提交 09d712d6 编写于 作者: H hedaoyuan

Remove useless code(Matrix::convExpand and Matrix::convShrink).

上级 5bfcb7f8
......@@ -17,73 +17,6 @@ limitations under the License. */
#include "hl_base.h"
/**
* @brief Shrink column to feature.
*
* @param[in] dataCol expand data.
* @param[in] channels number of channel.
* @param[in] height image height.
* @param[in] width image width.
* @param[in] blockH filter height.
* @param[in] blockW filter width.
* @param[in] strideH stride height.
* @param[in] strideW stride width.
* @param[in] paddingH padding height.
* @param[in] paddingW padding width.
* @param[in] outputH output height.
* @param[in] outputW output width.
* @param[out] dataIm output image data.
* @param[in] alpha
* @param[in] beta
*/
extern void hl_shrink_col2feature(const real* dataCol,
size_t channels,
size_t height,
size_t width,
size_t blockH,
size_t blockW,
size_t strideH,
size_t strideW,
size_t paddingH,
size_t paddingW,
size_t outputH,
size_t outputW,
real* dataIm,
real alpha = 1.0f,
real beta = 0.0f);
/**
* @brief Expand feature to column.
*
* @param[in] dataIm input image data.
* @param[in] channels number of channel.
* @param[in] height image height.
* @param[in] width image width.
* @param[in] blockH filter height.
* @param[in] blockW filter width.
* @param[in] strideH stride height.
* @param[in] strideW stride width.
* @param[in] paddingH padding height.
* @param[in] paddingW padding width.
* @param[in] outputH output height.
* @param[in] outputW output width.
* @param[out] dataCol expand data.
*
*/
extern void hl_expand_feature2col(const real* dataIm,
size_t channels,
size_t height,
size_t width,
size_t blockH,
size_t blockW,
size_t strideH,
size_t strideW,
size_t paddingH,
size_t paddingW,
size_t outputH,
size_t outputW,
real* dataCol);
/**
* @brief Maximum pool forward.
*
......
......@@ -17,36 +17,6 @@ limitations under the License. */
#include "hl_cnn.h"
inline void hl_shrink_col2feature(const real* dataCol,
size_t channels,
size_t height,
size_t width,
size_t blockH,
size_t blockW,
size_t strideH,
size_t strideW,
size_t paddingH,
size_t paddingW,
size_t outputH,
size_t outputW,
real* dataIm,
real alpha,
real beta) {}
inline void hl_expand_feature2col(const real* dataIm,
size_t channels,
size_t height,
size_t width,
size_t blockH,
size_t blockW,
size_t strideH,
size_t strideW,
size_t paddingH,
size_t paddingW,
size_t outputH,
size_t outputW,
real* dataCol) {}
inline void hl_maxpool_forward(const int frameCnt,
const real* inputData,
const int channels,
......
......@@ -18,134 +18,6 @@ limitations under the License. */
#include "hl_cnn.h"
#include "hl_device_functions.cuh"
__global__ void KeFeature2col(size_t n, size_t height, const real* data_im,
size_t blockH, size_t blockW, size_t width,
size_t strideH, size_t strideW,
size_t paddingH, size_t paddingW,
size_t height_col, size_t width_col,
real* data_col) {
size_t index =
(blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
if (index < n) {
size_t w_out = index % width_col;
index /= width_col;
size_t h_out = index % height_col;
size_t channel_in = index / height_col;
size_t channel_out = channel_in * blockH * blockW;
size_t h_in = h_out * strideH;
size_t w_in = w_out * strideW;
data_col += (channel_out * height_col + h_out) * width_col + w_out;
for (size_t i = 0; i < blockH; ++i) {
for (size_t j = 0; j < blockW; ++j) {
int rIdx = int(h_in+i);
int cIdx = int(w_in+j);
if ((rIdx-(int)paddingH) >= (int)height ||
(rIdx-(int)paddingH) < 0 ||
