提交 5085a24f 编写于 作者: L liutuo

eltwise support multi dimensions

上级 59c2cfe1
......@@ -35,6 +35,7 @@ enum CWiseType {
DIV = 5,
NEG = 6,
ABS = 7,
SQR_DIFF = 8,
};
struct CWiseFunctorBase {
......@@ -92,6 +93,7 @@ struct CWiseFunctor : CWiseFunctorBase {
}
break;
case DIV:
MACE_CHECK(fabs(coeff_) > 1e-6, "cannot divided by 0.");
#pragma omp parallel for
for (index_t i = 0; i < size; ++i) {
output_ptr[i] = input_ptr[i] / coeff_;
......
......@@ -32,10 +32,15 @@ enum EltwiseType {
MAX = 2,
MIN = 3,
SUB = 4,
DIV = 5,
NEG = 6,
ABS = 7,
SQR_DIFF = 8,
};
struct EltwiseFunctorBase {
EltwiseFunctorBase(const EltwiseType type, const std::vector<float> &coeff)
EltwiseFunctorBase(const EltwiseType type,
const std::vector<float> &coeff)
: type_(type), coeff_(coeff) {}
EltwiseType type_;
......@@ -44,74 +49,211 @@ struct EltwiseFunctorBase {
template <DeviceType D, typename T>
struct EltwiseFunctor : EltwiseFunctorBase {
EltwiseFunctor(const EltwiseType type, const std::vector<float> &coeff)
EltwiseFunctor(const EltwiseType type,
const std::vector<float> &coeff)
: EltwiseFunctorBase(type, coeff) {}
void operator()(const Tensor *input0,
const Tensor *input1,
const index_t start_axis,
const bool is_scaler,
const float value,
const bool swap,
Tensor *output,
StatsFuture *future) {
Tensor::MappingGuard input0_guard(input0);
Tensor::MappingGuard input1_guard(input1);
Tensor::MappingGuard output_guard(output);
if (is_scaler) {
Tensor::MappingGuard input0_guard(input0);
Tensor::MappingGuard output_guard(output);
const T *input0_ptr = input0->data<T>();
const T *input1_ptr = input1->data<T>();
T *output_ptr = output->mutable_data<T>();
const index_t size = input0->size();
switch (type_) {
case PROD:
const T *input0_ptr = input0->data<T>();
T *output_ptr = output->mutable_data<T>();
const index_t num = input0->size();
switch (type_) {
case PROD:
#pragma omp parallel for
for (index_t i = 0; i < num; ++i) {
output_ptr[i] = input0_ptr[i] * value;
}
break;
case SUM:
if (coeff_.empty()) {
#pragma omp parallel for
for (index_t i = 0; i < size; ++i) {
output_ptr[i] = input0_ptr[i] * input1_ptr[i];
}
break;
case SUM:
if (coeff_.empty()) {
for (index_t i = 0; i < num; ++i) {
output_ptr[i] = input0_ptr[i] + value;
}
} else {
const float coeff_0 = swap ? coeff_[1] : coeff_[0];
const float coeff_1 = swap ? coeff_[0] : coeff_[1];
#pragma omp parallel for
for (index_t i = 0; i < size; ++i) {
output_ptr[i] = input0_ptr[i] + input1_ptr[i];
for (index_t i = 0; i < num; ++i) {
output_ptr[i] = coeff_0 * input0_ptr[i] +
coeff_1 * value;
}
}
} else {
break;
case MAX:
#pragma omp parallel for
for (index_t i = 0; i < size; ++i) {
output_ptr[i] =
coeff_[0] * input0_ptr[i] + coeff_[1] * input1_ptr[i];
for (index_t i = 0; i < num; ++i) {
output_ptr[i] = std::max<T>(input0_ptr[i], value);
}
}
break;
case MAX:
break;
case MIN:
#pragma omp parallel for
for (index_t i = 0; i < size; ++i) {
output_ptr[i] = std::max<T>(input0_ptr[i], input1_ptr[i]);
}
break;
case MIN:
for (index_t i = 0; i < num; ++i) {
output_ptr[i] = std::min<T>(input0_ptr[i], value);
}
break;
case SUB:
#pragma omp parallel for
for (index_t i = 0; i < size; ++i) {
output_ptr[i] = std::min<T>(input0_ptr[i], input1_ptr[i]);
}
break;
case SUB:
for (index_t i = 0; i < num; ++i) {
output_ptr[i] = swap ? value - input0_ptr[i] :
input0_ptr[i] - value;
}
break;
case DIV:
if (!swap) {
MACE_CHECK(fabs(value) > 1e-6, "cannot divided by 0.");
#pragma omp parallel for
for (index_t i = 0; i < size; ++i) {
output_ptr[i] = input0_ptr[i] - input1_ptr[i];
}
break;
default:
LOG(FATAL) << "Eltwise op not support type " << type_;
for (index_t i = 0; i < num; ++i) {
output_ptr[i] = input0_ptr[i] / value;
}
} else {
#pragma omp parallel for
for (index_t i = 0; i < num; ++i) {
MACE_CHECK(fabs(input0_ptr[i]) > 1e-6, "cannot divided by 0.");
