dict.c 21.7 KB
Newer Older
A
antirez 已提交
1 2 3 4 5 6 7
/* Hash Tables Implementation.
 *
 * This file implements in memory hash tables with insert/del/replace/find/
 * get-random-element operations. Hash tables will auto resize if needed
 * tables of power of two in size are used, collisions are handled by
 * chaining. See the source code for more information... :)
 *
8
 * Copyright (c) 2006-2010, Salvatore Sanfilippo <antirez at gmail dot com>
A
antirez 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *   * Redistributions of source code must retain the above copyright notice,
 *     this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 *   * Neither the name of Redis nor the names of its contributors may be used
 *     to endorse or promote products derived from this software without
 *     specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

36 37
#include "fmacros.h"

A
antirez 已提交
38 39 40 41 42
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <assert.h>
43
#include <limits.h>
A
antirez 已提交
44
#include <sys/time.h>
A
antirez 已提交
45 46 47 48

#include "dict.h"
#include "zmalloc.h"

49 50 51 52 53 54
/* Using dictEnableResize() / dictDisableResize() we make possible to
 * enable/disable resizing of the hash table as needed. This is very important
 * for Redis, as we use copy-on-write and don't want to move too much memory
 * around when there is a child performing saving operations. */
static int dict_can_resize = 1;

A
antirez 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
/* ---------------------------- Utility funcitons --------------------------- */

static void _dictPanic(const char *fmt, ...)
{
    va_list ap;

    va_start(ap, fmt);
    fprintf(stderr, "\nDICT LIBRARY PANIC: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n\n");
    va_end(ap);
}

/* ------------------------- Heap Management Wrappers------------------------ */

70
static void *_dictAlloc(size_t size)
A
antirez 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84
{
    void *p = zmalloc(size);
    if (p == NULL)
        _dictPanic("Out of memory");
    return p;
}

static void _dictFree(void *ptr) {
    zfree(ptr);
}

/* -------------------------- private prototypes ---------------------------- */

static int _dictExpandIfNeeded(dict *ht);
85
static unsigned long _dictNextPower(unsigned long size);
A
antirez 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
static int _dictKeyIndex(dict *ht, const void *key);
static int _dictInit(dict *ht, dictType *type, void *privDataPtr);

/* -------------------------- hash functions -------------------------------- */

/* Thomas Wang's 32 bit Mix Function */
unsigned int dictIntHashFunction(unsigned int key)
{
    key += ~(key << 15);
    key ^=  (key >> 10);
    key +=  (key << 3);
    key ^=  (key >> 6);
    key += ~(key << 11);
    key ^=  (key >> 16);
    return key;
}

/* Identity hash function for integer keys */
unsigned int dictIdentityHashFunction(unsigned int key)
{
    return key;
}

/* Generic hash function (a popular one from Bernstein).
 * I tested a few and this was the best. */
unsigned int dictGenHashFunction(const unsigned char *buf, int len) {
    unsigned int hash = 5381;

    while (len--)
        hash = ((hash << 5) + hash) + (*buf++); /* hash * 33 + c */
    return hash;
}

/* ----------------------------- API implementation ------------------------- */

/* Reset an hashtable already initialized with ht_init().
 * NOTE: This function should only called by ht_destroy(). */
123
static void _dictReset(dictht *ht)
A
antirez 已提交
124 125 126 127 128 129 130 131 132 133 134
{
    ht->table = NULL;
    ht->size = 0;
    ht->sizemask = 0;
    ht->used = 0;
}

/* Create a new hash table */
dict *dictCreate(dictType *type,
        void *privDataPtr)
{
135
    dict *d = _dictAlloc(sizeof(*d));
A
antirez 已提交
136

137 138
    _dictInit(d,type,privDataPtr);
    return d;
A
antirez 已提交
139 140 141
}

/* Initialize the hash table */
142
int _dictInit(dict *d, dictType *type,
A
antirez 已提交
143 144
        void *privDataPtr)
{
145 146 147 148 149 150
    _dictReset(&d->ht[0]);
    _dictReset(&d->ht[1]);
    d->type = type;
    d->privdata = privDataPtr;
    d->rehashidx = -1;
    d->iterators = 0;
A
antirez 已提交
151 152 153 154 155
    return DICT_OK;
}