(cIdx-(int)paddingW) >= (int)width ||
(cIdx-(int)paddingW) < 0) {
*data_col = 0;
} else {
rIdx = rIdx + channel_in*height - paddingH;
cIdx = cIdx - paddingW;
*data_col = data_im[rIdx* width + cIdx];
}
data_col += height_col * width_col;
}
}
}
}
void hl_expand_feature2col(const real* dataIm, size_t channels,
size_t height, size_t width,
size_t blockH, size_t blockW,
size_t strideH, size_t strideW,
size_t paddingH, size_t paddingW,
size_t outputH, size_t outputW,
real* dataCol) {
size_t numKernels = channels * outputH * outputW;
size_t blocks = (numKernels + 1024 -1) / 1024;
size_t blockX = 512;
size_t blockY = (blocks+512-1)/512;
dim3 threads(1024, 1);
dim3 grid(blockX, blockY);
KeFeature2col<<< grid, threads, 0, STREAM_DEFAULT >>>
(numKernels, height, dataIm, blockH, blockW, width,
strideH, strideW, paddingH, paddingW,
outputH, outputW, dataCol);
CHECK_SYNC("hl_expand_feature2col failed");
}
__global__ void KeCol2Feature(size_t n, const real* data_col, size_t height,
size_t width, size_t channels,
size_t blockH, size_t blockW,
size_t strideH, size_t strideW,
size_t paddingH, size_t paddingW,
size_t height_col, size_t width_col,
real* data_im, real alpha, real beta) {
size_t index =
(blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
if (index < n) {
real val = 0;
int w = int(index % width);
int h = int((index / width) % height);
int c = int(index / (width * height));
if ((w - (int)paddingW) >= 0 &&
(w - (int)paddingW) < (width-2 * paddingW) &&
(h - (int)paddingH) >= 0 &&
(h - paddingH) < (height - 2 * paddingH)) {
// compute the start and end of the output
int w_col_start =
(w < (int)blockW) ? 0 : (w - int(blockW)) / (int)strideW + 1;
int w_col_end =
min((int)(w / (int)strideW + 1), (int)(width_col));
int h_col_start =
(h < (int)blockH) ? 0 : (h - (int)blockH) / (int)strideH + 1;
int h_col_end = min(int(h / strideH + 1), int(height_col));
for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
// the col location: [c * width * height + h_out, w_out]
int c_col = int(c * blockH* blockW) + \
(h - h_col * (int)strideH) * (int)blockW +
(w - w_col * (int)strideW);
val += data_col[(c_col * height_col + h_col) * width_col + w_col];
}
}
h -= paddingH;
w -= paddingW;
real tD = data_im[c*((width-2*paddingW) * (height-2*paddingH)) +
h*(width-2*paddingW) + w];
data_im[c*((width-2*paddingW) * (height-2*paddingH)) +
h*(width-2*paddingW) + w] = alpha * val + beta*tD;
}
}
}
void hl_shrink_col2feature(const real * dataCol, size_t channels,
size_t height, size_t width,
size_t blockH, size_t blockW,
size_t strideH, size_t strideW,
size_t paddingH, size_t paddingW,
size_t outputH, size_t outputW,
real* dataIm, real alpha, real beta) {
size_t numKernels = channels * (height + 2*paddingH) * (width + 2*paddingW);
size_t blocks = (numKernels + 1024 -1) / 1024;
size_t blockX = 512;
size_t blockY = (blocks+512-1)/512;
dim3 threads(1024, 1);
dim3 grid(blockX, blockY);
// To avoid involving atomic operations, we will launch one kernel per
// bottom dimension, and then in the kernel add up the top dimensions.
KeCol2Feature<<< grid, threads, 0, STREAM_DEFAULT >>>
(numKernels, dataCol, height + 2*paddingH, width + 2*paddingW,
channels, blockH, blockW, strideH, strideW, paddingH, paddingW,
outputH, outputW, dataIm, alpha, beta);
CHECK_SYNC("hl_shrink_col2feature failed");
}
__global__ void KeMaxPoolForward(const int nthreads, const real* inputData,
const int channels, const int height,
const int width,
......
