sched_fair.c 35.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
I
Ingo Molnar 已提交
37
unsigned int sysctl_sched_latency = 20000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50 51 52

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
53
 */
54
const_debug unsigned int sysctl_sched_child_runs_first = 1;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_BATCH wake-up granularity.
66
 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
I
Ingo Molnar 已提交
72
unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
73 74 75

/*
 * SCHED_OTHER wake-up granularity.
I
Ingo Molnar 已提交
76
 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
77 78 79 80 81
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
I
Ingo Molnar 已提交
82
unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
83

84 85
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

86 87 88 89
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

90
#ifdef CONFIG_FAIR_GROUP_SCHED
91

92
/* cpu runqueue to which this cfs_rq is attached */
93 94
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
95
	return cfs_rq->rq;
96 97
}

98 99
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
100

101
#else	/* CONFIG_FAIR_GROUP_SCHED */
102

103 104 105
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
}

#define entity_is_task(se)	1

#endif	/* CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}


/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

122
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
123
{
124 125
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
126 127 128 129 130
		min_vruntime = vruntime;

	return min_vruntime;
}

131
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
132 133 134 135 136 137 138 139
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

140
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
141
{
142
	return se->vruntime - cfs_rq->min_vruntime;
143 144
}

145 146 147
/*
 * Enqueue an entity into the rb-tree:
 */
148
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
149 150 151 152
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
153
	s64 key = entity_key(cfs_rq, se);
154 155 156 157 158 159 160 161 162 163 164 165
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
166
		if (key < entity_key(cfs_rq, entry)) {
167 168 169 170 171 172 173 174 175 176 177
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
P
Peter Zijlstra 已提交
178
	if (leftmost) {
I
Ingo Molnar 已提交
179
		cfs_rq->rb_leftmost = &se->run_node;
P
Peter Zijlstra 已提交
180 181 182 183 184 185 186
		/*
		 * maintain cfs_rq->min_vruntime to be a monotonic increasing
		 * value tracking the leftmost vruntime in the tree.
		 */
		cfs_rq->min_vruntime =
			max_vruntime(cfs_rq->min_vruntime, se->vruntime);
	}
187 188 189 190 191

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

192
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
193
{
P
Peter Zijlstra 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;
		struct sched_entity *next;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;

		if (next_node) {
			next = rb_entry(next_node,
					struct sched_entity, run_node);
			cfs_rq->min_vruntime =
				max_vruntime(cfs_rq->min_vruntime,
					     next->vruntime);
		}
	}
I
Ingo Molnar 已提交
209

210 211 212
	if (cfs_rq->next == se)
		cfs_rq->next = NULL;

213 214 215 216 217 218 219 220 221 222 223 224 225
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

226 227
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
228
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
229

230 231
	if (!last)
		return NULL;
232 233

	return rb_entry(last, struct sched_entity, run_node);
234 235
}

236 237 238 239
/**************************************************************
 * Scheduling class statistics methods:
 */

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
256 257 258 259 260 261 262 263 264

/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
265 266 267
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
268
	unsigned long nr_latency = sched_nr_latency;
269 270

	if (unlikely(nr_running > nr_latency)) {
271
		period = sysctl_sched_min_granularity;
272 273 274 275 276 277
		period *= nr_running;
	}

	return period;
}

278 279 280 281 282 283
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
 * s = p*w/rw
 */
P
Peter Zijlstra 已提交
284
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
285
{
I
Ingo Molnar 已提交
286 287
	return calc_delta_mine(__sched_period(cfs_rq->nr_running),
			       se->load.weight, &cfs_rq->load);
288 289
}

290 291 292 293 294 295
/*
 * We calculate the vruntime slice.
 *
 * vs = s/w = p/rw
 */
static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
P
Peter Zijlstra 已提交
296
{
297
	u64 vslice = __sched_period(nr_running);
P
Peter Zijlstra 已提交
298

P
Peter Zijlstra 已提交
299
	vslice *= NICE_0_LOAD;
300
	do_div(vslice, rq_weight);
P
Peter Zijlstra 已提交
301

302 303
	return vslice;
}
304

305 306 307 308 309 310 311 312 313
static u64 sched_vslice(struct cfs_rq *cfs_rq)
{
	return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
}

static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	return __sched_vslice(cfs_rq->load.weight + se->load.weight,
			cfs_rq->nr_running + 1);
P
Peter Zijlstra 已提交
314 315
}

