stm32f4xx_hal_i2s_ex.c 50.8 KB
Newer Older
A
ardafu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
/**
  ******************************************************************************
  * @file    stm32f4xx_hal_i2s_ex.c
  * @author  MCD Application Team
  * @version V1.4.3
  * @date    11-December-2015
  * @brief   I2S HAL module driver.
  *          This file provides firmware functions to manage the following 
  *          functionalities of I2S extension peripheral:
  *           + Extension features Functions
  *         
  @verbatim
  ==============================================================================
                    ##### I2S Extension features #####
  ============================================================================== 
  [..]
     (#) In I2S full duplex mode, each SPI peripheral is able to manage sending and receiving 
         data simultaneously using two data lines. Each SPI peripheral has an extended block 
         called I2Sxext (i.e I2S2ext for SPI2 and I2S3ext for SPI3).
     (#) The extension block is not a full SPI IP, it is used only as I2S slave to
         implement full duplex mode. The extension block uses the same clock sources
         as its master.

     (#) Both I2Sx and I2Sx_ext can be configured as transmitters or receivers.

     [..]
       (@) Only I2Sx can deliver SCK and WS to I2Sx_ext in full duplex mode, where 
         I2Sx can be I2S2 or I2S3.

                  ##### How to use this driver #####
 ===============================================================================
 [..]    
   Three operation modes are available within this driver :     
  
   *** Polling mode IO operation ***
   =================================
   [..]    
     (+) Send and receive in the same time an amount of data in blocking mode using HAL_I2S_TransmitReceive() 
   
   *** Interrupt mode IO operation ***    
   ===================================
   [..]    
     (+) Send and receive in the same time an amount of data in non blocking mode using HAL_I2S_TransmitReceive_IT() 
     (+) At transmission end of half transfer HAL_I2S_TxHalfCpltCallback is executed and user can 
         add his own code by customization of function pointer HAL_I2S_TxHalfCpltCallback 
     (+) At transmission end of transfer HAL_I2S_TxCpltCallback is executed and user can 
         add his own code by customization of function pointer HAL_I2S_TxCpltCallback
     (+) At reception end of half transfer HAL_I2S_RxHalfCpltCallback is executed and user can 
         add his own code by customization of function pointer HAL_I2S_RxHalfCpltCallback 
     (+) At reception end of transfer HAL_I2S_RxCpltCallback is executed and user can 
         add his own code by customization of function pointer HAL_I2S_RxCpltCallback                                      
     (+) In case of transfer Error, HAL_I2S_ErrorCallback() function is executed and user can 
         add his own code by customization of function pointer HAL_I2S_ErrorCallback

   *** DMA mode IO operation ***    
   ==============================
   [..] 
     (+) Send and receive an amount of data in non blocking mode (DMA) using HAL_I2S_TransmitReceive_DMA() 
     (+) At transmission end of half transfer HAL_I2S_TxHalfCpltCallback is executed and user can 
         add his own code by customization of function pointer HAL_I2S_TxHalfCpltCallback 
     (+) At transmission end of transfer HAL_I2S_TxCpltCallback is executed and user can 
         add his own code by customization of function pointer HAL_I2S_TxCpltCallback
     (+) At reception end of half transfer HAL_I2S_RxHalfCpltCallback is executed and user can 
         add his own code by customization of function pointer HAL_I2S_RxHalfCpltCallback 
     (+) At reception end of transfer HAL_I2S_RxCpltCallback is executed and user can 
         add his own code by customization of function pointer HAL_I2S_RxCpltCallback                                     
     (+) In case of transfer Error, HAL_I2S_ErrorCallback() function is executed and user can 
         add his own code by customization of function pointer HAL_I2S_ErrorCallback
     (+) Pause the DMA Transfer using HAL_I2S_DMAPause()      
     (+) Resume the DMA Transfer using HAL_I2S_DMAResume()  
     (+) Stop the DMA Transfer using HAL_I2S_DMAStop()  