output_ptr[i] = value / input0_ptr[i];
}
}
break;
case SQR_DIFF:
#pragma omp parallel for
for (index_t i = 0; i < num; ++i) {
const float tmp = input0_ptr[i] - value;
output_ptr[i] = tmp * tmp;
}
break;
default:
LOG(FATAL) << "Eltwise op not support type " << type_;
}
} else {
MACE_CHECK_NOTNULL(input0);
MACE_CHECK_NOTNULL(input1);
Tensor::MappingGuard input0_guard(input0);
Tensor::MappingGuard input1_guard(input1);
Tensor::MappingGuard output_guard(output);
const T *input0_ptr = input0->data<T>();
const T *input1_ptr = input1->data<T>();
T *output_ptr = output->mutable_data<T>();
const index_t size0 = input0->size();
const index_t size1 = input1->size();
const index_t num = size0 / size1;
switch (type_) {
case PROD:
#pragma omp parallel for collapse(2)
for (index_t i = 0; i < num; ++i) {
for (index_t j= 0; j < size1; ++j) {
output_ptr[i * size1 + j] =
input0_ptr[i * size1 + j] * input1_ptr[j];
}
}
break;
case SUM:
if (coeff_.empty()) {
#pragma omp parallel for collapse(2)
for (index_t i = 0; i < num; ++i) {
for (index_t j = 0; j < size1; ++j) {
output_ptr[i * size1 + j] =
input0_ptr[i * size1 + j] + input1_ptr[j];
}
}
} else {
const float coeff_0 = swap ? coeff_[1] : coeff_[0];
const float coeff_1 = swap ? coeff_[0] : coeff_[1];
#pragma omp parallel for collapse(2)
for (index_t i = 0; i < num; ++i) {
for (index_t j = 0; j < size1; ++j) {
output_ptr[i * size1 + j] =
coeff_0 * input0_ptr[i * size1 + j] +
coeff_1 * input1_ptr[j];
}
}
}
break;
case MAX:
#pragma omp parallel for collapse(2)
for (index_t i = 0; i < num; ++i) {
for (index_t j = 0; j < size1; ++j) {
output_ptr[i * size1 + j] =
std::max<T>(input0_ptr[i * size1 + j], input1_ptr[j]);
}
}
break;
case MIN:
#pragma omp parallel for collapse(2)
for (index_t i = 0; i < num; ++i) {
for (index_t j = 0; j < size1; ++j) {
output_ptr[i * size1 + j] =
std::min<T>(input0_ptr[i * size1 + j], input1_ptr[j]);
}
}
break;
case SUB:
#pragma omp parallel for collapse(2)
for (index_t i = 0; i < num; ++i) {
for (index_t j = 0; j < size1; ++j) {
output_ptr[i * size1 + j] = swap ?
input0_ptr[i * size1 + j] - input1_ptr[j] :
input1_ptr[j] - input0_ptr[i * size1 + j];
}
}
break;
case DIV:
#pragma omp parallel for collapse(2)
for (index_t i = 0; i < num; ++i) {
for (index_t j = 0; j < size1; ++j) {
if (!swap) {
MACE_CHECK(fabs(input1_ptr[j]) > 1e-6, "cannot divided by 0.");
output_ptr[i * size1 + j] =
input0_ptr[i * size1 + j] / input1_ptr[j];
} else {
MACE_CHECK(fabs(input0_ptr[i * size1 + j]) > 1e-6,
"cannot divided by 0.");
output_ptr[i * size1 + j] =
input1_ptr[j] / input0_ptr[i * size1 + j];
}
}
}
break;
case SQR_DIFF:
#pragma omp parallel for collapse(2)
for (index_t i = 0; i < num; ++i) {
for (index_t j = 0; j < size1; ++j) {
const T tmp = input0_ptr[i * size1 + j] - input1_ptr[j];
output_ptr[i * size1 + j] = tmp * tmp;
}
}
break;
default:
LOG(FATAL) << "Eltwise op not support type " << type_;
}
}
}
};
template <typename T>
struct EltwiseFunctor<DeviceType::OPENCL, T> : EltwiseFunctorBase {
EltwiseFunctor(const EltwiseType type, const std::vector<float> &coeff)
EltwiseFunctor(const EltwiseType type,
const std::vector<float> &coeff)
: EltwiseFunctorBase(type, coeff) {}
void operator()(const Tensor *input0,
const Tensor *input1,
const index_t start_axis,
const bool is_scaler,
const float value,
const bool swap,
Tensor *output,
StatsFuture *future);
......
......@@ -31,7 +31,14 @@ __kernel void cwise(KERNEL_ERROR_PARAMS
#elif CWISE_TYPE == 4
out = in0 - in1;
#elif CWISE_TYPE == 5
out = in0 / in1;
if (fabs(in1.x) > 0.000001f)
out.x = in0.x / in1.x;
if (fabs(in1.y) > 0.000001f)
out.y = in0.y / in1.y;
if (fabs(in1.z) > 0.000001f)
out.z = in0.z / in1.z;
if (fabs(in1.w) > 0.000001f)
out.w = in0.w / in1.w;
#elif CWISE_TYPE == 6
in1 = (DATA_TYPE4)(0, 0, 0, 0);
out = in1 - in0;
......