316 317 318 319 320
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
321 322
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
323
{
324
	unsigned long delta_exec_weighted;
325

326
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
327 328

	curr->sum_exec_runtime += delta_exec;
329
	schedstat_add(cfs_rq, exec_clock, delta_exec);
I
Ingo Molnar 已提交
330 331 332 333 334 335
	delta_exec_weighted = delta_exec;
	if (unlikely(curr->load.weight != NICE_0_LOAD)) {
		delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
							&curr->load);
	}
	curr->vruntime += delta_exec_weighted;
336 337
}

338
static void update_curr(struct cfs_rq *cfs_rq)
339
{
340
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
341
	u64 now = rq_of(cfs_rq)->clock;
342 343 344 345 346 347 348 349 350 351
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
352
	delta_exec = (unsigned long)(now - curr->exec_start);
353

I
Ingo Molnar 已提交
354 355
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
356 357 358 359 360 361

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		cpuacct_charge(curtask, delta_exec);
	}
362 363 364
}

static inline void
365
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
366
{
367
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
368 369 370 371 372
}

/*
 * Task is being enqueued - update stats:
 */
373
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
374 375 376 377 378
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
379
	if (se != cfs_rq->curr)
380
		update_stats_wait_start(cfs_rq, se);
381 382 383
}

static void
384
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
385
{
386 387
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
388 389 390
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
I
Ingo Molnar 已提交
391
	schedstat_set(se->wait_start, 0);
392 393 394
}

static inline void
395
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
396 397 398 399 400
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
401
	if (se != cfs_rq->curr)
402
		update_stats_wait_end(cfs_rq, se);
403 404 405 406 407 408
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
409
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
410 411 412 413
{
	/*
	 * We are starting a new run period:
	 */
414
	se->exec_start = rq_of(cfs_rq)->clock;
415 416 417 418 419 420
}

/**************************************************
 * Scheduling class queueing methods:
 */

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

437
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
438 439 440
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
441
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
A
Arjan van de Ven 已提交
442
		struct task_struct *tsk = task_of(se);
443 444 445 446 447 448 449 450 451

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
452 453

		account_scheduler_latency(tsk, delta >> 10, 1);
454 455
	}
	if (se->block_start) {
456
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
A
Arjan van de Ven 已提交
457
		struct task_struct *tsk = task_of(se);
458 459 460 461 462 463 464 465 466

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
467 468 469 470 471 472 473

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
474

I
Ingo Molnar 已提交
475 476 477
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
A
Arjan van de Ven 已提交
478
		account_scheduler_latency(tsk, delta >> 10, 0);
479 480 481 482
	}
#endif
}

P
Peter Zijlstra 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

496 497 498
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
P
Peter Zijlstra 已提交
499
	u64 vruntime;
500

P
Peter Zijlstra 已提交
501 502 503 504 505
	if (first_fair(cfs_rq)) {
		vruntime = min_vruntime(cfs_rq->min_vruntime,
				__pick_next_entity(cfs_rq)->vruntime);
	} else
		vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
506

507
	if (sched_feat(TREE_AVG)) {
P
Peter Zijlstra 已提交
508 509
		struct sched_entity *last = __pick_last_entity(cfs_rq);
		if (last) {
P
Peter Zijlstra 已提交
510 511
			vruntime += last->vruntime;
			vruntime >>= 1;
P
Peter Zijlstra 已提交
512
		}
P
Peter Zijlstra 已提交
513
	} else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
514
		vruntime += sched_vslice(cfs_rq)/2;
P
Peter Zijlstra 已提交
515

516 517 518 519 520 521
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
522
	if (initial && sched_feat(START_DEBIT))
523
		vruntime += sched_vslice_add(cfs_rq, se);
524

I
Ingo Molnar 已提交
525
	if (!initial) {
526
		/* sleeps upto a single latency don't count. */
I
Ingo Molnar 已提交
527 528 529 530
		if (sched_feat(NEW_FAIR_SLEEPERS)) {
			vruntime -= calc_delta_fair(sysctl_sched_latency,
						    &cfs_rq->load);
		}
531

532 533
		/* ensure we never gain time by being placed backwards. */
		vruntime = max_vruntime(se->vruntime, vruntime);
534 535
	}