  @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2015 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************
  */ 

/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"

/** @addtogroup STM32F4xx_HAL_Driver
  * @{
  */

/** @defgroup I2SEx I2SEx
  * @brief I2S HAL module driver
  * @{
  */

#ifdef HAL_I2S_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @addtogroup I2SEx_Private_Functions
  * @{
  */
/**
  * @}
  */

/* Exported functions --------------------------------------------------------*/
/** @defgroup I2SEx_Exported_Functions I2S Exported Functions
  * @{
  */

/** @defgroup I2SEx_Group1 Extension features functions 
  *  @brief   Extension features functions
  *
@verbatim    
 ===============================================================================
                       ##### Extension features Functions #####
 ===============================================================================
    [..]
    This subsection provides a set of functions allowing to manage the I2S data 
    transfers.

    (#) There are two modes of transfer:
       (++) Blocking mode : The communication is performed in the polling mode. 
            The status of all data processing is returned by the same function 
            after finishing transfer.  
       (++) No-Blocking mode : The communication is performed using Interrupts 
            or DMA. These functions return the status of the transfer startup.
            The end of the data processing will be indicated through the 
            dedicated I2S IRQ when using Interrupt mode or the DMA IRQ when 
            using DMA mode.

    (#) Blocking mode functions are :
        (++) HAL_I2S_TransmitReceive()
        
    (#) No-Blocking mode functions with Interrupt are :
        (++) HAL_I2S_TransmitReceive_IT()

    (#) No-Blocking mode functions with DMA are :
        (++) HAL_I2S_TransmitReceive_DMA()

    (#) A set of Transfer Complete Callbacks are provided in non Blocking mode:
        (++) HAL_I2S_TxCpltCallback()
        (++) HAL_I2S_RxCpltCallback()
        (++) HAL_I2S_ErrorCallback()

@endverbatim
  * @{
  */
#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx) ||\
    defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) ||\
    defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F411xE) || defined(STM32F469xx) ||\
    defined(STM32F479xx)
/**
  * @brief Initializes the I2S according to the specified parameters 
  *         in the I2S_InitTypeDef and create the associated handle.
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
  *         the configuration information for I2S module
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_I2S_Init(I2S_HandleTypeDef *hi2s)
{
  uint32_t tmpreg = 0, i2sdiv = 2, i2sodd = 0, packetlength = 1;
  uint32_t tmp = 0, i2sclk = 0;
  
  /* Check the I2S handle allocation */
  if(hi2s == NULL)
  {
    return HAL_ERROR;
  }
  
  /* Check the I2S parameters */
  assert_param(IS_I2S_MODE(hi2s->Init.Mode));
  assert_param(IS_I2S_STANDARD(hi2s->Init.Standard));
  assert_param(IS_I2S_DATA_FORMAT(hi2s->Init.DataFormat));
  assert_param(IS_I2S_MCLK_OUTPUT(hi2s->Init.MCLKOutput));
  assert_param(IS_I2S_AUDIO_FREQ(hi2s->Init.AudioFreq));
  assert_param(IS_I2S_CPOL(hi2s->Init.CPOL));  
  assert_param(IS_I2S_CLOCKSOURCE(hi2s->Init.ClockSource));
  
  if(hi2s->State == HAL_I2S_STATE_RESET)
  {
    /* Allocate lock resource and initialize it */
    hi2s->Lock = HAL_UNLOCKED;
    /* Init the low level hardware : GPIO, CLOCK, CORTEX */
    HAL_I2S_MspInit(hi2s);
  }
  
  hi2s->State = HAL_I2S_STATE_BUSY;
  
  /*----------------------- SPIx I2SCFGR & I2SPR Configuration ---------------*/
  /* Clear I2SMOD, I2SE, I2SCFG, PCMSYNC, I2SSTD, CKPOL, DATLEN and CHLEN bits */
  hi2s->Instance->I2SCFGR &= ~(SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CKPOL | \
                               SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC | SPI_I2SCFGR_I2SCFG | \
                               SPI_I2SCFGR_I2SE | SPI_I2SCFGR_I2SMOD); 
  hi2s->Instance->I2SPR = 0x0002;

