Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Xiaomi
Mace
提交
3ea681f3
Mace
项目概览
Xiaomi
/
Mace
通知
106
Star
40
Fork
27
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
Mace
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
3ea681f3
编写于
5月 02, 2018
作者:
李
李寅
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fold batchnorm (scale, offset)
上级
5270b335
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
44 addition
and
47 deletion
+44
-47
mace/python/tools/tf_converter_lib.py
mace/python/tools/tf_converter_lib.py
+44
-47
未找到文件。
mace/python/tools/tf_converter_lib.py
浏览文件 @
3ea681f3
...
...
@@ -75,7 +75,8 @@ def get_input_tensor(op, index):
class
TFConverter
(
object
):
def
__init__
(
self
,
tf_ops
,
net_def
,
dt
,
device
,
winograd
):
def
__init__
(
self
,
graph
,
tf_ops
,
net_def
,
dt
,
device
,
winograd
):
self
.
graph
=
graph
self
.
net_def
=
net_def
self
.
tf_ops
=
tf_ops
self
.
dt
=
dt
...
...
@@ -494,7 +495,12 @@ class TFConverter(object):
self
.
resolved_ops
[
op
.
name
]
=
1
if
len
(
self
.
tf_graph
.
get
(
op
.
name
,
[]))
==
1
and
\
self
.
tf_graph
[
op
.
name
][
0
].
type
==
'BiasAdd'
:
self
.
tf_graph
[
op
.
name
][
0
].
type
==
'BiasAdd'
or
\
(
len
(
self
.
tf_graph
[
op
.
name
])
==
1
and
self
.
tf_graph
[
op
.
name
][
0
].
type
==
'Add'
and
len
(
self
.
tf_graph
[
op
.
name
][
0
].
inputs
)
==
2
and
len
(
self
.
graph
.
get_tensor_by_name
(
self
.
tf_graph
[
op
.
name
][
0
].
inputs
[
1
].
name
).
shape
)
==
1
):
bias_add_op
=
self
.
tf_graph
[
op
.
name
][
0
]
if
self
.
device
==
'gpu'
:
output_name
=
self
.
add_buffer_to_image
(
...
...
@@ -650,61 +656,52 @@ class TFConverter(object):
self
.
net_def
.
op
.
extend
([
op_def
])
def
convert_batchnorm
(
self
,
op
):
bn_ops
=
[]
bn_ops
.
append
(
op
)
for
i
in
range
(
1
,
3
):
if
len
(
self
.
tf_graph
[
bn_ops
[
i
-
1
].
name
])
==
1
and
\
self
.
tf_graph
[
bn_ops
[
i
-
1
].
name
][
0
].
type
==
BATCH_NORM_ORDER
[
i
]:
bn_ops
.
append
(
self
.
tf_graph
[
bn_ops
[
i
-
1
].
name
][
0
])
else
:
raise
Exception
(
'Invalid BatchNorm Op'
)
if
len
(
self
.
tf_graph
[
bn_ops
[
2
].
name
])
==
2
and
\
self
.
tf_graph
[
bn_ops
[
2
].
name
][
0
].
type
==
\
BATCH_NORM_ORDER
[
3
]
and
\
self
.
tf_graph
[
bn_ops
[
2
].
name
][
1
].
type
==
BATCH_NORM_ORDER
[
4
]:
bn_ops
.
append
(
self
.
tf_graph
[
bn_ops
[
2
].
name
][
0
])
bn_ops
.
append
(
self
.
tf_graph
[
bn_ops
[
2
].
name
][
1
])
else
:
raise
Exception
(
'Invalid BatchNorm Op'
)
bn_ops
.
append
(
self
.
tf_graph
[
bn_ops
[
4
].
name
][
0
])
bn_ops
.
append
(
self
.
tf_graph
[
bn_ops
[
3
].
name
][
0
])
op_def
=
mace_pb2
.
OperatorDef
()
arg
=
op_def
.
arg
.
add
()
arg
.
name
=
'T'
arg
.
i
=
self
.
dt
input_name
=
get_input_tensor
(
bn_ops
[
3
],
0
).
name
gamma
=
get_input_tensor
(
bn_ops
[
2
],
1
).
name
beta
=
get_input_tensor
(
bn_ops
[
5
],
0
).
name
mean
=
get_input_tensor
(
bn_ops
[
4
],
0
).
name
variance
=
get_input_tensor
(
bn_ops
[
0
],
0
).
name
op_def
.
name
=
op
.
name
[:
-
4
]
# remove /add
op_def
.
type
=
'BatchNorm'
if
self
.
device
==
'gpu'
:
op_def
.
input
.