P
Peter Zijlstra 已提交
536
	se->vruntime = vruntime;
537 538
}

539
static void
540
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
541 542
{
	/*
543
	 * Update run-time statistics of the 'current'.
544
	 */
545
	update_curr(cfs_rq);
546

I
Ingo Molnar 已提交
547
	if (wakeup) {
548
		place_entity(cfs_rq, se, 0);
549
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
550
	}
551

552
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
553
	check_spread(cfs_rq, se);
554 555
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
556
	account_entity_enqueue(cfs_rq, se);
557 558
}

I
Ingo Molnar 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (!se->last_wakeup)
		return;

	update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
	se->last_wakeup = 0;
}

574
static void
575
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
576
{
577 578 579 580 581
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

582
	update_stats_dequeue(cfs_rq, se);
583
	if (sleep) {
I
Ingo Molnar 已提交
584
		update_avg_stats(cfs_rq, se);
P
Peter Zijlstra 已提交
585
#ifdef CONFIG_SCHEDSTATS
586 587 588 589
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
590
				se->sleep_start = rq_of(cfs_rq)->clock;
591
			if (tsk->state & TASK_UNINTERRUPTIBLE)
592
				se->block_start = rq_of(cfs_rq)->clock;
593
		}
594
#endif
P
Peter Zijlstra 已提交
595 596
	}

597
	if (se != cfs_rq->curr)
598 599
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
600 601 602 603 604
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
605
static void
I
Ingo Molnar 已提交
606
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
607
{
608 609
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
610
	ideal_runtime = sched_slice(cfs_rq, curr);
611
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
I
Ingo Molnar 已提交
612
	if (delta_exec > ideal_runtime)
613 614 615
		resched_task(rq_of(cfs_rq)->curr);
}

616
static void
617
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
618
{
619 620 621 622 623 624 625 626 627 628 629
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

630
	update_stats_curr_start(cfs_rq, se);
631
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
632 633 634 635 636 637
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
638
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
639 640 641 642
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
643
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
644 645
}

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
static struct sched_entity *
pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	s64 diff, gran;

	if (!cfs_rq->next)
		return se;

	diff = cfs_rq->next->vruntime - se->vruntime;
	if (diff < 0)
		return se;

	gran = calc_delta_fair(sysctl_sched_wakeup_granularity, &cfs_rq->load);
	if (diff > gran)
		return se;

	return cfs_rq->next;
}

665
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
666
{
D
Dmitry Adamushko 已提交
667
	struct sched_entity *se = NULL;
668

D
Dmitry Adamushko 已提交
669 670
	if (first_fair(cfs_rq)) {
		se = __pick_next_entity(cfs_rq);
671
		se = pick_next(cfs_rq, se);
D
Dmitry Adamushko 已提交
672 673
		set_next_entity(cfs_rq, se);
	}
674 675 676 677

	return se;
}

678
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
679 680 681 682 683 684
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
685
		update_curr(cfs_rq);
686

P
Peter Zijlstra 已提交
687
	check_spread(cfs_rq, prev);
688
	if (prev->on_rq) {
689
		update_stats_wait_start(cfs_rq, prev);
690 691 692
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
693
	cfs_rq->curr = NULL;
694 695
}

P
Peter Zijlstra 已提交
696 697
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
698 699
{
	/*
700
	 * Update run-time statistics of the 'current'.
701
	 */
702
	update_curr(cfs_rq);
703

P
Peter Zijlstra 已提交
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
	if (queued)
		return resched_task(rq_of(cfs_rq)->curr);
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

719
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
720
		check_preempt_tick(cfs_rq, curr);
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
}

/**************************************************
 * CFS operations on tasks:
 */

#ifdef CONFIG_FAIR_GROUP_SCHED

/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
S
Srivatsa Vaddagiri 已提交
755
	return cfs_rq->tg->cfs_rq[this_cpu];
756 757 758 759
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
760
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
761

762 763 764
/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
765
{
766
	if (se->cfs_rq == pse->cfs_rq)
767 768 769 770 771
		return 1;

	return 0;
}

772 773 774 775 776
static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
#else	/* CONFIG_FAIR_GROUP_SCHED */