#include <common.h>
__kernel void eltwise(KERNEL_ERROR_PARAMS
GLOBAL_WORK_GROUP_SIZE_DIM2
__read_only image2d_t input0, /* [c%4 * w * c/4, h * b] */
GLOBAL_WORK_GROUP_SIZE_DIM3
__read_only image2d_t input0,
__read_only image2d_t input1,
__private const float value,
__private const int height,
__private const int width,
__private const int channel,
#ifdef COEFF_SUM
__private const float coeff0,
__private const float coeff1,
#endif
__write_only image2d_t output) {
const int w = get_global_id(0);
const int hb = get_global_id(1);
const int c = get_global_id(0);
const int w = get_global_id(1);
const int hb = get_global_id(2);
#ifndef NON_UNIFORM_WORK_GROUP
if (w >= global_size_dim0 || hb >= global_size_dim1) return;
if (c >= global_size_dim0 || w >= global_size_dim1 || hb >= global_size_dim2)
return;
#endif
DATA_TYPE4 in0 = READ_IMAGET(input0, SAMPLER, (int2)(w, hb));
DATA_TYPE4 in1 = READ_IMAGET(input1, SAMPLER, (int2)(w, hb));
int pos_w;
int pos_h;
#if START_AXIS == 0
pos_w = mad24(c, width, w);
pos_h = hb;
#elif START_AXIS == 1
pos_w = mad24(c, width, w);
pos_h = hb % height;
#elif START_AXIS == 2
pos_w = mad24(c, width, w);
pos_h = 0;
#elif START_AXIS == 3
pos_w = c;
pos_h = 0;
#endif
const int pos = mad24(c, width, w);
const int remain_channel = channel - 4 * c;
DATA_TYPE4 in0 = READ_IMAGET(input0, SAMPLER, (int2)(pos, hb));
DATA_TYPE4 in1 ;
#if IS_SCALER == 1
in1 = (DATA_TYPE4){value, value, value, value};
#else
in1 = READ_IMAGET(input1, SAMPLER, (int2)(pos_w, pos_h));
#endif
DATA_TYPE4 out;
#if ELTWISE_TYPE == 0
out = in0 * in1;
#elif ELTWISE_TYPE == 1
#ifdef COEFF_SUM
out = mad(coeff0, in0, mad(coeff1, in1, 0));
#if NEEDSWAP == 0
out = mad(coeff0, in0, mad(coeff1, in1, 0));
#else
out = mad(coeff1, in0, mad(coeff0, in1, 0));
#endif
#else
out = in0 + in1;
#endif
......@@ -34,8 +66,49 @@ __kernel void eltwise(KERNEL_ERROR_PARAMS
#elif ELTWISE_TYPE == 3
out = fmin(in0, in1);
#elif ELTWISE_TYPE == 4
out = in0 - in1;
#if NEED_SWAP == 0
out = in0 - in1;
#else
out = in1 - in0;
#endif
#elif ELTWISE_TYPE == 5
#if NEED_SWAP == 0
if (fabs(in1.x) > 0.000001f)
out.x = in0.x / in1.x;
if (fabs(in1.y) > 0.000001f)
out.y = in0.y / in1.y;
if (fabs(in1.z) > 0.000001f)
out.z = in0.z / in1.z;
if (fabs(in1.w) > 0.000001f)
out.w = in0.w / in1.w;
#else
if (fabs(in1.x) > 0.000001f)
out.x = in1.x / in0.x;
if (fabs(in1.y) > 0.000001f)
out.y = in1.y / in0.y;
if (fabs(in1.z) > 0.000001f)
out.z = in1.z / in0.z;
if (fabs(in1.w) > 0.000001f)
out.w = in1.w / in0.w;
#endif
#elif ELTWISE_TYPE == 8
DATA_TYPE4 diff = in0 - in1;
out = diff * diff;
#endif
#if ELTWISE_TYPE == 1 || ELTWISE_TYPE == 2 || ELTWISE_TYPE == 3 \
|| ELTWISE_TYPE == 4 || ELTWISE_TYPE == 8
if (remain_channel < 4) {
switch (remain_channel) {
case 1:
out.y = 0;
case 2:
out.z = 0;
case 3:
out.w = 0;
}
}
#endif
WRITE_IMAGET(output, (int2)(w, hb), out);
WRITE_IMAGET(output, (int2)(pos, hb), out);
}
......@@ -23,6 +23,10 @@ namespace kernels {
template <typename T>
void EltwiseFunctor<DeviceType::OPENCL, T>::operator()(const Tensor *input0,
const Tensor *input1,
const index_t start_axis,
const bool is_scaler,
const float value,
const bool swap,
Tensor *output,
StatsFuture *future) {
const index_t batch = input0->dim(0);
......@@ -31,14 +35,15 @@ void EltwiseFunctor<DeviceType::OPENCL, T>::operator()(const Tensor *input0,
const index_t channels = input0->dim(3);
const index_t channel_blocks = RoundUpDiv4(channels);
const index_t width_pixels = channel_blocks * width;
const index_t batch_height_pixels = batch * height;
const uint32_t gws[2] = {static_cast<uint32_t>(width_pixels),
const uint32_t gws[3] = {static_cast<uint32_t>(channel_blocks),
static_cast<uint32_t>(width),
static_cast<uint32_t>(batch_height_pixels)};
const int scaler = is_scaler ? 1 : 0;
const int need_swap = swap ? 1 : 0;
auto runtime = OpenCLRuntime::Global();
if (kernel_.get() == nullptr) {
std::set<std::string> built_options;
auto dt = DataTypeToEnum<T>::value;
