buffer_sync.c 12.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/**
 * @file buffer_sync.c
 *
 * @remark Copyright 2002 OProfile authors
 * @remark Read the file COPYING
 *
 * @author John Levon <levon@movementarian.org>
 *
 * This is the core of the buffer management. Each
 * CPU buffer is processed and entered into the
 * global event buffer. Such processing is necessary
 * in several circumstances, mentioned below.
 *
 * The processing does the job of converting the
 * transitory EIP value into a persistent dentry/offset
 * value that the profiler can record at its leisure.
 *
 * See fs/dcookies.c for a description of the dentry/offset
 * objects.
 */

#include <linux/mm.h>
#include <linux/workqueue.h>
#include <linux/notifier.h>
#include <linux/dcookies.h>
#include <linux/profile.h>
#include <linux/module.h>
#include <linux/fs.h>
A
Alexey Dobriyan 已提交
29
#include <linux/sched.h>
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
 
#include "oprofile_stats.h"
#include "event_buffer.h"
#include "cpu_buffer.h"
#include "buffer_sync.h"
 
static LIST_HEAD(dying_tasks);
static LIST_HEAD(dead_tasks);
static cpumask_t marked_cpus = CPU_MASK_NONE;
static DEFINE_SPINLOCK(task_mortuary);
static void process_task_mortuary(void);


/* Take ownership of the task struct and place it on the
 * list for processing. Only after two full buffer syncs
 * does the task eventually get freed, because by then
 * we are sure we will not reference it again.
47 48
 * Can be invoked from softirq via RCU callback due to
 * call_rcu() of the task struct, hence the _irqsave.
L
Linus Torvalds 已提交
49 50 51
 */
static int task_free_notify(struct notifier_block * self, unsigned long val, void * data)
{
52
	unsigned long flags;
L
Linus Torvalds 已提交
53
	struct task_struct * task = data;
54
	spin_lock_irqsave(&task_mortuary, flags);
L
Linus Torvalds 已提交
55
	list_add(&task->tasks, &dying_tasks);
56
	spin_unlock_irqrestore(&task_mortuary, flags);
L
Linus Torvalds 已提交
57 58 59 60 61 62 63 64 65 66 67 68
	return NOTIFY_OK;
}


/* The task is on its way out. A sync of the buffer means we can catch
 * any remaining samples for this task.
 */
static int task_exit_notify(struct notifier_block * self, unsigned long val, void * data)
{
	/* To avoid latency problems, we only process the current CPU,
	 * hoping that most samples for the task are on this CPU
	 */
I
Ingo Molnar 已提交
69
	sync_buffer(raw_smp_processor_id());
L
Linus Torvalds 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
  	return 0;
}


/* The task is about to try a do_munmap(). We peek at what it's going to
 * do, and if it's an executable region, process the samples first, so
 * we don't lose any. This does not have to be exact, it's a QoI issue
 * only.
 */
static int munmap_notify(struct notifier_block * self, unsigned long val, void * data)
{
	unsigned long addr = (unsigned long)data;
	struct mm_struct * mm = current->mm;
	struct vm_area_struct * mpnt;

	down_read(&mm->mmap_sem);

	mpnt = find_vma(mm, addr);
	if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) {
		up_read(&mm->mmap_sem);
		/* To avoid latency problems, we only process the current CPU,
		 * hoping that most samples for the task are on this CPU
		 */
I
Ingo Molnar 已提交
93
		sync_buffer(raw_smp_processor_id());
L
Linus Torvalds 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
		return 0;
	}

	up_read(&mm->mmap_sem);
	return 0;
}

 
/* We need to be told about new modules so we don't attribute to a previously
 * loaded module, or drop the samples on the floor.
 */
static int module_load_notify(struct notifier_block * self, unsigned long val, void * data)
{
#ifdef CONFIG_MODULES
	if (val != MODULE_STATE_COMING)
		return 0;