#define for_each_sched_entity(se) \
		for (; se; se = NULL)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return &task_rq(p)->cfs;
}

static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

809 810
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
811 812 813 814
{
	return 1;
}

815 816 817 818 819
static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

820 821
#endif	/* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	int requeue = rq->curr == p;
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
		if (!requeue)
			delta = max(10000LL, delta);

		hrtick_start(rq, delta, requeue);
	}
}
#else
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
#endif

859 860 861 862 863
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
864
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
865 866
{
	struct cfs_rq *cfs_rq;
867
	struct sched_entity *se = &p->se;
868 869

	for_each_sched_entity(se) {
870
		if (se->on_rq)
871 872
			break;
		cfs_rq = cfs_rq_of(se);
873
		enqueue_entity(cfs_rq, se, wakeup);
874
		wakeup = 1;
875
	}
P
Peter Zijlstra 已提交
876 877

	hrtick_start_fair(rq, rq->curr);
878 879 880 881 882 883 884
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
885
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
886 887
{
	struct cfs_rq *cfs_rq;
888
	struct sched_entity *se = &p->se;
889 890 891

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
892
		dequeue_entity(cfs_rq, se, sleep);
893
		/* Don't dequeue parent if it has other entities besides us */
894
		if (cfs_rq->load.weight)
895
			break;
896
		sleep = 1;
897
	}
P
Peter Zijlstra 已提交
898 899

	hrtick_start_fair(rq, rq->curr);
900 901 902
}

/*
903 904 905
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
906
 */
907
static void yield_task_fair(struct rq *rq)
908
{
909 910 911
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
912 913

	/*
914 915 916 917 918
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

919
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
920 921
		__update_rq_clock(rq);
		/*
922
		 * Update run-time statistics of the 'current'.
923
		 */
D
Dmitry Adamushko 已提交
924
		update_curr(cfs_rq);
925 926 927 928 929

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
930
	 */
D
Dmitry Adamushko 已提交
931
	rightmost = __pick_last_entity(cfs_rq);
932 933 934
	/*
	 * Already in the rightmost position?
	 */
D
Dmitry Adamushko 已提交
935
	if (unlikely(rightmost->vruntime < se->vruntime))
936 937 938 939
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
940 941
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
942
	 */
943
	se->vruntime = rightmost->vruntime + 1;
944 945
}

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
static int wake_idle(int cpu, struct task_struct *p)
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
			cpus_and(tmp, sd->span, p->cpus_allowed);
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
						       se.nr_wakeups_idle);
					}
					return i;
				}
			}
		} else {
			break;
		}
	}
	return cpu;
}
#else
static inline int wake_idle(int cpu, struct task_struct *p)
{
	return cpu;
}
#endif

#ifdef CONFIG_SMP
999

I
Ingo Molnar 已提交
1000 1001
static const struct sched_class fair_sched_class;

1002
static int
I
Ingo Molnar 已提交
1003 1004 1005
wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
	    struct task_struct *p, int prev_cpu, int this_cpu, int sync,
	    int idx, unsigned long load, unsigned long this_load,
1006 1007
	    unsigned int imbalance)
{
I
Ingo Molnar 已提交
1008
	struct task_struct *curr = this_rq->curr;
1009 1010 1011 1012 1013 1014 1015
	unsigned long tl = this_load;
	unsigned long tl_per_task;

	if (!(this_sd->flags & SD_WAKE_AFFINE))
		return 0;

	/*
I
Ingo Molnar 已提交
1016 1017 1018
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1019
	 */
I
Ingo Molnar 已提交
1020 1021 1022 1023 1024
	if (sync && curr->sched_class == &fair_sched_class) {
		if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
				p->se.avg_overlap < sysctl_sched_migration_cost)
			return 1;
	}
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
	if (sync)
		tl -= current->se.load.weight;

1037
	if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
			100*(tl + p->se.load.weight) <= imbalance*load) {
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
		schedstat_inc(this_sd, ttwu_move_affine);
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1052 1053 1054
static int select_task_rq_fair(struct task_struct *p, int sync)
{
	struct sched_domain *sd, *this_sd = NULL;
1055
	int prev_cpu, this_cpu, new_cpu;
1056
	unsigned long load, this_load;
I
Ingo Molnar 已提交
1057
	struct rq *rq, *this_rq;
1058 1059
	unsigned int imbalance;
	int idx;
1060