......@@ -47,6 +52,9 @@ void EltwiseFunctor<DeviceType::OPENCL, T>::operator()(const Tensor *input0,
built_options.emplace("-DDATA_TYPE=" + DtToUpstreamCLDt(dt));
built_options.emplace("-DCMD_DATA_TYPE=" + DtToUpstreamCLCMDDt(dt));
built_options.emplace(MakeString("-DELTWISE_TYPE=", type_));
built_options.emplace(MakeString("-DSTART_AXIS=", start_axis));
built_options.emplace(MakeString("-DIS_SCALER=", scaler));
built_options.emplace(MakeString("-DNEEDSWAP=", need_swap));
if (runtime->IsOutOfRangeCheckEnabled()) {
built_options.emplace("-DOUT_OF_RANGE_CHECK");
kernel_error_ = std::move(std::unique_ptr<Buffer>(
......@@ -73,9 +81,14 @@ void EltwiseFunctor<DeviceType::OPENCL, T>::operator()(const Tensor *input0,
if (!runtime->IsNonUniformWorkgroupsSupported()) {
kernel_.setArg(idx++, gws[0]);
kernel_.setArg(idx++, gws[1]);
kernel_.setArg(idx++, gws[2]);
}
kernel_.setArg(idx++, *(input0->opencl_image()));
kernel_.setArg(idx++, *(input1->opencl_image()));
kernel_.setArg(idx++, value);
kernel_.setArg(idx++, static_cast<int32_t>(height));
kernel_.setArg(idx++, static_cast<int32_t>(width));
kernel_.setArg(idx++, static_cast<int32_t>(channels));
if (!coeff_.empty()) {
kernel_.setArg(idx++, coeff_[0]);
kernel_.setArg(idx++, coeff_[1]);
......@@ -85,11 +98,11 @@ void EltwiseFunctor<DeviceType::OPENCL, T>::operator()(const Tensor *input0,
input_shape_ = input0->shape();
}
const std::vector<uint32_t> lws = {kwg_size_ / 16, 16, 0};
const std::vector<uint32_t> lws = {8, kwg_size_ / 64, 8, 0};
std::stringstream ss;
ss << "eltwise_opencl_kernel_" << output->dim(0) << "_" << output->dim(1)
<< "_" << output->dim(2) << "_" << output->dim(3);
TuningOrRun2DKernel(kernel_, ss.str(), gws, lws, future);
TuningOrRun3DKernel(kernel_, ss.str(), gws, lws, future);
if (runtime->IsOutOfRangeCheckEnabled()) {
kernel_error_->Map(nullptr);
char *kerror_code = kernel_error_->mutable_data<char>();
......
......@@ -32,24 +32,53 @@ class EltwiseOp : public Operator<D, T> {
OperatorBase::GetRepeatedArgument<float>("coeff")) {}
bool Run(StatsFuture *future) override {
const Tensor *input0 = this->Input(0);
const Tensor *input1 = this->Input(1);
Tensor *output = this->Output(OUTPUT);
MACE_CHECK(input0->dim_size() == input1->dim_size())
if (this->InputSize() == 1) {
const Tensor* input = this->Input(0);
Tensor *output = this->Output(OUTPUT);
start_axis_ = input->dim_size() - 1;
is_scaler_ = true;
output->ResizeLike(input);
const float x = OperatorBase::GetSingleArgument<float>("x", 1.0);
functor_(input, nullptr, start_axis_,
is_scaler_, x, false, output, future);
} else {
const index_t size0 = this->Input(0)->size();
const index_t size1 = this->Input(1)->size();
const bool swap = (size0 < size1);
const Tensor *input0 = swap ? this->Input(1) : this->Input(0);
const Tensor *input1 = swap ? this->Input(0) : this->Input(1);
Tensor *output = this->Output(OUTPUT);
MACE_CHECK(input0->dim_size() == input1->dim_size())
<< "Inputs of Eltwise op must be same shape";
for (int i = 0; i < input0->dim_size(); ++i) {
MACE_CHECK(input0->dim(i) == input1->dim(i))
<< "Inputs of Eltwise op must be same shape";
start_axis_ = input0->dim_size() - 1;
is_scaler_ = (input1->size() == 1);
uint32_t compared_size = 1;
if (!is_scaler_) {
while (start_axis_ >= 0) {
MACE_CHECK(input0->dim(start_axis_) == input1->dim(start_axis_),
"Invalid inputs dimension at axis: ") << start_axis_
<< "input 0: " << input0->dim(start_axis_)
<< "input 1: " << input1->dim(start_axis_);
compared_size *= input1->dim(start_axis_);
if (compared_size == input1->size()) {
break;
}
start_axis_--;
}
}
output->ResizeLike(input0);
const float x = OperatorBase::GetSingleArgument<float>("x", 1.0);
functor_(input0, input1, start_axis_,
is_scaler_, x, swap, output, future);
}
output->ResizeLike(input0);
functor_(input0, input1, output, future);
return true;
}
private:
kernels::EltwiseFunctor<D, T> functor_;
index_t start_axis_;
bool is_scaler_;
private:
OP_OUTPUT_TAGS(OUTPUT);
......