	/* FIXME: should we process all CPU buffers ? */
112
	mutex_lock(&buffer_mutex);
L
Linus Torvalds 已提交
113 114
	add_event_entry(ESCAPE_CODE);
	add_event_entry(MODULE_LOADED_CODE);
115
	mutex_unlock(&buffer_mutex);
L
Linus Torvalds 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
#endif
	return 0;
}

 
static struct notifier_block task_free_nb = {
	.notifier_call	= task_free_notify,
};

static struct notifier_block task_exit_nb = {
	.notifier_call	= task_exit_notify,
};

static struct notifier_block munmap_nb = {
	.notifier_call	= munmap_notify,
};

static struct notifier_block module_load_nb = {
	.notifier_call = module_load_notify,
};

 
static void end_sync(void)
{
	end_cpu_work();
	/* make sure we don't leak task structs */
	process_task_mortuary();
	process_task_mortuary();
}


int sync_start(void)
{
	int err;

	start_cpu_work();

	err = task_handoff_register(&task_free_nb);
	if (err)
		goto out1;
	err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb);
	if (err)
		goto out2;
	err = profile_event_register(PROFILE_MUNMAP, &munmap_nb);
	if (err)
		goto out3;
	err = register_module_notifier(&module_load_nb);
	if (err)
		goto out4;

out:
	return err;
out4:
	profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
out3:
	profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
out2:
	task_handoff_unregister(&task_free_nb);
out1:
	end_sync();
	goto out;
}


void sync_stop(void)
{
	unregister_module_notifier(&module_load_nb);
	profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
	profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
	task_handoff_unregister(&task_free_nb);
	end_sync();
}

 
/* Optimisation. We can manage without taking the dcookie sem
 * because we cannot reach this code without at least one
 * dcookie user still being registered (namely, the reader
 * of the event buffer). */
static inline unsigned long fast_get_dcookie(struct dentry * dentry,
	struct vfsmount * vfsmnt)
{
	unsigned long cookie;
 
	if (dentry->d_cookie)
		return (unsigned long)dentry;
	get_dcookie(dentry, vfsmnt, &cookie);
	return cookie;
}

 
/* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
 * which corresponds loosely to "application name". This is
 * not strictly necessary but allows oprofile to associate
 * shared-library samples with particular applications
 */
static unsigned long get_exec_dcookie(struct mm_struct * mm)
{
213
	unsigned long cookie = NO_COOKIE;
L
Linus Torvalds 已提交
214 215 216 217 218 219 220 221 222 223
	struct vm_area_struct * vma;
 
	if (!mm)
		goto out;
 
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		if (!vma->vm_file)
			continue;
		if (!(vma->vm_flags & VM_EXECUTABLE))
			continue;
224 225
		cookie = fast_get_dcookie(vma->vm_file->f_path.dentry,
			vma->vm_file->f_path.mnt);
L
Linus Torvalds 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
		break;
	}

out:
	return cookie;
}


/* Convert the EIP value of a sample into a persistent dentry/offset
 * pair that can then be added to the global event buffer. We make
 * sure to do this lookup before a mm->mmap modification happens so
 * we don't lose track.
 */
static unsigned long lookup_dcookie(struct mm_struct * mm, unsigned long addr, off_t * offset)
{
241
	unsigned long cookie = NO_COOKIE;
L
Linus Torvalds 已提交
242 243 244 245 246 247 248
	struct vm_area_struct * vma;

	for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
 
		if (addr < vma->vm_start || addr >= vma->vm_end)
			continue;

249
		if (vma->vm_file) {
250 251
			cookie = fast_get_dcookie(vma->vm_file->f_path.dentry,
				vma->vm_file->f_path.mnt);
252 253 254 255 256 257 258
			*offset = (vma->vm_pgoff << PAGE_SHIFT) + addr -
				vma->vm_start;
		} else {
			/* must be an anonymous map */
			*offset = addr;
		}

L
Linus Torvalds 已提交
259 260 261
		break;
	}

262 263 264
	if (!vma)
		cookie = INVALID_COOKIE;