1061 1062 1063
	prev_cpu	= task_cpu(p);
	rq		= task_rq(p);
	this_cpu	= smp_processor_id();
I
Ingo Molnar 已提交
1064
	this_rq		= cpu_rq(this_cpu);
1065
	new_cpu		= prev_cpu;
1066

1067 1068 1069 1070
	/*
	 * 'this_sd' is the first domain that both
	 * this_cpu and prev_cpu are present in:
	 */
1071
	for_each_domain(this_cpu, sd) {
1072
		if (cpu_isset(prev_cpu, sd->span)) {
1073 1074 1075 1076 1077 1078
			this_sd = sd;
			break;
		}
	}

	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1079
		goto out;
1080 1081 1082 1083

	/*
	 * Check for affine wakeup and passive balancing possibilities.
	 */
1084
	if (!this_sd)
1085
		goto out;
1086

1087 1088 1089 1090
	idx = this_sd->wake_idx;

	imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

1091
	load = source_load(prev_cpu, idx);
1092 1093
	this_load = target_load(this_cpu, idx);

I
Ingo Molnar 已提交
1094 1095 1096 1097 1098
	if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
				     load, this_load, imbalance))
		return this_cpu;

	if (prev_cpu == this_cpu)
1099
		goto out;
1100 1101 1102 1103 1104 1105 1106 1107 1108

	/*
	 * Start passive balancing when half the imbalance_pct
	 * limit is reached.
	 */
	if (this_sd->flags & SD_WAKE_BALANCE) {
		if (imbalance*this_load <= 100*load) {
			schedstat_inc(this_sd, ttwu_move_balance);
			schedstat_inc(p, se.nr_wakeups_passive);
I
Ingo Molnar 已提交
1109
			return this_cpu;
1110 1111 1112
		}
	}

1113
out:
1114 1115 1116 1117 1118
	return wake_idle(new_cpu, p);
}
#endif /* CONFIG_SMP */


1119 1120 1121
/*
 * Preempt the current task with a newly woken task if needed:
 */
I
Ingo Molnar 已提交
1122
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1123 1124
{
	struct task_struct *curr = rq->curr;
1125
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1126
	struct sched_entity *se = &curr->se, *pse = &p->se;
1127
	unsigned long gran;
1128 1129

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
1130
		update_rq_clock(rq);
1131
		update_curr(cfs_rq);
1132 1133 1134
		resched_task(curr);
		return;
	}
1135

I
Ingo Molnar 已提交
1136 1137 1138 1139
	se->last_wakeup = se->sum_exec_runtime;
	if (unlikely(se == pse))
		return;

1140 1141
	cfs_rq_of(pse)->next = pse;

1142 1143 1144 1145 1146 1147
	/*
	 * Batch tasks do not preempt (their preemption is driven by
	 * the tick):
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		return;
1148

1149 1150
	if (!sched_feat(WAKEUP_PREEMPT))
		return;
1151

1152 1153 1154
	while (!is_same_group(se, pse)) {
		se = parent_entity(se);
		pse = parent_entity(pse);
1155
	}
1156 1157

	gran = sysctl_sched_wakeup_granularity;
1158 1159 1160 1161 1162
	/*
	 * More easily preempt - nice tasks, while not making
	 * it harder for + nice tasks.
	 */
	if (unlikely(se->load.weight > NICE_0_LOAD))
1163 1164
		gran = calc_delta_fair(gran, &se->load);

1165
	if (pse->vruntime + gran < se->vruntime)
1166
		resched_task(curr);
1167 1168
}

1169
static struct task_struct *pick_next_task_fair(struct rq *rq)
1170
{
P
Peter Zijlstra 已提交
1171
	struct task_struct *p;
1172 1173 1174 1175 1176 1177 1178
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1179
		se = pick_next_entity(cfs_rq);
1180 1181 1182
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1183 1184 1185 1186
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1187 1188 1189 1190 1191
}

/*
 * Account for a descheduled task:
 */
1192
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1193 1194 1195 1196 1197 1198
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1199
		put_prev_entity(cfs_rq, se);
1200 1201 1202
	}
}

1203
#ifdef CONFIG_SMP
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1215
static struct task_struct *
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
{
	struct task_struct *p;

	if (!curr)
		return NULL;

	p = rb_entry(curr, struct task_struct, se.run_node);
	cfs_rq->rb_load_balance_curr = rb_next(curr);