......@@ -25,23 +25,26 @@ class EltwiseOpTest : public OpsTestBase {};
namespace {
template <DeviceType D>
void Simple(const kernels::EltwiseType type,
const std::vector<index_t> &shape,
const std::vector<index_t> &shape0,
const std::vector<index_t> &shape1,
const std::vector<float> &input0,
const std::vector<float> &input1,
const std::vector<float> &output,
const float x = 1.f,
const std::vector<float> coeff = {}) {
// Construct graph
OpsTestNet net;
// Add input data
net.AddInputFromArray<D, float>("Input1", shape, input0);
net.AddInputFromArray<D, float>("Input2", shape, input1);
net.AddInputFromArray<D, float>("Input1", shape0, input0);
net.AddInputFromArray<D, float>("Input2", shape1, input1);
if (D == DeviceType::CPU) {
OpDefBuilder("Eltwise", "EltwiseTest")
.Input("Input1")
.Input("Input2")
.AddIntArg("type", static_cast<int>(type))
.AddFloatArg("x", x)
.AddFloatsArg("coeff", coeff)
.Output("Output")
.Finalize(net.NewOperatorDef());
......@@ -57,6 +60,7 @@ void Simple(const kernels::EltwiseType type,
.Input("InputImg1")
.Input("InputImg2")
.AddIntArg("type", static_cast<int>(type))
.AddFloatArg("x", x)
.AddFloatsArg("coeff", coeff)
.Output("OutputImg")
.Finalize(net.NewOperatorDef());
......@@ -68,7 +72,7 @@ void Simple(const kernels::EltwiseType type,
kernels::BufferType::IN_OUT_CHANNEL);
}
auto expected = CreateTensor<float>(shape, output);
auto expected = CreateTensor<float>(shape0, output);
ExpectTensorNear<float>(*expected, *net.GetOutput("Output"), 1e-5);
}
......@@ -76,53 +80,200 @@ void Simple(const kernels::EltwiseType type,
TEST_F(EltwiseOpTest, CPUSimple) {
Simple<DeviceType::CPU>(kernels::EltwiseType::PROD, {1, 1, 2, 3},
{1, 1, 2, 3},
{1, 2, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6},
{1, 4, 9, 16, 25, 36});
Simple<DeviceType::CPU>(kernels::EltwiseType::SUM, {1, 1, 2, 3},
{1, 1, 2, 3},
{1, 2, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6},
{2, 4, 6, 8, 10, 12});
Simple<DeviceType::CPU>(kernels::EltwiseType::SUM, {1, 1, 2, 3},
{1, 1, 2, 3},
{1, 2, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6},
{3, 6, 9, 12, 15, 18}, {2, 1});
{3, 6, 9, 12, 15, 18}, 1., {2, 1});
Simple<DeviceType::CPU>(kernels::EltwiseType::MAX, {1, 1, 2, 3},
{1, 1, 2, 3},
{1, 2, 3, 4, 5, 6}, {1, 1, 3, 3, 6, 6},
{1, 2, 3, 4, 6, 6});
Simple<DeviceType::CPU>(kernels::EltwiseType::MIN, {1, 1, 2, 3},
{1, 1, 2, 3},
{1, 2, 3, 4, 5, 6}, {1, 1, 3, 3, 6, 6},
{1, 1, 3, 3, 5, 6});
Simple<DeviceType::CPU>(kernels::EltwiseType::SQR_DIFF, {1, 1, 2, 3},
{1, 1, 2, 3},
{1, 2, 3, 4, 5, 6}, {1, 1, 3, 3, 6, 6},
{0, 1, 0, 1, 1, 0});
Simple<DeviceType::CPU>(kernels::EltwiseType::DIV, {1, 1, 2, 3},
{1, 1, 2, 3},
{1, 2, 3, 4, 5, 6}, {1, 1, 3, 2, 10, 24},
{1, 2, 1, 2, 0.5, 0.25});
Simple<DeviceType::CPU>(kernels::EltwiseType::PROD, {1, 1, 2, 3},
{1, 1, 1, 3},
{1, 2, 3, 4, 5, 6}, {1, 2, 3},
{1, 4, 9, 4, 10, 18});
Simple<DeviceType::CPU>(kernels::EltwiseType::SUM, {1, 1, 2, 3},
{1, 1, 1, 3},
{1, 2, 3, 4, 5, 6}, {1, 2, 3},
{2, 4, 6, 5, 7, 9});
Simple<DeviceType::CPU>(kernels::EltwiseType::SUM, {1, 1, 2, 3},
{1, 1, 1, 3},
{1, 2, 3, 4, 5, 6}, {1, 2, 3},
{3, 6, 9, 9, 12, 15}, 1., {2, 1});
Simple<DeviceType::CPU>(kernels::EltwiseType::MAX, {1, 1, 2, 3},
{1, 1, 1, 3},
{1, 2, 3, 4, 5, 6}, {1, 1, 3},
{1, 2, 3, 4, 5, 6});
Simple<DeviceType::CPU>(kernels::EltwiseType::MIN, {1, 1, 2, 3},
{1, 1, 1, 3},
{1, 2, 3, 4, 5, 6}, {1, 1, 3},
{1, 1, 3, 1, 1, 3});
Simple<DeviceType::CPU>(kernels::EltwiseType::SQR_DIFF, {1, 1, 2, 3},
{1, 1, 1, 3},
{1, 2, 3, 4, 5, 6}, {1, 1, 3},
{0, 1, 0, 9, 16, 9});
Simple<DeviceType::CPU>(kernels::EltwiseType::DIV, {1, 1, 2, 3},
{1, 1, 1, 3},
{1, 2, 3, 4, 5, 6}, {1, 1, 3},
{1, 2, 1, 4, 5, 2});
Simple<DeviceType::CPU>(kernels::EltwiseType::PROD, {1, 1, 2, 3},
