Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Xiaomi
Mace
提交
3dfc41b8
Mace
项目概览
Xiaomi
/
Mace
通知
107
Star
40
Fork
27
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
Mace
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
3dfc41b8
编写于
7月 08, 2019
作者:
L
liyin
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Disable BN fold if conv weights are shared
上级
b159cb1f
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
9 addition
and
8 deletion
+9
-8
mace/python/tools/converter_tool/transformer.py
mace/python/tools/converter_tool/transformer.py
+9
-8
未找到文件。
mace/python/tools/converter_tool/transformer.py
浏览文件 @
3dfc41b8
...
...
@@ -623,9 +623,9 @@ class Transformer(base_converter.ConverterInterface):
and
self
.
consumer_count
(
op
.
output
[
0
])
==
1
:
consumer_op
=
self
.
_consumers
[
op
.
output
[
0
]][
0
]
input_len
=
len
(
op
.
input
)
if
consumer_op
.
type
==
MaceOp
.
BatchNorm
.
name
and
\
(
input_len
==
2
or
(
input_len
==
3
and
op
.
input
[
-
1
]
in
self
.
_consts
)
):
if
(
consumer_op
.
type
==
MaceOp
.
BatchNorm
.
name
and
(
input_len
==
2
or
(
input_len
==
3
and
op
.
input
[
-
1
]
in
self
.
_consts
))
# noqa
and
len
(
self
.
_consumers
[
op
.
input
[
1
]])
==
1
):
print
(
"Fold conv and bn: %s(%s)"
%
(
op
.
name
,
op
.
type
))
filter
=
self
.
_consts
[
op
.
input
[
1
]]
scale
=
self
.
_consts
[
consumer_op
.
input
[
1
]]
...
...
@@ -678,13 +678,14 @@ class Transformer(base_converter.ConverterInterface):
framework
=
ConverterUtil
.
get_arg
(
op
,
MaceKeyword
.
mace_framework_type_str
).
i
input_len
=
len
(
op
.
input
)
if
consumer_op
.
type
==
MaceOp
.
BatchNorm
.
name
and
(
if
(
consumer_op
.
type
==
MaceOp
.
BatchNorm
.
name
and
(
(
framework
==
FrameworkType
.
CAFFE
.
value
and
(
input_len
==
2
or
(
input_len
==
3
and
op
.
input
[
-
1
]
in
self
.
_consts
)))
or
(
framework
==
FrameworkType
.
TENSORFLOW
.
value
and
(
input_len
==
3
or
(
input_len
==
4
and
op
.
input
[
-
1
]
in
self
.
_consts
)))):
op
.
input
[
-
1
]
in
self
.
_consts
))))
and
len
(
self
.
_consumers
[
op
.
input
[
1
]])
==
1
):
print
(
"Fold deconv and bn: %s(%s)"
%
(
op
.
name
,
op
.
type
))
filter
=
self
.
_consts
[
op
.
input
[
1
]]
scale
=
self
.
_consts
[
consumer_op
.
input
[
1
]]
...
...
@@ -745,9 +746,9 @@ class Transformer(base_converter.ConverterInterface):
and
self
.
consumer_count
(
op
.
output
[
0
])
==
1
:
consumer_op
=
self
.
_consumers
[
op
.
output
[
0
]][
0
]
input_len
=
len
(
op
.
input
)
if
consumer_op
.
type
==
MaceOp
.
BatchNorm
.
name
and
\
(
input_len
==
2
or
(
input_len
==
3
and
op
.
input
[
-
1
]
in
self
.
_consts
)
):
if
(
consumer_op
.
type
==
MaceOp
.
BatchNorm
.
name
and
(
input_len
==
2
or
(
input_len
==
3
and
op
.
input
[
-
1
]
in
self
.
_consts
))
# noqa
and
len
(
self
.
_consumers
[
op
.
input
[
1
]])
==
1
):
print
(
"Fold depthwise conv and bn: %s(%s)"
%
(
op
.
name
,
op
.
type
))
filter
=
self
.
_consts
[
op
.
input
[
1
]]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录