	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
}

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
#ifdef CONFIG_FAIR_GROUP_SCHED
static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
{
	struct sched_entity *curr;
	struct task_struct *p;

	if (!cfs_rq->nr_running || !first_fair(cfs_rq))
		return MAX_PRIO;

	curr = cfs_rq->curr;
	if (!curr)
		curr = __pick_next_entity(cfs_rq);

	p = task_of(curr);

	return p->prio;
}
#endif

P
Peter Williams 已提交
1262
static unsigned long
1263
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1264
		  unsigned long max_load_move,
1265 1266
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1267 1268 1269 1270 1271 1272 1273 1274 1275
{
	struct cfs_rq *busy_cfs_rq;
	long rem_load_move = max_load_move;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1276
#ifdef CONFIG_FAIR_GROUP_SCHED
1277 1278 1279
		struct cfs_rq *this_cfs_rq;
		long imbalance;
		unsigned long maxload;
1280

1281
		this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
1282

1283 1284 1285
		imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
		/* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
		if (imbalance <= 0)
1286 1287
			continue;

1288 1289 1290
		/* Don't pull more than imbalance/2 */
		imbalance /= 2;
		maxload = min(rem_load_move, imbalance);
1291

1292
		*this_best_prio = cfs_rq_best_prio(this_cfs_rq);
1293
#else
1294
# define maxload rem_load_move
1295
#endif
1296 1297
		/*
		 * pass busy_cfs_rq argument into
1298 1299 1300
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
1301
		rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
1302 1303 1304
					       maxload, sd, idle, all_pinned,
					       this_best_prio,
					       &cfs_rq_iterator);
1305

1306
		if (rem_load_move <= 0)
1307 1308 1309
			break;
	}

P
Peter Williams 已提交
1310
	return max_load_move - rem_load_move;
1311 1312
}

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1336
#endif
1337

1338 1339 1340
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1341
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1342 1343 1344 1345 1346 1347
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1348
		entity_tick(cfs_rq, se, queued);
1349 1350 1351
	}
}

1352
#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1353

1354 1355 1356 1357 1358 1359 1360
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1361
static void task_new_fair(struct rq *rq, struct task_struct *p)
1362 1363
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1364
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1365
	int this_cpu = smp_processor_id();
1366 1367 1368

	sched_info_queued(p);

1369
	update_curr(cfs_rq);
1370
	place_entity(cfs_rq, se, 1);
1371

1372
	/* 'curr' will be NULL if the child belongs to a different group */
1373
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1374
			curr && curr->vruntime < se->vruntime) {
D
Dmitry Adamushko 已提交
1375
		/*
1376 1377 1378
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1379 1380
		swap(curr->vruntime, se->vruntime);
	}
1381

1382
	enqueue_task_fair(rq, p, 0);
1383
	resched_task(rq->curr);
1384 1385
}

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
		check_preempt_curr(rq, p);
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
		check_preempt_curr(rq, p);
}

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

1445 1446 1447
/*
 * All the scheduling class methods:
 */
1448 1449
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1450 1451 1452
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
1453 1454 1455
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_fair,
#endif /* CONFIG_SMP */
1456

I
Ingo Molnar 已提交
1457
	.check_preempt_curr	= check_preempt_wakeup,
1458 1459 1460 1461

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1462
#ifdef CONFIG_SMP
1463
	.load_balance		= load_balance_fair,
1464
	.move_one_task		= move_one_task_fair,
1465
#endif
1466

1467
	.set_curr_task          = set_curr_task_fair,
1468 1469
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
1470 1471 1472

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
1473 1474 1475 1476

#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
1477 1478 1479
};

#ifdef CONFIG_SCHED_DEBUG
1480
static void print_cfs_stats(struct seq_file *m, int cpu)
1481 1482 1483
{
	struct cfs_rq *cfs_rq;

S
Srivatsa Vaddagiri 已提交
1484 1485 1486
#ifdef CONFIG_FAIR_GROUP_SCHED
	print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
#endif
1487
	rcu_read_lock();
1488
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1489
		print_cfs_rq(m, cpu, cfs_rq);
1490
	rcu_read_unlock();
1491 1492
}
#endif