{1, 1, 1, 1},
{1, 2, 3, 4, 5, 6}, {2},
{2, 4, 6, 8, 10, 12}, 2);
Simple<DeviceType::CPU>(kernels::EltwiseType::SUM, {1, 1, 2, 3},
{1, 1, 1, 1},
{1, 2, 3, 4, 5, 6}, {2},
{3, 4, 5, 6, 7, 8}, 2);
Simple<DeviceType::CPU>(kernels::EltwiseType::SUM, {1, 1, 2, 3},
{1, 1, 1, 1},
{1, 2, 3, 4, 5, 6}, {2},
{4, 6, 8, 10, 12, 14}, 2, {2, 1});
Simple<DeviceType::CPU>(kernels::EltwiseType::MAX, {1, 1, 2, 3},
{1, 1, 1, 1},
{1, 2, 3, 4, 5, 6}, {3},
{3, 3, 3, 4, 5, 6}, 3);
Simple<DeviceType::CPU>(kernels::EltwiseType::MIN, {1, 1, 2, 3},
{1, 1, 1, 1},
{1, 2, 3, 4, 5, 6}, {3},
{1, 2, 3, 3, 3, 3}, 3);
Simple<DeviceType::CPU>(kernels::EltwiseType::DIV, {1, 1, 2, 3},
{1, 1, 1, 1},
{1, 2, 3, 4, 5, 6}, {0.5},
{2, 4, 6, 8, 10, 12}, 0.5);
Simple<DeviceType::CPU>(kernels::EltwiseType::SQR_DIFF, {1, 1, 2, 3},
{1, 1, 1, 1},
{1, 2, 3, 4, 5, 6}, {3},
{4, 1, 0, 1, 4, 9}, 3);
}
TEST_F(EltwiseOpTest, GPUSimple) {
Simple<DeviceType::OPENCL>(kernels::EltwiseType::PROD, {1, 1, 2, 3},
{1, 2, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6},
{1, 4, 9, 16, 25, 36});
{1, 1, 2, 3},
{1, 2, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6},
{1, 4, 9, 16, 25, 36});
Simple<DeviceType::OPENCL>(kernels::EltwiseType::SUM, {1, 1, 2, 3},
{1, 1, 2, 3},
{1, 2, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6},
{2, 4, 6, 8, 10, 12});
Simple<DeviceType::OPENCL>(kernels::EltwiseType::SUM, {1, 1, 2, 3},
{1, 1, 2, 3},
{1, 2, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6},
{3, 6, 9, 12, 15, 18}, 1., {2, 1});
Simple<DeviceType::OPENCL>(kernels::EltwiseType::MAX, {1, 1, 2, 3},
{1, 1, 2, 3},
{1, 2, 3, 4, 5, 6}, {1, 1, 3, 3, 6, 6},
{1, 2, 3, 4, 6, 6});
Simple<DeviceType::OPENCL>(kernels::EltwiseType::MIN, {1, 1, 2, 3},
{1, 1, 2, 3},
{1, 2, 3, 4, 5, 6}, {1, 1, 3, 3, 6, 6},
{1, 1, 3, 3, 5, 6});
Simple<DeviceType::OPENCL>(kernels::EltwiseType::DIV, {1, 1, 2, 3},
{1, 1, 2, 3},
{1, 2, 3, 4, 5, 6}, {1, 1, 3, 2, 10, 24},
{1, 2, 1, 2, 0.5, 0.25});
Simple<DeviceType::OPENCL>(kernels::EltwiseType::SQR_DIFF, {1, 1, 2, 3},
{1, 1, 2, 3},
{1, 2, 3, 4, 5, 6}, {1, 1, 3, 3, 6, 6},
{0, 1, 0, 1, 1, 0});
Simple<DeviceType::OPENCL>(kernels::EltwiseType::PROD, {1, 1, 2, 3},
{1, 1, 1, 3},
{1, 2, 3, 4, 5, 6}, {1, 2, 3},
{1, 4, 9, 4, 10, 18});
Simple<DeviceType::OPENCL>(kernels::EltwiseType::SUM, {1, 1, 2, 3},
{1, 2, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6},
{2, 4, 6, 8, 10, 12});
{1, 1, 1, 3},
{1, 2, 3, 4, 5, 6}, {1, 2, 3},
{2, 4, 6, 5, 7, 9});
Simple<DeviceType::OPENCL>(kernels::EltwiseType::SUM, {1, 1, 2, 3},
{1, 2, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6},
{3, 6, 9, 12, 15, 18}, {2, 1});
{1, 1, 1, 3},
{1, 2, 3, 4, 5, 6}, {1, 2, 3},
{3, 6, 9, 9, 12, 15}, 1., {2, 1});
Simple<DeviceType::OPENCL>(kernels::EltwiseType::MAX, {1, 1, 2, 3},
{1, 2, 3, 4, 5, 6}, {1, 1, 3, 3, 6, 6},
{1, 2, 3, 4, 6, 6});
{1, 1, 1, 3},
{1, 2, 3, 4, 5, 6}, {1, 1, 3},
{1, 2, 3, 4, 5, 6});
Simple<DeviceType::OPENCL>(kernels::EltwiseType::MIN, {1, 1, 2, 3},
{1, 2, 3, 4, 5, 6}, {1, 1, 3, 3, 6, 6},
{1, 1, 3, 3, 5, 6});
{1, 1, 1, 3},
{1, 2, 3, 4, 5, 6}, {1, 1, 3},
{1, 1, 3, 1, 1, 3});
Simple<DeviceType::OPENCL>(kernels::EltwiseType::SQR_DIFF, {1, 1, 2, 3},
{1, 1, 1, 3},
{1, 2, 3, 4, 5, 6}, {1, 1, 3},
{0, 1, 0, 9, 16, 9});
Simple<DeviceType::OPENCL>(kernels::EltwiseType::DIV, {1, 1, 2, 3},
{1, 1, 1, 3},
{1, 2, 3, 4, 5, 6}, {1, 1, 3},
{1, 2, 1, 4, 5, 2});
Simple<DeviceType::OPENCL>(kernels::EltwiseType::PROD, {1, 1, 2, 3},
{1, 1, 1, 1},
{1, 2, 3, 4, 5, 6}, {2},
{2, 4, 6, 8, 10, 12}, 2);
Simple<DeviceType::OPENCL>(kernels::EltwiseType::SUM, {1, 1, 2, 3},
{1, 1, 1, 1},
{1, 2, 3, 4, 5, 6}, {2},
{3, 4, 5, 6, 7, 8}, 2);
Simple<DeviceType::OPENCL>(kernels::EltwiseType::SUM, {1, 1, 2, 3},
{1, 1, 1, 1},