......@@ -1016,81 +1016,6 @@ void GpuMatrix::check(std::ostream& os, Matrix& refMat, bool printDiff) {
LOG(INFO) << "the diffCnt is " << diffCnt;
}
void GpuMatrix::convExpand(Matrix& feature,
int feaImgHeight,
int feaImgWidth,
int channels,
int blockH,
int blockW,
int strideH,
int strideW,
int paddingH,
int paddingW,
int outputH,
int outputW) {
CHECK(feature.useGpu_ == true) << "Matrix type are not equal";
CHECK_EQ(size_t(feaImgHeight * feaImgWidth * channels),
feature.getHeight() * feature.getWidth())
<< "Matrix dimensions are not equal";
size_t elemCnt = outputH * outputW * blockH * blockW * channels;
CHECK_EQ(elemCnt, height_ * width_) << "Matrix dimensions are not equal";
hl_expand_feature2col(feature.getData(),
channels,
feaImgHeight,
feaImgWidth,
blockH,
blockW,
strideH,
strideW,
paddingH,
paddingW,
outputH,
outputW,
getData());
}
void GpuMatrix::convShrink(Matrix& expandFeat,
int thisImgHeight,
int thisImgWidth,
int channels,
int blockH,
int blockW,
int strideH,
int strideW,
int paddingH,
int paddingW,
int outputH,
int outputW,
real alpha,
real beta) {
CHECK(expandFeat.useGpu_ == true) << "Matrix type are not equal";
CHECK_EQ(size_t(thisImgHeight * thisImgWidth * channels),
getHeight() * getWidth())
<< "Matrix dimensions are not equal";
size_t elemCnt = outputH * outputW * blockW * blockH * channels;
CHECK(elemCnt == expandFeat.getHeight() * expandFeat.getWidth())
<< "Matrix dimensions are not equal";
hl_shrink_col2feature(expandFeat.getData(),
channels,
thisImgHeight,
thisImgWidth,
blockH,
blockW,
strideH,
strideW,
paddingH,
paddingW,
outputH,
outputW,
getData(),
alpha,
beta);
}
void GpuMatrix::maxPoolForward(Matrix& inputMat,
size_t imgSizeH,
size_t imgSizeW,
......@@ -1775,103 +1700,6 @@ void CpuMatrix::inverse(MatrixPtr& matInv, bool memAlloc) {
CHECK_EQ(info, 0);
}
void CpuMatrix::convExpand(Matrix& feature,
int feaImgHeight,
int feaImgWidth,
int channels,
int blockH,
int blockW,
int strideH,
int strideW,
int paddingH,
int paddingW,
int outputH,
int outputW) {
CHECK(feature.useGpu_ == false) << "Matrix type are not equal";
CHECK_EQ(size_t(feaImgHeight * feaImgWidth * channels),
feature.getHeight() * feature.getWidth())
<< "Matrix dimensions are not equal";
size_t elemCnt = outputH * outputW * blockH * blockW * channels;
CHECK_EQ(elemCnt, height_ * width_) << "Matrix dimensions are not equal";
int channelsCol = channels * blockH * blockW;
real* srcData = feature.getData();
for (int c = 0; c < channelsCol; ++c) {
int wOffset = c % blockW;
int hOffset = (c / blockW) % blockH;
int c_im = c / blockH / blockW;
for (int h = 0; h < outputH; ++h) {
for (int w = 0; w < outputW; ++w) {
// no c_im*height to Exclude the channel number
int imgRowIdx = h * strideH + hOffset;
int imgColIdx = w * strideW + wOffset;
if ((imgRowIdx - paddingH) < 0 ||
(imgRowIdx - paddingH) >= feaImgHeight ||
(imgColIdx - paddingW) < 0 ||
(imgColIdx - paddingW) >= feaImgWidth) {
data_[(c * outputH + h) * outputW + w] = 0;
} else {
imgRowIdx += c_im * feaImgHeight - paddingH;
imgColIdx -= paddingW;
data_[(c * outputH + h) * outputW + w] =
srcData[imgRowIdx * feaImgWidth + imgColIdx];
}
}
}
}
}
void CpuMatrix::convShrink(Matrix& expandFeat,
int thisImgHeight,
int thisImgWidth,
int channels,
int blockH,
int blockW,
int strideH,
int strideW,
int paddingH,
int paddingW,
int outputH,
int outputW,
real alpha,
real beta) {