  /* Get the I2SCFGR register value */
  tmpreg = hi2s->Instance->I2SCFGR;

  /* If the default frequency value has to be written, reinitialize i2sdiv and i2sodd */
  /* If the requested audio frequency is not the default, compute the prescaler */
  if(hi2s->Init.AudioFreq != I2S_AUDIOFREQ_DEFAULT)
  {
    /* Check the frame length (For the Prescaler computing) *******************/
    if(hi2s->Init.DataFormat != I2S_DATAFORMAT_16B)
    {
      /* Packet length is 32 bits */
      packetlength = 2;
    }

    /* Get I2S source Clock frequency  ****************************************/
    i2sclk = I2S_GetInputClock(hi2s);

    /* Compute the Real divider depending on the MCLK output state, with a floating point */
    if(hi2s->Init.MCLKOutput == I2S_MCLKOUTPUT_ENABLE)
    {
      /* MCLK output is enabled */
      tmp = (uint32_t)(((((i2sclk / 256) * 10) / hi2s->Init.AudioFreq)) + 5);
    }
    else
    {
      /* MCLK output is disabled */
      tmp = (uint32_t)(((((i2sclk / (32 * packetlength)) *10 ) / hi2s->Init.AudioFreq)) + 5);
    }

    /* Remove the flatting point */
    tmp = tmp / 10;  

    /* Check the parity of the divider */
    i2sodd = (uint32_t)(tmp & (uint32_t)1);

    /* Compute the i2sdiv prescaler */
    i2sdiv = (uint32_t)((tmp - i2sodd) / 2);

    /* Get the Mask for the Odd bit (SPI_I2SPR[8]) register */
    i2sodd = (uint32_t) (i2sodd << 8);
  }

  /* Test if the divider is 1 or 0 or greater than 0xFF */
  if((i2sdiv < 2) || (i2sdiv > 0xFF))
  {
    /* Set the default values */
    i2sdiv = 2;
    i2sodd = 0;
  }
  
  /* Write to SPIx I2SPR register the computed value */
  hi2s->Instance->I2SPR = (uint32_t)((uint32_t)i2sdiv | (uint32_t)(i2sodd | (uint32_t)hi2s->Init.MCLKOutput));
  
  /* Configure the I2S with the I2S_InitStruct values */
  tmpreg |= (uint32_t)(SPI_I2SCFGR_I2SMOD | hi2s->Init.Mode | hi2s->Init.Standard | hi2s->Init.DataFormat | hi2s->Init.CPOL);
  
#if defined(SPI_I2SCFGR_ASTRTEN)
  if (hi2s->Init.Standard == I2S_STANDARD_PCM_SHORT) 
  {
  /* Write to SPIx I2SCFGR */  
  hi2s->Instance->I2SCFGR = tmpreg | SPI_I2SCFGR_ASTRTEN;
  }
  else
  {
  /* Write to SPIx I2SCFGR */  
  hi2s->Instance->I2SCFGR = tmpreg;    
  }
#else
  /* Write to SPIx I2SCFGR */  
  hi2s->Instance->I2SCFGR = tmpreg;
#endif
      
  /* Configure the I2S extended if the full duplex mode is enabled */
  assert_param(IS_I2S_FULLDUPLEX_MODE(hi2s->Init.FullDuplexMode));
  if(hi2s->Init.FullDuplexMode == I2S_FULLDUPLEXMODE_ENABLE)
  {    
    /* Clear I2SMOD, I2SE, I2SCFG, PCMSYNC, I2SSTD, CKPOL, DATLEN and CHLEN bits */
    I2SxEXT(hi2s->Instance)->I2SCFGR &= ~(SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CKPOL | \
                                          SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC | SPI_I2SCFGR_I2SCFG | \
                                          SPI_I2SCFGR_I2SE | SPI_I2SCFGR_I2SMOD);
    I2SxEXT(hi2s->Instance)->I2SPR = 2;
    
