we took the mutex.
5485
		 */
5486 5487 5488
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5489
			child_ctx->parent_gen = parent_ctx->parent_gen;
5490 5491 5492 5493 5494
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5495 5496
	}

5497
	mutex_unlock(&parent_ctx->mutex);
5498

5499
	perf_unpin_context(parent_ctx);
5500

5501
	return ret;
5502 5503
}

5504 5505 5506 5507 5508 5509 5510
static void __init perf_event_init_all_cpus(void)
{
	int cpu;
	struct perf_cpu_context *cpuctx;

	for_each_possible_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5511
		mutex_init(&cpuctx->hlist_mutex);
5512 5513 5514 5515
		__perf_event_init_context(&cpuctx->ctx, NULL);
	}
}

5516
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5517
{
5518
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5519

5520
	cpuctx = &per_cpu(perf_cpu_context, cpu);
T
Thomas Gleixner 已提交
5521

5522
	spin_lock(&perf_resource_lock);
5523
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5524
	spin_unlock(&perf_resource_lock);
5525 5526 5527 5528 5529 5530 5531 5532 5533 5534

	mutex_lock(&cpuctx->hlist_mutex);
	if (cpuctx->hlist_refcount > 0) {
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		WARN_ON_ONCE(!hlist);
		rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
	}
	mutex_unlock(&cpuctx->hlist_mutex);
T
Thomas Gleixner 已提交
5535 5536 5537
}

#ifdef CONFIG_HOTPLUG_CPU
5538
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5539 5540
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5541 5542
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5543

5544 5545 5546
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5547
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5548
}
5549
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5550
{
5551
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5552
	struct perf_event_context *ctx = &cpuctx->ctx;
5553

5554 5555 5556 5557
	mutex_lock(&cpuctx->hlist_mutex);
	swevent_hlist_release(cpuctx);
	mutex_unlock(&cpuctx->hlist_mutex);

5558
	mutex_lock(&ctx->mutex);
5559
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5560
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5561 5562
}
#else
5563
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5575
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5576 5577 5578 5579
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
5580
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5581 5582 5583 5584 5585 5586 5587 5588 5589
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5590 5591 5592
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5593 5594
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5595
	.priority		= 20,
T
Thomas Gleixner 已提交
5596 5597
};

5598
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5599
{
5600
	perf_event_init_all_cpus();
T
Thomas Gleixner 已提交
5601 5602
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5603 5604
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5605 5606 5607
	register_cpu_notifier(&perf_cpu_nb);
}

5608 5609 5610
static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
					struct sysdev_class_attribute *attr,
					char *buf)
T
Thomas Gleixner 已提交
5611 5612 5613 5614 5615 5616
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
5617
			struct sysdev_class_attribute *attr,
T
Thomas Gleixner 已提交
5618 5619 5620 5621 5622 5623 5624 5625 5626 5627
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5628
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5629 5630
		return -EINVAL;

5631
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5632 5633 5634
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5635
		raw_spin_lock_irq(&cpuctx->ctx.lock);
5636 5637
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5638
		cpuctx->max_pertask = mpt;
5639
		raw_spin_unlock_irq(&cpuctx->ctx.lock);
T
Thomas Gleixner 已提交
5640
	}
5641
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5642 5643 5644 5645

	return count;
}

5646 5647 5648
static ssize_t perf_show_overcommit(struct sysdev_class *class,
				    struct sysdev_class_attribute *attr,
				    char *buf)
T
Thomas Gleixner 已提交
5649 5650 5651 5652 5653
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
5654 5655 5656
perf_set_overcommit(struct sysdev_class *class,
		    struct sysdev_class_attribute *attr,
		    const char *buf, size_t count)
T
Thomas Gleixner 已提交
5657 5658 5659 5660 5661 5662 5663 5664 5665 5666
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

5667
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5668
	perf_overcommit = val;
5669
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
5696
	.name			= "perf_events",
T
Thomas Gleixner 已提交
5697 5698
};

5699
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
5700 5701 5702 5703
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
5704
device_initcall(perf_event_sysfs_init);