/* Resize the table to the minimal size that contains all the elements,
 * but with the invariant of a USER/BUCKETS ration near to <= 1 */
156
int dictResize(dict *d)
A
antirez 已提交
157
{
158
    int minimal;
A
antirez 已提交
159

160 161
    if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR;
    minimal = d->ht[0].used;
A
antirez 已提交
162 163
    if (minimal < DICT_HT_INITIAL_SIZE)
        minimal = DICT_HT_INITIAL_SIZE;
164
    return dictExpand(d, minimal);
A
antirez 已提交
165 166 167
}

/* Expand or create the hashtable */
168
int dictExpand(dict *d, unsigned long size)
A
antirez 已提交
169
{
170 171
    dictht n; /* the new hashtable */
    unsigned long realsize = _dictNextPower(size);
A
antirez 已提交
172 173 174

    /* the size is invalid if it is smaller than the number of
     * elements already inside the hashtable */
175
    if (dictIsRehashing(d) || d->ht[0].used > size)
A
antirez 已提交
176 177 178 179 180
        return DICT_ERR;

    n.size = realsize;
    n.sizemask = realsize-1;
    n.table = _dictAlloc(realsize*sizeof(dictEntry*));
181
    n.used = 0;
A
antirez 已提交
182 183 184 185

    /* Initialize all the pointers to NULL */
    memset(n.table, 0, realsize*sizeof(dictEntry*));

186 187 188 189 190 191
    /* Is this the first initialization? If so it's not really a rehashing
     * we just set the first hash table so that it can accept keys. */
    if (d->ht[0].table == NULL) {
        d->ht[0] = n;
        return DICT_OK;
    }
A
antirez 已提交
192

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    /* Prepare a second hash table for incremental rehashing */
    d->ht[1] = n;
    d->rehashidx = 0;
    return DICT_OK;
}

/* Performs N steps of incremental rehashing. Returns 1 if there are still
 * keys to move from the old to the new hash table, otherwise 0 is returned.
 * Note that a rehashing step consists in moving a bucket (that may have more
 * thank one key as we use chaining) from the old to the new hash table. */
int dictRehash(dict *d, int n) {
    if (!dictIsRehashing(d)) return 0;

    while(n--) {
        dictEntry *de, *nextde;

        /* Check if we already rehashed the whole table... */
        if (d->ht[0].used == 0) {
            _dictFree(d->ht[0].table);
            d->ht[0] = d->ht[1];
            _dictReset(&d->ht[1]);
            d->rehashidx = -1;
            return 0;
        }

        /* Note that rehashidx can't overflow as we are sure there are more
         * elements because ht[0].used != 0 */
        while(d->ht[0].table[d->rehashidx] == NULL) d->rehashidx++;
        de = d->ht[0].table[d->rehashidx];
        /* Move all the keys in this bucket from the old to the new hash HT */
        while(de) {
A
antirez 已提交
224 225
            unsigned int h;

226 227 228 229 230 231 232 233
            nextde = de->next;
            /* Get the index in the new hash table */
            h = dictHashKey(d, de->key) & d->ht[1].sizemask;
            de->next = d->ht[1].table[h];
            d->ht[1].table[h] = de;
            d->ht[0].used--;
            d->ht[1].used++;
            de = nextde;
A
antirez 已提交
234
        }
235 236
        d->ht[0].table[d->rehashidx] = NULL;
        d->rehashidx++;
A
antirez 已提交
237
    }
238 239
    return 1;
}
A
antirez 已提交
240

A
antirez 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
long long timeInMilliseconds(void) {
    struct timeval tv;

    gettimeofday(&tv,NULL);
    return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000);
}

/* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */
int dictRehashMilliseconds(dict *d, int ms) {
    long long start = timeInMilliseconds();
    int rehashes = 0;

    while(dictRehash(d,100)) {
        rehashes += 100;
        if (timeInMilliseconds()-start > ms) break;
    }
    return rehashes;
}

260 261 262 263 264 265 266 267 268 269
/* This function performs just a step of rehashing, and only if there are
 * not iterators bound to our hash table. When we have iterators in the middle
 * of a rehashing we can't mess with the two hash tables otherwise some element
 * can be missed or duplicated.
 *
 * This function is called by common lookup or update operations in the
 * dictionary so that the hash table automatically migrates from H1 to H2
 * while it is actively used. */
static void _dictRehashStep(dict *d) {
    if (d->iterators == 0) dictRehash(d,1);
A
antirez 已提交
270 271 272
}