    /* Get the I2SCFGR register value */
    tmpreg = I2SxEXT(hi2s->Instance)->I2SCFGR;
    
    /* Get the mode to be configured for the extended I2S */
    if((hi2s->Init.Mode == I2S_MODE_MASTER_TX) || (hi2s->Init.Mode == I2S_MODE_SLAVE_TX))
    {
      tmp = I2S_MODE_SLAVE_RX;
    }
    else
    {
      if((hi2s->Init.Mode == I2S_MODE_MASTER_RX) || (hi2s->Init.Mode == I2S_MODE_SLAVE_RX))
      {
        tmp = I2S_MODE_SLAVE_TX;
      }
    }
    
    /* Configure the I2S Slave with the I2S Master parameter values */
    tmpreg |= (uint32_t)(SPI_I2SCFGR_I2SMOD | tmp | hi2s->Init.Standard | hi2s->Init.DataFormat | hi2s->Init.CPOL);
    
    /* Write to SPIx I2SCFGR */  
    I2SxEXT(hi2s->Instance)->I2SCFGR = tmpreg;
  }
  
  hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
  hi2s->State= HAL_I2S_STATE_READY;
  
  return HAL_OK;
}

/**
  * @brief Full-Duplex Transmit/Receive data in blocking mode.
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
  *         the configuration information for I2S module
  * @param pTxData: a 16-bit pointer to the Transmit data buffer.
  * @param pRxData: a 16-bit pointer to the Receive data buffer.
  * @param Size: number of data sample to be sent:
  * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
  *       configuration phase, the Size parameter means the number of 16-bit data length 
  *       in the transaction and when a 24-bit data frame or a 32-bit data frame is selected 
  *       the Size parameter means the number of 16-bit data length. 
  * @param Timeout: Timeout duration
  * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization 
  *       between Master and Slave(example: audio streaming).
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_I2SEx_TransmitReceive(I2S_HandleTypeDef *hi2s, uint16_t *pTxData, uint16_t *pRxData, uint16_t Size, uint32_t Timeout)
{
  uint32_t tickstart = 0;
  uint32_t tmp1 = 0;
 
  if((pTxData == NULL ) || (pRxData == NULL ) || (Size == 0)) 
  {
    return  HAL_ERROR;
  }

  /* Check the I2S State */
  if(hi2s->State == HAL_I2S_STATE_READY)
  {  
    tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
    /* Check the Data format: When a 16-bit data frame or a 16-bit data frame extended 
       is selected during the I2S configuration phase, the Size parameter means the number
       of 16-bit data length in the transaction and when a 24-bit data frame or a 32-bit data 
       frame is selected the Size parameter means the number of 16-bit data length. */
    if((tmp1 == I2S_DATAFORMAT_24B) || (tmp1 == I2S_DATAFORMAT_32B))
    {
      hi2s->TxXferSize = Size*2;
      hi2s->TxXferCount = Size*2;
      hi2s->RxXferSize = Size*2;
      hi2s->RxXferCount = Size*2;
    }
    else
    {
      hi2s->TxXferSize = Size;
      hi2s->TxXferCount = Size;
      hi2s->RxXferSize = Size;
      hi2s->RxXferCount = Size;
    }
    
    /* Process Locked */
    __HAL_LOCK(hi2s);
    
    /* Set the I2S State busy TX/RX */
    hi2s->State = HAL_I2S_STATE_BUSY_TX_RX;
    
    tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
    /* Check if the I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX Mode is selected */
    if((tmp1 == I2S_MODE_MASTER_TX) || (tmp1 == I2S_MODE_SLAVE_TX))
    { 
      /* Check if the I2S is already enabled: The I2S is kept enabled at the end of transaction
      to avoid the clock de-synchronization between Master and Slave. */ 
      if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
      {
        /* Enable I2Sext(receiver) before enabling I2Sx peripheral */
        I2SxEXT(hi2s->Instance)->I2SCFGR |= SPI_I2SCFGR_I2SE;