{1, 2, 3, 4, 5, 6}, {2},
{4, 6, 8, 10, 12, 14}, 2, {2, 1});
Simple<DeviceType::OPENCL>(kernels::EltwiseType::MAX, {1, 1, 2, 3},
{1, 1, 1, 1},
{1, 2, 3, 4, 5, 6}, {3},
{3, 3, 3, 4, 5, 6}, 3);
Simple<DeviceType::OPENCL>(kernels::EltwiseType::MIN, {1, 1, 2, 3},
{1, 1, 1, 1},
{1, 2, 3, 4, 5, 6}, {3},
{1, 2, 3, 3, 3, 3}, 3);
Simple<DeviceType::OPENCL>(kernels::EltwiseType::SQR_DIFF, {1, 1, 2, 3},
{1, 1, 1, 1},
{1, 2, 3, 4, 5, 6}, {3},
{4, 1, 0, 1, 4, 9}, 3);
Simple<DeviceType::OPENCL>(kernels::EltwiseType::DIV, {1, 1, 2, 3},
{1, 1, 1, 1},
{1, 2, 3, 4, 5, 6}, {0.5},
{2, 4, 6, 8, 10, 12}, 0.5);
}
namespace {
template <DeviceType D, typename T>
void RandomTest(const kernels::EltwiseType type,
const std::vector<index_t> &shape) {
const std::vector<index_t> &shape1,
const std::vector<index_t> &shape2) {
testing::internal::LogToStderr();
srand(time(NULL));
// Construct graph
OpsTestNet net;
bool is_divide = (type == kernels::EltwiseType::DIV);
// Add input data
net.AddRandomInput<D, float>("Input1", shape);
net.AddRandomInput<D, float>("Input2", shape);
net.AddRandomInput<D, float>("Input1", shape1, true, is_divide);
net.AddRandomInput<D, float>("Input2", shape2, true, is_divide);
OpDefBuilder("Eltwise", "EltwiseTest")
.Input("Input1")
......@@ -166,24 +317,110 @@ void RandomTest(const kernels::EltwiseType type,
TEST_F(EltwiseOpTest, OPENCLRandomFloat) {
RandomTest<DeviceType::OPENCL, float>(kernels::EltwiseType::PROD,
{3, 23, 37, 19},
{3, 23, 37, 19});
RandomTest<DeviceType::OPENCL, float>(kernels::EltwiseType::SUM,
{13, 32, 32, 64},
{13, 32, 32, 64});
RandomTest<DeviceType::OPENCL, float>(kernels::EltwiseType::MAX,
{3, 32, 32, 64},
{3, 32, 32, 64});
RandomTest<DeviceType::OPENCL, float>(kernels::EltwiseType::MIN,
{13, 32, 32, 64},
{13, 32, 32, 64});
RandomTest<DeviceType::OPENCL, float>(kernels::EltwiseType::DIV,
{13, 32, 32, 64},
{13, 32, 32, 64});
RandomTest<DeviceType::OPENCL, float>(kernels::EltwiseType::SQR_DIFF,
{13, 32, 32, 64},
{13, 32, 32, 64});
RandomTest<DeviceType::OPENCL, float>(kernels::EltwiseType::PROD,
{3, 23, 37, 19},
{1, 1, 37, 19});
RandomTest<DeviceType::OPENCL, float>(kernels::EltwiseType::SUM,
{13, 32, 32, 64},
{1, 1, 32, 64});
RandomTest<DeviceType::OPENCL, float>(kernels::EltwiseType::MAX,
{3, 32, 32, 64},
{1, 1, 32, 64});
RandomTest<DeviceType::OPENCL, float>(kernels::EltwiseType::MIN,
{13, 32, 32, 64},
{1, 1, 32, 64});
RandomTest<DeviceType::OPENCL, float>(kernels::EltwiseType::DIV,
{13, 32, 32, 63},
{1, 1, 32, 63});
RandomTest<DeviceType::OPENCL, float>(kernels::EltwiseType::SQR_DIFF,
{13, 32, 32, 64},
{1, 1, 32, 64});
RandomTest<DeviceType::OPENCL, float>(kernels::EltwiseType::PROD,
{3, 23, 37, 19},
{1, 1, 1, 19});
RandomTest<DeviceType::OPENCL, float>(kernels::EltwiseType::SUM,
{13, 32, 32, 64},
{1, 1, 1, 64});
RandomTest<DeviceType::OPENCL, float>(kernels::EltwiseType::MAX,
{3, 32, 32, 64},
{1, 1, 1, 64});
RandomTest<DeviceType::OPENCL, float>(kernels::EltwiseType::MIN,
{13, 32, 32, 64},
{1, 1, 1, 64});
RandomTest<DeviceType::OPENCL, float>(kernels::EltwiseType::DIV,
{13, 32, 32, 64},
{1, 1, 1, 64});
RandomTest<DeviceType::OPENCL, float>(kernels::EltwiseType::SQR_DIFF,
{13, 32, 32, 64},
{1, 1, 1, 64});
}
TEST_F(EltwiseOpTest, OPENCLRandomHalf) {
RandomTest<DeviceType::OPENCL, half>(kernels::EltwiseType::PROD,
{3, 23, 37, 19},
{3, 23, 37, 19});
RandomTest<DeviceType::OPENCL, half>(kernels::EltwiseType::PROD,
{3, 23, 37, 19},
{1, 23, 37, 19});
RandomTest<DeviceType::OPENCL, half>(kernels::EltwiseType::PROD,
{3, 23, 37, 19},
{1, 1, 37, 19});
RandomTest<DeviceType::OPENCL, half>(kernels::EltwiseType::PROD,
{3, 23, 37, 19},
{1, 1, 1, 19});
RandomTest<DeviceType::OPENCL, half>(kernels::EltwiseType::SUM,
{13, 32, 32, 64});