/* Add an element to the target hash table */
273
int dictAdd(dict *d, void *key, void *val)
A
antirez 已提交
274 275 276
{
    int index;
    dictEntry *entry;
277 278 279
    dictht *ht;

    if (dictIsRehashing(d)) _dictRehashStep(d);
A
antirez 已提交
280 281 282

    /* Get the index of the new element, or -1 if
     * the element already exists. */
283
    if ((index = _dictKeyIndex(d, key)) == -1)
A
antirez 已提交
284 285 286
        return DICT_ERR;

    /* Allocates the memory and stores key */
287
    ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
A
antirez 已提交
288 289 290
    entry = _dictAlloc(sizeof(*entry));
    entry->next = ht->table[index];
    ht->table[index] = entry;
291
    ht->used++;
A
antirez 已提交
292 293

    /* Set the hash entry fields. */
294 295
    dictSetHashKey(d, entry, key);
    dictSetHashVal(d, entry, val);
A
antirez 已提交
296 297 298
    return DICT_OK;
}

299 300 301 302
/* Add an element, discarding the old if the key already exists.
 * Return 1 if the key was added from scratch, 0 if there was already an
 * element with such key and dictReplace() just performed a value update
 * operation. */
303
int dictReplace(dict *d, void *key, void *val)
A
antirez 已提交
304
{
305
    dictEntry *entry, auxentry;
A
antirez 已提交
306 307 308

    /* Try to add the element. If the key
     * does not exists dictAdd will suceed. */
309
    if (dictAdd(d, key, val) == DICT_OK)
310
        return 1;
A
antirez 已提交
311
    /* It already exists, get the entry */
312
    entry = dictFind(d, key);
A
antirez 已提交
313
    /* Free the old value and set the new one */
314 315 316 317 318 319
    /* Set the new value and free the old one. Note that it is important
     * to do that in this order, as the value may just be exactly the same
     * as the previous one. In this context, think to reference counting,
     * you want to increment (set), and then decrement (free), and not the
     * reverse. */
    auxentry = *entry;
320 321
    dictSetHashVal(d, entry, val);
    dictFreeEntryVal(d, &auxentry);
322
    return 0;
A
antirez 已提交
323 324 325
}

/* Search and remove an element */
326
static int dictGenericDelete(dict *d, const void *key, int nofree)
A
antirez 已提交
327
{
328
    unsigned int h, idx;
A
antirez 已提交
329
    dictEntry *he, *prevHe;
330
    int table;
A
antirez 已提交
331

332 333 334
    if (d->ht[0].size == 0) return DICT_ERR; /* d->ht[0].table is NULL */
    if (dictIsRehashing(d)) _dictRehashStep(d);
    h = dictHashKey(d, key);
A
antirez 已提交
335

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
    for (table = 0; table <= 1; table++) {
        idx = h & d->ht[table].sizemask;
        he = d->ht[table].table[idx];
        prevHe = NULL;
        while(he) {
            if (dictCompareHashKeys(d, key, he->key)) {
                /* Unlink the element from the list */
                if (prevHe)
                    prevHe->next = he->next;
                else
                    d->ht[table].table[idx] = he->next;
                if (!nofree) {
                    dictFreeEntryKey(d, he);
                    dictFreeEntryVal(d, he);
                }
                _dictFree(he);
                d->ht[table].used--;
                return DICT_OK;
A
antirez 已提交
354
            }
355 356
            prevHe = he;
            he = he->next;
A
antirez 已提交
357
        }
358
        if (!dictIsRehashing(d)) break;
A
antirez 已提交
359 360 361 362 363 364 365 366 367 368 369 370
    }
    return DICT_ERR; /* not found */
}

int dictDelete(dict *ht, const void *key) {
    return dictGenericDelete(ht,key,0);
}

int dictDeleteNoFree(dict *ht, const void *key) {
    return dictGenericDelete(ht,key,1);
}

371 372
/* Destroy an entire dictionary */
int _dictClear(dict *d, dictht *ht)
A
antirez 已提交
373
{
374
    unsigned long i;
A
antirez 已提交
375 376 377 378 379 380 381 382