        /* Enable I2Sx peripheral */
        __HAL_I2S_ENABLE(hi2s);
      }
      
      while(hi2s->TxXferCount > 0)
      {
        /* Wait until TXE flag is set */
        if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_TXE, RESET, Timeout) != HAL_OK)
        {
          return HAL_TIMEOUT;
        }
        hi2s->Instance->DR = (*pTxData++);

        /* Get tick */
        tickstart = HAL_GetTick();

        /* Wait until RXNE flag is set */
        while((I2SxEXT(hi2s->Instance)->SR & SPI_SR_RXNE) != SPI_SR_RXNE)
        {
          if(Timeout != HAL_MAX_DELAY)
          {
            if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
            {
              /* Process Unlocked */
              __HAL_UNLOCK(hi2s);

              return HAL_TIMEOUT;
            }
          }
        }
        (*pRxData++) = I2SxEXT(hi2s->Instance)->DR;
        
        hi2s->TxXferCount--;
        hi2s->RxXferCount--;
      }
    }
    /* The I2S_MODE_MASTER_RX or I2S_MODE_SLAVE_RX Mode is selected */
    else
    {
      /* Check if the I2S is already enabled */ 
      if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
      {
        /* Enable I2S peripheral before the I2Sext*/
        __HAL_I2S_ENABLE(hi2s);

        /* Enable I2Sext(transmitter) after enabling I2Sx peripheral */
        I2SxEXT(hi2s->Instance)->I2SCFGR |= SPI_I2SCFGR_I2SE;
      }
      else
      {
        /* Check if Master Receiver mode is selected */
        if((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_MASTER_RX)
        {
          /* Clear the Overrun Flag by a read operation on the SPI_DR register followed by a read
          access to the SPI_SR register. */ 
          __HAL_I2S_CLEAR_OVRFLAG(hi2s);
        }
      }
      while(hi2s->TxXferCount > 0)
      {
        /* Get tick */
        tickstart = HAL_GetTick();

        /* Wait until TXE flag is set */
        while((I2SxEXT(hi2s->Instance)->SR & SPI_SR_TXE) != SPI_SR_TXE)
        {
          if(Timeout != HAL_MAX_DELAY)
          {
            if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
            {
              /* Process Unlocked */
              __HAL_UNLOCK(hi2s);

              return HAL_TIMEOUT;
            }
          }
        }
        I2SxEXT(hi2s->Instance)->DR = (*pTxData++);
        
        /* Wait until RXNE flag is set */
        if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_RXNE, RESET, Timeout) != HAL_OK)
        {
          return HAL_TIMEOUT;
        }
        (*pRxData++) = hi2s->Instance->DR;

        hi2s->TxXferCount--;
        hi2s->RxXferCount--;
      }
    }

    /* Set the I2S State ready */
    hi2s->State = HAL_I2S_STATE_READY; 

    /* Process Unlocked */
    __HAL_UNLOCK(hi2s);
    
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief Full-Duplex Transmit/Receive data in non-blocking mode using Interrupt 
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
  *         the configuration information for I2S module
  * @param pTxData: a 16-bit pointer to the Transmit data buffer.
  * @param pRxData: a 16-bit pointer to the Receive data buffer.
  * @param Size: number of data sample to be sent:
  * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
  *       configuration phase, the Size parameter means the number of 16-bit data length 
  *       in the transaction and when a 24-bit data frame or a 32-bit data frame is selected 
  *       the Size parameter means the number of 16-bit data length. 
  * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization 
  *       between Master and Slave(example: audio streaming).
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_I2SEx_TransmitReceive_IT(I2S_HandleTypeDef *hi2s, uint16_t *pTxData, uint16_t *pRxData, uint16_t Size)
{
  uint32_t tmp1 = 0;
  