extend
([
input_name
])
for
tensor_name
in
[
gamma
,
beta
,
mean
,
variance
]:
output_name
=
self
.
add_buffer_to_image
(
tensor_name
,
"ARGUMENT"
)
op_def
.
input
.
extend
([
output_name
])
else
:
op_def
.
input
.
extend
([
input_name
,
gamma
,
beta
,
mean
,
variance
])
op_def
.
output
.
extend
([
output
.
name
for
output
in
bn_ops
[
6
].
outputs
])
self
.
add_output_shape
(
bn_ops
[
6
].
outputs
,
op_def
)
epsilon_arg
=
op_def
.
arg
.
add
()
epsilon_arg
.
name
=
'epsilon'
epsilon_arg
.
f
=
get_input_tensor
(
op
,
1
).
eval
().
astype
(
np
.
float
)
data_format_arg
=
op_def
.
arg
.
add
()
data_format_arg
.
name
=
'data_format'
if
self
.
device
==
'cpu'
:
data_format_arg
.
s
=
'NCHW'
else
:
data_format_arg
.
s
=
'NHWC'
self
.
unused_tensor
.
add
(
get_input_tensor
(
op
,
1
).
name
)
op_def
.
name
=
op
.
name
op_def
.
type
=
'FoldedBatchNorm'
add_op
=
self
.
tf_graph
[
op
.
name
][
0
]
scale_tensor
=
get_input_tensor
(
op
,
1
)
offset_tensor
=
get_input_tensor
(
add_op
,
1
)
input_names
=
[
scale_tensor
.
name
,
offset_tensor
.
name
]
op_def
.
input
.
extend
([
op
.
inputs
[
0
].
name
])
if
self
.
device
==
'gpu'
:
for
name
in
input_names
:
output_name
=
self
.
add_buffer_to_image
(
name
,
"ARGUMENT"
)
op_def
.
input
.
extend
([
output_name
])
else
:
op_def
.
input
.
extend
([
name
for
name
in
input_names
])
self
.
resolved_ops
[
op
.
name
]
=
1
self
.
resolved_ops
[
add_op
.
name
]
=
1
final_op
=
add_op
if
len
(
self
.
tf_graph
[
op
.
name
])
==
1
\
and
self
.
tf_graph
[
op
.
name
][
0
].
type
in
activation_name_map
:
activation_op
=
self
.
tf_graph
[
op
.
name
][
0
]
fused_act_arg
=
op_def
.
arg
.
add
()
fused_act_arg
.
name
=
'activation'
fused_act_arg
.
s
=
activation_name_map
[
activation_op
.
type
]
if
activation_op
.
type
==
'Relu6'
:
max_limit_arg
=
op_def
.
arg
.
add
()
max_limit_arg
.
name
=
'max_limit'
max_limit_arg
.
f
=
6
final_op
=
activation_op
self
.
resolved_ops
[
activation_op
.
name
]
=
1
op_def
.
output
.
extend
([
final_op
.
outputs
[
0
].
name
])
self
.
add_output_shape
([
final_op
.
outputs
[
0
]],
op_def
)
self
.
net_def
.
op
.
extend
([
op_def
])
for
i
in
range
(
0
,
7
):
self
.
resolved_ops
[
bn_ops
[
i
].
name
]
=
1
def
convert_pooling
(
self
,
op
):
op_def
=
self
.
net_def
.
op
.
add
()
...
...
@@ -1155,7 +1152,7 @@ class TFConverter(object):
self
.
convert_conv2d
(
op
)
elif
op
.
type
==
'FusedBatchNorm'
:
self
.
convert_fused_batchnorm
(
op
)
elif
op
.
type
==
'
Add'
and
op
.
name
.
endswith
(
'batchnorm/add'
)
:
elif
op
.
type
==
'
Mul'
and
op
.
name
.
find
(
'batchnorm/mul'
)
!=
-
1
:
self
.
convert_batchnorm
(
op
)
elif
op
.
type
==
'AvgPool'
or
op
.
type
==
'MaxPool'
:
self
.
convert_pooling
(
op
)
...
...
@@ -1382,7 +1379,7 @@ def convert_to_mace_pb(model_file, input_node, input_shape, output_node,
with
session
.
graph
.
as_default
()
as
graph
:
tf
.
import_graph_def
(
input_graph_def
,
name
=
""
)
ops
=
graph
.
get_operations
()
converter
=
TFConverter
(
ops
,
net_def
,
dt
,
device
,
winograd
)
converter
=
TFConverter
(
graph
,
ops
,
net_def
,
dt
,
device
,
winograd
)
converter
.
convert
(
input_nodes
,
output_nodes
)
optimizer
=
Optimizer
(
net_def
,
device
)
net_def
=
optimizer
.
optimize
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录