    /* Free all the elements */
    for (i = 0; i < ht->size && ht->used > 0; i++) {
        dictEntry *he, *nextHe;

        if ((he = ht->table[i]) == NULL) continue;
        while(he) {
            nextHe = he->next;
383 384
            dictFreeEntryKey(d, he);
            dictFreeEntryVal(d, he);
A
antirez 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397
            _dictFree(he);
            ht->used--;
            he = nextHe;
        }
    }
    /* Free the table and the allocated cache structure */
    _dictFree(ht->table);
    /* Re-initialize the table */
    _dictReset(ht);
    return DICT_OK; /* never fails */
}

/* Clear & Release the hash table */
398
void dictRelease(dict *d)
A
antirez 已提交
399
{
400 401 402
    _dictClear(d,&d->ht[0]);
    _dictClear(d,&d->ht[1]);
    _dictFree(d);
A
antirez 已提交
403 404
}

405
dictEntry *dictFind(dict *d, const void *key)
A
antirez 已提交
406 407
{
    dictEntry *he;
408 409 410 411 412 413 414 415 416 417 418 419 420 421
    unsigned int h, idx, table;

    if (d->ht[0].size == 0) return NULL; /* We don't have a table at all */
    if (dictIsRehashing(d)) _dictRehashStep(d);
    h = dictHashKey(d, key);
    for (table = 0; table <= 1; table++) {
        idx = h & d->ht[table].sizemask;
        he = d->ht[table].table[idx];
        while(he) {
            if (dictCompareHashKeys(d, key, he->key))
                return he;
            he = he->next;
        }
        if (!dictIsRehashing(d)) return NULL;
A
antirez 已提交
422 423 424 425
    }
    return NULL;
}

426 427 428 429 430 431 432
void *dictFetchValue(dict *d, const void *key) {
    dictEntry *he;

    he = dictFind(d,key);
    return he ? dictGetEntryVal(he) : NULL;
}

433
dictIterator *dictGetIterator(dict *d)
A
antirez 已提交
434 435 436
{
    dictIterator *iter = _dictAlloc(sizeof(*iter));

437 438
    iter->d = d;
    iter->table = 0;
A
antirez 已提交
439 440 441 442 443 444 445 446 447 448
    iter->index = -1;
    iter->entry = NULL;
    iter->nextEntry = NULL;
    return iter;
}

dictEntry *dictNext(dictIterator *iter)
{
    while (1) {
        if (iter->entry == NULL) {
449 450
            dictht *ht = &iter->d->ht[iter->table];
            if (iter->index == -1 && iter->table == 0) iter->d->iterators++;
A
antirez 已提交
451
            iter->index++;
452 453 454 455 456 457 458 459 460 461
            if (iter->index >= (signed) ht->size) {
                if (dictIsRehashing(iter->d) && iter->table == 0) {
                    iter->table++;
                    iter->index = 0;
                    ht = &iter->d->ht[1];
                } else {
                    break;
                }
            }
            iter->entry = ht->table[iter->index];
A
antirez 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
        } else {
            iter->entry = iter->nextEntry;
        }
        if (iter->entry) {
            /* We need to save the 'next' here, the iterator user
             * may delete the entry we are returning. */
            iter->nextEntry = iter->entry->next;
            return iter->entry;
        }
    }
    return NULL;
}

void dictReleaseIterator(dictIterator *iter)
{
477
    if (!(iter->index == -1 && iter->table == 0)) iter->d->iterators--;
A
antirez 已提交
478 479 480 481 482
    _dictFree(iter);
}

/* Return a random entry from the hash table. Useful to
 * implement randomized algorithms */
483
dictEntry *dictGetRandomKey(dict *d)
A
antirez 已提交
484
{
485
    dictEntry *he, *orighe;
A
antirez 已提交
486 487 488
    unsigned int h;
    int listlen, listele;

489 490 491 492 493 494 495 496 497 498 499 500 501 502
    if (dictSize(d) == 0) return NULL;
    if (dictIsRehashing(d)) _dictRehashStep(d);
    if (dictIsRehashing(d)) {
        do {
            h = random() % (d->ht[0].size+d->ht[1].size);
            he = (h >= d->ht[0].size) ? d->ht[1].table[h - d->ht[0].size] :
                                      d->ht[0].table[h];
        } while(he == NULL);
    } else {
        do {
            h = random() & d->ht[0].sizemask;
            he = d->ht[0].table[h];
        } while(he == NULL);
    }
A
antirez 已提交
503 504 505