  if(hi2s->State == HAL_I2S_STATE_READY)
  {
    if((pTxData == NULL ) || (pRxData == NULL ) || (Size == 0)) 
    {
      return  HAL_ERROR;
    }

    hi2s->pTxBuffPtr = pTxData;
    hi2s->pRxBuffPtr = pRxData;

    tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
    /* Check the Data format: When a 16-bit data frame or a 16-bit data frame extended 
       is selected during the I2S configuration phase, the Size parameter means the number
       of 16-bit data length in the transaction and when a 24-bit data frame or a 32-bit data 
       frame is selected the Size parameter means the number of 16-bit data length. */
    if((tmp1 == I2S_DATAFORMAT_24B) || (tmp1 == I2S_DATAFORMAT_32B))
    {
      hi2s->TxXferSize = Size*2;
      hi2s->TxXferCount = Size*2;
      hi2s->RxXferSize = Size*2;
      hi2s->RxXferCount = Size*2;
    }  
    else
    {
      hi2s->TxXferSize = Size;
      hi2s->TxXferCount = Size;
      hi2s->RxXferSize = Size;
      hi2s->RxXferCount = Size;
    }
    
    /* Process Locked */
    __HAL_LOCK(hi2s);
    
    hi2s->State = HAL_I2S_STATE_BUSY_TX_RX;
    hi2s->ErrorCode = HAL_I2S_ERROR_NONE;

    tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
    /* Check if the I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX Mode is selected */
    if((tmp1 == I2S_MODE_MASTER_TX) || (tmp1 == I2S_MODE_SLAVE_TX))
    { 
      /* Enable I2Sext RXNE and ERR interrupts */
      I2SxEXT(hi2s->Instance)->CR2 |= (I2S_IT_RXNE | I2S_IT_ERR);

      /* Enable I2Sx TXE and ERR interrupts */
      __HAL_I2S_ENABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR));

      /* Check if the I2S is already enabled */ 
      if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
      {
        /* Enable I2Sext(receiver) before enabling I2Sx peripheral */
        I2SxEXT(hi2s->Instance)->I2SCFGR |= SPI_I2SCFGR_I2SE;

        /* Enable I2Sx peripheral */
        __HAL_I2S_ENABLE(hi2s);
      }
    }
    /* The I2S_MODE_MASTER_RX or I2S_MODE_SLAVE_RX Mode is selected */
    else
    {
      /* Enable I2Sext TXE and ERR interrupts */
      I2SxEXT(hi2s->Instance)->CR2 |= (I2S_IT_TXE |I2S_IT_ERR);

      /* Enable I2Sext RXNE and ERR interrupts */
      __HAL_I2S_ENABLE_IT(hi2s, (I2S_IT_RXNE | I2S_IT_ERR));

      /* Check if the I2S is already enabled */ 
      if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
      {
        /* Check if the I2S_MODE_MASTER_RX is selected */
        if((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_MASTER_RX) 
        {
          /* Prepare the First Data before enabling the I2S */
          if(hi2s->TxXferCount != 0)
          {
            /* Transmit First data */
            I2SxEXT(hi2s->Instance)->DR = (*hi2s->pTxBuffPtr++);
            hi2s->TxXferCount--;	

            if(hi2s->TxXferCount == 0)
            {
              /* Disable I2Sext TXE interrupt */
              I2SxEXT(hi2s->Instance)->CR2 &= ~I2S_IT_TXE;
            }
          }
        }
        /* Enable I2S peripheral */
        __HAL_I2S_ENABLE(hi2s);
        