{13, 32, 32, 64},
{1, 1, 1, 1});
RandomTest<DeviceType::OPENCL, half>(kernels::EltwiseType::SUM,
{13, 32, 32, 64},
{1, 1, 1, 64});
RandomTest<DeviceType::OPENCL, half>(kernels::EltwiseType::SUM,
{13, 32, 32, 64},
{1, 1, 32, 64});
RandomTest<DeviceType::OPENCL, half>(kernels::EltwiseType::MAX,
{3, 32, 32, 64},
{3, 32, 32, 64});
RandomTest<DeviceType::OPENCL, half>(kernels::EltwiseType::MAX,
{3, 32, 32, 64},
{1, 1, 32, 64});
RandomTest<DeviceType::OPENCL, half>(kernels::EltwiseType::MIN,
{13, 32, 32, 64},
{13, 32, 32, 64});
RandomTest<DeviceType::OPENCL, half>(kernels::EltwiseType::SQR_DIFF,
{13, 32, 32, 64},
{13, 32, 32, 64});
RandomTest<DeviceType::OPENCL, half>(kernels::EltwiseType::SQR_DIFF,
{13, 32, 32, 64},
{1, 1, 1, 64});
RandomTest<DeviceType::OPENCL, half>(kernels::EltwiseType::SQR_DIFF,
{13, 32, 32, 64},
{1, 1, 32, 64});
RandomTest<DeviceType::OPENCL, half>(kernels::EltwiseType::DIV,
{13, 32, 32, 64},
{13, 32, 32, 64});
RandomTest<DeviceType::OPENCL, half>(kernels::EltwiseType::DIV,
{13, 32, 32, 64},
{1, 1, 1, 64});
RandomTest<DeviceType::OPENCL, half>(kernels::EltwiseType::DIV,
{13, 32, 32, 64},
{1, 1, 32, 64});
}
} // namespace test
......
......@@ -150,7 +150,8 @@ class OpsTestNet {
template<DeviceType D, typename T>
void AddRandomInput(const std::string &name,
const std::vector<index_t> &shape,
bool positive = true) {
bool positive = true,
bool truncate = false) {
Tensor *input =
ws_.CreateTensor(name, GetDeviceAllocator(D), DataTypeToEnum<T>::v());
input->Resize(shape);
......@@ -162,14 +163,24 @@ class OpsTestNet {
std::normal_distribution<float> nd(0, 1);
if (DataTypeToEnum<T>::value == DT_HALF) {
std::generate(
input_data, input_data + input->size(), [&gen, &nd, positive] {
return half_float::half_cast<half>(positive ? std::abs(nd(gen))
: nd(gen));
input_data, input_data + input->size(),
[&gen, &nd, positive, truncate] {
float d = nd(gen);
if (truncate) {
if (std::abs(d) > 100.f) d = 100.f;
if (std::abs(d) < 0.001f) d = 0.001f;
}
return half_float::half_cast<half>(positive ?std::abs(d) : d);
});
} else {
std::generate(input_data, input_data + input->size(),
[&gen, &nd, positive] {
return positive ? std::abs(nd(gen)) : nd(gen);
[&gen, &nd, positive, truncate] {
float d = nd(gen);
if (truncate) {
if (std::abs(d) > 100.f) d = 100.f;
if (std::abs(d) < 0.001f) d = 0.001f;
}
return (positive ?std::abs(d) : d);
});
}
}
......
......@@ -835,31 +835,19 @@ class TFConverter(object):
arg.name = 'T'
arg.i = self.dt
op_def.name = op.name
if len(op.inputs) == 1:
op_def.type = "CWise"
op_def.input.extend([input.name for input in op.inputs])
x_arg = op_def.arg.add()
x_arg.name = 'x'
x_arg.f = 0
elif len(op.inputs) >= 2:
op_def.type = "Eltwise"
op_def.input.extend([input.name for input in op.inputs])
x_value = op.get_attr('x')
if len(op.inputs) >= 2:
input_tensor0 = get_input_tensor(op, 0)
input_tensor1 = get_input_tensor(op, 1)
if input_tensor0.shape == input_tensor1.shape:
op_def.type = "Eltwise"
op_def.input.extend([input.name for input in op.inputs])
else:
op_def.type = "CWise"
x_value = 0
if len(input_tensor1.shape) == 4:
op_def.input.extend([op.inputs[1].name])
x_value = get_input_tensor(op, 0).eval().astype(np.float32)
else:
op_def.input.extend([op.inputs[0].name])
x_value = get_input_tensor(op, 1).eval().astype(np.float32)
x_arg = op_def.arg.add()
x_arg.name = 'x'
x_arg.f = x_value
if len(input_tensor0) == 1:
x_value = input_tensor0.eval().astype(np.float32)
elif len(input_tensor1) == 1:
x_value = input_tensor1.eval().astype(np.float32)
x_arg = op_def.arg.add()
x_arg.name = 'x'
x_arg.f = x_value
type_arg = op_def.arg.add()
type_arg.name = 'type'
type_arg.i = math_type_mode[math_type]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册