    /* Now we found a non empty bucket, but it is a linked
     * list and we need to get a random element from the list.
506
     * The only sane way to do so is counting the elements and
A
antirez 已提交
507 508
     * select a random index. */
    listlen = 0;
509
    orighe = he;
A
antirez 已提交
510 511 512 513 514
    while(he) {
        he = he->next;
        listlen++;
    }
    listele = random() % listlen;
515
    he = orighe;
A
antirez 已提交
516 517 518 519 520 521 522
    while(listele--) he = he->next;
    return he;
}

/* ------------------------- private functions ------------------------------ */

/* Expand the hash table if needed */
523
static int _dictExpandIfNeeded(dict *d)
A
antirez 已提交
524 525 526
{
    /* If the hash table is empty expand it to the intial size,
     * if the table is "full" dobule its size. */
527 528 529 530 531 532
    if (dictIsRehashing(d)) return DICT_OK;
    if (d->ht[0].size == 0)
        return dictExpand(d, DICT_HT_INITIAL_SIZE);
    if (d->ht[0].used >= d->ht[0].size && dict_can_resize)
        return dictExpand(d, ((d->ht[0].size > d->ht[0].used) ?
                                    d->ht[0].size : d->ht[0].used)*2);
A
antirez 已提交
533 534 535 536
    return DICT_OK;
}

/* Our hash table capability is a power of two */
537
static unsigned long _dictNextPower(unsigned long size)
A
antirez 已提交
538
{
539
    unsigned long i = DICT_HT_INITIAL_SIZE;
A
antirez 已提交
540

541
    if (size >= LONG_MAX) return LONG_MAX;
A
antirez 已提交
542 543 544 545 546 547 548 549 550
    while(1) {
        if (i >= size)
            return i;
        i *= 2;
    }
}

/* Returns the index of a free slot that can be populated with
 * an hash entry for the given 'key'.
551 552 553 554 555
 * If the key already exists, -1 is returned.
 *
 * Note that if we are in the process of rehashing the hash table, the
 * index is always returned in the context of the second (new) hash table. */
static int _dictKeyIndex(dict *d, const void *key)
A
antirez 已提交
556
{
A
antirez 已提交
557
    unsigned int h, idx, table;
A
antirez 已提交
558 559 560
    dictEntry *he;

    /* Expand the hashtable if needed */
561
    if (_dictExpandIfNeeded(d) == DICT_ERR)
A
antirez 已提交
562 563
        return -1;
    /* Compute the key hash value */
564
    h = dictHashKey(d, key);
A
antirez 已提交
565 566 567 568 569 570 571 572 573 574
    for (table = 0; table <= 1; table++) {
        idx = h & d->ht[table].sizemask;
        /* Search if this slot does not already contain the given key */
        he = d->ht[table].table[idx];
        while(he) {
            if (dictCompareHashKeys(d, key, he->key))
                return -1;
            he = he->next;
        }
        if (!dictIsRehashing(d)) break;
A
antirez 已提交
575
    }
A
antirez 已提交
576
    return idx;
A
antirez 已提交
577 578
}

579 580 581 582 583
void dictEmpty(dict *d) {
    _dictClear(d,&d->ht[0]);
    _dictClear(d,&d->ht[1]);
    d->rehashidx = -1;
    d->iterators = 0;
A
antirez 已提交
584 585 586
}

#define DICT_STATS_VECTLEN 50
587
static void _dictPrintStatsHt(dictht *ht) {
588 589 590
    unsigned long i, slots = 0, chainlen, maxchainlen = 0;
    unsigned long totchainlen = 0;
    unsigned long clvector[DICT_STATS_VECTLEN];
A
antirez 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617

    if (ht->used == 0) {
        printf("No stats available for empty dictionaries\n");
        return;
    }

    for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0;
    for (i = 0; i < ht->size; i++) {
        dictEntry *he;