L
Linus Torvalds 已提交
265 266 267 268
	return cookie;
}


269
static unsigned long last_cookie = INVALID_COOKIE;
L
Linus Torvalds 已提交
270 271 272 273 274 275
 
static void add_cpu_switch(int i)
{
	add_event_entry(ESCAPE_CODE);
	add_event_entry(CPU_SWITCH_CODE);
	add_event_entry(i);
276
	last_cookie = INVALID_COOKIE;
L
Linus Torvalds 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
}

static void add_kernel_ctx_switch(unsigned int in_kernel)
{
	add_event_entry(ESCAPE_CODE);
	if (in_kernel)
		add_event_entry(KERNEL_ENTER_SWITCH_CODE); 
	else
		add_event_entry(KERNEL_EXIT_SWITCH_CODE); 
}
 
static void
add_user_ctx_switch(struct task_struct const * task, unsigned long cookie)
{
	add_event_entry(ESCAPE_CODE);
	add_event_entry(CTX_SWITCH_CODE); 
	add_event_entry(task->pid);
	add_event_entry(cookie);
	/* Another code for daemon back-compat */
	add_event_entry(ESCAPE_CODE);
	add_event_entry(CTX_TGID_CODE);
	add_event_entry(task->tgid);
}

 
static void add_cookie_switch(unsigned long cookie)
{
	add_event_entry(ESCAPE_CODE);
	add_event_entry(COOKIE_SWITCH_CODE);
	add_event_entry(cookie);
}

 
static void add_trace_begin(void)
{
	add_event_entry(ESCAPE_CODE);
	add_event_entry(TRACE_BEGIN_CODE);
}


static void add_sample_entry(unsigned long offset, unsigned long event)
{
	add_event_entry(offset);
	add_event_entry(event);
}


static int add_us_sample(struct mm_struct * mm, struct op_sample * s)
{
	unsigned long cookie;
	off_t offset;
 
 	cookie = lookup_dcookie(mm, s->eip, &offset);
 
331
	if (cookie == INVALID_COOKIE) {
L
Linus Torvalds 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
		atomic_inc(&oprofile_stats.sample_lost_no_mapping);
		return 0;
	}

	if (cookie != last_cookie) {
		add_cookie_switch(cookie);
		last_cookie = cookie;
	}

	add_sample_entry(offset, s->event);

	return 1;
}

 
/* Add a sample to the global event buffer. If possible the
 * sample is converted into a persistent dentry/offset pair
 * for later lookup from userspace.
 */
static int
add_sample(struct mm_struct * mm, struct op_sample * s, int in_kernel)
{
	if (in_kernel) {
		add_sample_entry(s->eip, s->event);
		return 1;
	} else if (mm) {
		return add_us_sample(mm, s);
	} else {
		atomic_inc(&oprofile_stats.sample_lost_no_mm);
	}
	return 0;
}
 

static void release_mm(struct mm_struct * mm)
{
	if (!mm)
		return;
	up_read(&mm->mmap_sem);
	mmput(mm);
}


static struct mm_struct * take_tasks_mm(struct task_struct * task)
{
	struct mm_struct * mm = get_task_mm(task);
	if (mm)
		down_read(&mm->mmap_sem);
	return mm;
}


static inline int is_code(unsigned long val)
{
	return val == ESCAPE_CODE;
}
 

/* "acquire" as many cpu buffer slots as we can */
static unsigned long get_slots(struct oprofile_cpu_buffer * b)
{
	unsigned long head = b->head_pos;
	unsigned long tail = b->tail_pos;

	/*
	 * Subtle. This resets the persistent last_task
	 * and in_kernel values used for switching notes.
	 * BUT, there is a small window between reading
	 * head_pos, and this call, that means samples
	 * can appear at the new head position, but not
	 * be prefixed with the notes for switching
	 * kernel mode or a task switch. This small hole
	 * can lead to mis-attribution or samples where
	 * we don't know if it's in the kernel or not,
	 * at the start of an event buffer.
	 */
	cpu_buffer_reset(b);

	if (head >= tail)
		return head - tail;

	return head + (b->buffer_size - tail);
}


static void increment_tail(struct oprofile_cpu_buffer * b)
{
	unsigned long new_tail = b->tail_pos + 1;

	rmb();

	if (new_tail < b->buffer_size)
		b->tail_pos = new_tail;
	else
		b->tail_pos = 0;
}