CHECK(expandFeat.useGpu_ == false) << "Matrix type are not equal";
CHECK_EQ(size_t(thisImgHeight * thisImgWidth * channels),
getHeight() * getWidth())
<< "Matrix dimensions are not equal";
size_t elemCnt = outputH * outputW * blockH * blockW * channels;
CHECK(elemCnt == expandFeat.getHeight() * expandFeat.getWidth())
<< "Matrix dimensions are not equal";
real* expandData = expandFeat.getData();
int channelsCol = channels * blockH * blockW;
for (int c = 0; c < channelsCol; ++c) {
int wOffset = c % blockW;
int hOffset = (c / blockW) % blockH;
int c_im = c / blockW / blockH;
for (int h = 0; h < outputH; ++h) {
for (int w = 0; w < outputW; ++w) {
int imRowIdx = h * strideH + hOffset;
int imColIdx = w * strideW + wOffset;
if ((imRowIdx - paddingH) >= 0 &&
(imRowIdx - paddingH) < thisImgHeight &&
(imColIdx - paddingW) >= 0 &&
(imColIdx - paddingW) < thisImgWidth) {
imRowIdx += c_im * thisImgHeight - paddingH;
imColIdx -= paddingW;
data_[imRowIdx * thisImgWidth + imColIdx] =
alpha * expandData[(c * outputH + h) * outputW + w] +
beta * data_[imRowIdx * thisImgWidth + imColIdx];
}
}
}
}
}
void CpuMatrix::maxPoolForward(Matrix& inputMat,
size_t imgSizeH,
size_t imgSizeW,
......
......@@ -858,49 +858,6 @@ public:
LOG(FATAL) << "Not implemented";
}
/**
* This function is used to calculate the convolution:
*
* It will expand a feature matrix according to the
* convolution filters
*/
virtual void convExpand(Matrix& feature,
int feaImgHeight,
int feaImgWidth,
int channels,
int blockH,
int blockW,
int strideH,
int strideW,
int paddingH,
int paddingW,
int outputH,
int outputW) {
LOG(FATAL) << "Not implemeted";
}
/**
* This function is the reverse implementation of convExpand:
*
* Its function is to restore a expanded-matrix into a feature matrix
*/
virtual void convShrink(Matrix& expandColMat,
int thisImgHeight,
int thisImgWidth,
int channels,
int blockH,
int blockW,
int strideH,
int strideW,
int paddingH,
int paddingW,
int outputH,
int outputW,
real alpha = 1.0f,
real beta = 0.0f) {
LOG(FATAL) << "Not implemeted";
}
/**
* Pooling forward operation, pick out the largest element
* in the sizeX of value
......@@ -1334,34 +1291,6 @@ public:
void classificationError(Matrix& output, IVector& label, size_t topkSize = 1);
void convExpand(Matrix& feature,
int feaImgHeight,
int feaImgWidth,
int channels,
int blockH,
int blockW,
int strideH,
int strideW,
int paddingH,
int paddingW,
int outputH,
int outputW);
void convShrink(Matrix& expandColMat,
int thisImgHeight,
int thisImgWidth,
int channels,
int blockH,
int blochW,
int strideH,
int strideW,
int paddingH,
int paddingWreal,
int outputH,
int outputW,
real alpha = 1.0f,
real beta = 0.0f);
void maxPoolForward(Matrix& inputMat,
size_t imgSizeH,
size_t imgSizeW,
......@@ -1521,34 +1450,6 @@ public:
MatrixPtr clone(size_t height, size_t width, bool useGpu = false);
void convExpand(Matrix& feature,
int feaImgHeight,
int feaImgWidth,
int channels,
int blcokH,
int blockW,
int strideH,
int strideW,
int paddingH,
int paddingW,
int outputH,
int outputW);
void convShrink(Matrix& expandFeat,
int thisImgHeight,
int thisImgWidth,
int channels,
int blockH,
int blockW,
int strideH,
int strideW,
int paddingH,
int paddingW,
int outputH,
int outputW,
real alpha = 1.0f,
real beta = 0.0f);
void maxPoolForward(Matrix& inputMat,
size_t imgSizeH,
size_t imgSizeW,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册