        if (ht->table[i] == NULL) {
            clvector[0]++;
            continue;
        }
        slots++;
        /* For each hash entry on this slot... */
        chainlen = 0;
        he = ht->table[i];
        while(he) {
            chainlen++;
            he = he->next;
        }
        clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++;
        if (chainlen > maxchainlen) maxchainlen = chainlen;
        totchainlen += chainlen;
    }
    printf("Hash table stats:\n");
618 619 620 621
    printf(" table size: %ld\n", ht->size);
    printf(" number of elements: %ld\n", ht->used);
    printf(" different slots: %ld\n", slots);
    printf(" max chain length: %ld\n", maxchainlen);
A
antirez 已提交
622 623 624 625 626
    printf(" avg chain length (counted): %.02f\n", (float)totchainlen/slots);
    printf(" avg chain length (computed): %.02f\n", (float)ht->used/slots);
    printf(" Chain length distribution:\n");
    for (i = 0; i < DICT_STATS_VECTLEN-1; i++) {
        if (clvector[i] == 0) continue;
627
        printf("   %s%ld: %ld (%.02f%%)\n",(i == DICT_STATS_VECTLEN-1)?">= ":"", i, clvector[i], ((float)clvector[i]/ht->size)*100);
A
antirez 已提交
628 629 630
    }
}

631 632 633 634 635 636 637 638
void dictPrintStats(dict *d) {
    _dictPrintStatsHt(&d->ht[0]);
    if (dictIsRehashing(d)) {
        printf("-- Rehashing into ht[1]:\n");
        _dictPrintStatsHt(&d->ht[1]);
    }
}

639 640 641 642 643
void dictEnableResize(void) {
    dict_can_resize = 1;
}

void dictDisableResize(void) {
644
    dict_can_resize = 0;
645 646
}

A
antirez 已提交
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
/* ----------------------- StringCopy Hash Table Type ------------------------*/

static unsigned int _dictStringCopyHTHashFunction(const void *key)
{
    return dictGenHashFunction(key, strlen(key));
}

static void *_dictStringCopyHTKeyDup(void *privdata, const void *key)
{
    int len = strlen(key);
    char *copy = _dictAlloc(len+1);
    DICT_NOTUSED(privdata);

    memcpy(copy, key, len);
    copy[len] = '\0';
    return copy;
}

static void *_dictStringKeyValCopyHTValDup(void *privdata, const void *val)
{
    int len = strlen(val);
    char *copy = _dictAlloc(len+1);
    DICT_NOTUSED(privdata);

    memcpy(copy, val, len);
    copy[len] = '\0';
    return copy;
}

static int _dictStringCopyHTKeyCompare(void *privdata, const void *key1,
        const void *key2)
{
    DICT_NOTUSED(privdata);

    return strcmp(key1, key2) == 0;
}

static void _dictStringCopyHTKeyDestructor(void *privdata, void *key)
{
    DICT_NOTUSED(privdata);

    _dictFree((void*)key); /* ATTENTION: const cast */
}

static void _dictStringKeyValCopyHTValDestructor(void *privdata, void *val)
{
    DICT_NOTUSED(privdata);

    _dictFree((void*)val); /* ATTENTION: const cast */
}

dictType dictTypeHeapStringCopyKey = {
    _dictStringCopyHTHashFunction,        /* hash function */
    _dictStringCopyHTKeyDup,              /* key dup */
    NULL,                               /* val dup */
    _dictStringCopyHTKeyCompare,          /* key compare */
    _dictStringCopyHTKeyDestructor,       /* key destructor */
    NULL                                /* val destructor */
};

/* This is like StringCopy but does not auto-duplicate the key.
 * It's used for intepreter's shared strings. */
dictType dictTypeHeapStrings = {
    _dictStringCopyHTHashFunction,        /* hash function */
    NULL,                               /* key dup */
    NULL,                               /* val dup */
    _dictStringCopyHTKeyCompare,          /* key compare */
    _dictStringCopyHTKeyDestructor,       /* key destructor */
    NULL                                /* val destructor */
};

/* This is like StringCopy but also automatically handle dynamic
 * allocated C strings as values. */
dictType dictTypeHeapStringCopyKeyValue = {
    _dictStringCopyHTHashFunction,        /* hash function */
    _dictStringCopyHTKeyDup,              /* key dup */
    _dictStringKeyValCopyHTValDup,        /* val dup */
    _dictStringCopyHTKeyCompare,          /* key compare */
    _dictStringCopyHTKeyDestructor,       /* key destructor */
    _dictStringKeyValCopyHTValDestructor, /* val destructor */
};