/* Move tasks along towards death. Any tasks on dead_tasks
 * will definitely have no remaining references in any
 * CPU buffers at this point, because we use two lists,
 * and to have reached the list, it must have gone through
 * one full sync already.
 */
static void process_task_mortuary(void)
{
438 439
	unsigned long flags;
	LIST_HEAD(local_dead_tasks);
L
Linus Torvalds 已提交
440
	struct task_struct * task;
441
	struct task_struct * ttask;
L
Linus Torvalds 已提交
442

443
	spin_lock_irqsave(&task_mortuary, flags);
L
Linus Torvalds 已提交
444

445 446
	list_splice_init(&dead_tasks, &local_dead_tasks);
	list_splice_init(&dying_tasks, &dead_tasks);
L
Linus Torvalds 已提交
447

448 449 450
	spin_unlock_irqrestore(&task_mortuary, flags);

	list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) {
L
Linus Torvalds 已提交
451
		list_del(&task->tasks);
452
		free_task(task);
L
Linus Torvalds 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
	}
}


static void mark_done(int cpu)
{
	int i;

	cpu_set(cpu, marked_cpus);

	for_each_online_cpu(i) {
		if (!cpu_isset(i, marked_cpus))
			return;
	}

	/* All CPUs have been processed at least once,
	 * we can process the mortuary once
	 */
	process_task_mortuary();

	cpus_clear(marked_cpus);
}


/* FIXME: this is not sufficient if we implement syscall barrier backtrace
 * traversal, the code switch to sb_sample_start at first kernel enter/exit
 * switch so we need a fifth state and some special handling in sync_buffer()
 */
typedef enum {
	sb_bt_ignore = -2,
	sb_buffer_start,
	sb_bt_start,
	sb_sample_start,
} sync_buffer_state;

/* Sync one of the CPU's buffers into the global event buffer.
 * Here we need to go through each batch of samples punctuated
 * by context switch notes, taking the task's mmap_sem and doing
 * lookup in task->mm->mmap to convert EIP into dcookie/offset
 * value.
 */
void sync_buffer(int cpu)
{
	struct oprofile_cpu_buffer * cpu_buf = &cpu_buffer[cpu];
	struct mm_struct *mm = NULL;
	struct task_struct * new;
	unsigned long cookie = 0;
	int in_kernel = 1;
	unsigned int i;
	sync_buffer_state state = sb_buffer_start;
	unsigned long available;

505
	mutex_lock(&buffer_mutex);
L
Linus Torvalds 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
 
	add_cpu_switch(cpu);

	/* Remember, only we can modify tail_pos */

	available = get_slots(cpu_buf);

	for (i = 0; i < available; ++i) {
		struct op_sample * s = &cpu_buf->buffer[cpu_buf->tail_pos];
 
		if (is_code(s->eip)) {
			if (s->event <= CPU_IS_KERNEL) {
				/* kernel/userspace switch */
				in_kernel = s->event;
				if (state == sb_buffer_start)
					state = sb_sample_start;
				add_kernel_ctx_switch(s->event);
			} else if (s->event == CPU_TRACE_BEGIN) {
				state = sb_bt_start;
				add_trace_begin();
			} else {
				struct mm_struct * oldmm = mm;

				/* userspace context switch */
				new = (struct task_struct *)s->event;

				release_mm(oldmm);
				mm = take_tasks_mm(new);
				if (mm != oldmm)
					cookie = get_exec_dcookie(mm);
				add_user_ctx_switch(new, cookie);
			}
		} else {
			if (state >= sb_bt_start &&
			    !add_sample(mm, s, in_kernel)) {
				if (state == sb_bt_start) {
					state = sb_bt_ignore;
					atomic_inc(&oprofile_stats.bt_lost_no_mapping);
				}
			}
		}

		increment_tail(cpu_buf);
	}
	release_mm(mm);

	mark_done(cpu);

554
	mutex_unlock(&buffer_mutex);
L
Linus Torvalds 已提交
555
}