        /* Enable I2Sext(transmitter) after enabling I2Sx peripheral */
        I2SxEXT(hi2s->Instance)->I2SCFGR |= SPI_I2SCFGR_I2SE;
      }
    }
    /* Process Unlocked */
    __HAL_UNLOCK(hi2s);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief Full-Duplex Transmit/Receive data in non-blocking mode using DMA  
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
  *         the configuration information for I2S module
  * @param pTxData: a 16-bit pointer to the Transmit data buffer.
  * @param pRxData: a 16-bit pointer to the Receive data buffer.
  * @param Size: number of data sample to be sent:
  * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
  *       configuration phase, the Size parameter means the number of 16-bit data length 
  *       in the transaction and when a 24-bit data frame or a 32-bit data frame is selected 
  *       the Size parameter means the number of 16-bit data length. 
  * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization 
  *       between Master and Slave(example: audio streaming).
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_I2SEx_TransmitReceive_DMA(I2S_HandleTypeDef *hi2s, uint16_t *pTxData, uint16_t *pRxData, uint16_t Size)
{
  uint32_t *tmp;
  uint32_t tmp1 = 0;
    
  if((pTxData == NULL ) || (pRxData == NULL ) || (Size == 0)) 
  {
    return  HAL_ERROR;
  }

  if(hi2s->State == HAL_I2S_STATE_READY)
  {
    hi2s->pTxBuffPtr = pTxData;
    hi2s->pRxBuffPtr = pRxData;

    tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
    /* Check the Data format: When a 16-bit data frame or a 16-bit data frame extended 
       is selected during the I2S configuration phase, the Size parameter means the number
       of 16-bit data length in the transaction and when a 24-bit data frame or a 32-bit data 
       frame is selected the Size parameter means the number of 16-bit data length. */
    if((tmp1 == I2S_DATAFORMAT_24B) || (tmp1 == I2S_DATAFORMAT_32B))
    {
      hi2s->TxXferSize = Size*2;
      hi2s->TxXferCount = Size*2;
      hi2s->RxXferSize = Size*2;
      hi2s->RxXferCount = Size*2;
    }
    else
    {
      hi2s->TxXferSize = Size;
      hi2s->TxXferCount = Size;
      hi2s->RxXferSize = Size;
      hi2s->RxXferCount = Size;
    }

    /* Process Locked */
    __HAL_LOCK(hi2s);

    hi2s->State = HAL_I2S_STATE_BUSY_TX_RX;
    hi2s->ErrorCode = HAL_I2S_ERROR_NONE;

    /* Set the I2S Rx DMA Half transfer complete callback */
    hi2s->hdmarx->XferHalfCpltCallback = I2S_DMARxHalfCplt;

    /* Set the I2S Rx DMA transfer complete callback */
    hi2s->hdmarx->XferCpltCallback = I2S_DMARxCplt;

    /* Set the I2S Rx DMA error callback */
    hi2s->hdmarx->XferErrorCallback = I2S_DMAError;

    /* Set the I2S Tx DMA Half transfer complete callback */
    hi2s->hdmatx->XferHalfCpltCallback = I2S_DMATxHalfCplt;

    /* Set the I2S Tx DMA transfer complete callback */
    hi2s->hdmatx->XferCpltCallback = I2S_DMATxCplt;

    /* Set the I2S Tx DMA error callback */
    hi2s->hdmatx->XferErrorCallback = I2S_DMAError;

    tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
    /* Check if the I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX Mode is selected */
    if((tmp1 == I2S_MODE_MASTER_TX) || (tmp1 == I2S_MODE_SLAVE_TX))
    {
      /* Enable the Rx DMA Stream */
      tmp = (uint32_t*)&pRxData;
      HAL_DMA_Start_IT(hi2s->hdmarx, (uint32_t)&I2SxEXT(hi2s->Instance)->DR, *(uint32_t*)tmp, hi2s->RxXferSize);

      /* Enable Rx DMA Request */  
      I2SxEXT(hi2s->Instance)->CR2 |= SPI_CR2_RXDMAEN;

      /* Enable the Tx DMA Stream */
      tmp = (uint32_t*)&pTxData;
      HAL_DMA_Start_IT(hi2s->hdmatx, *(uint32_t*)tmp, (uint32_t)&hi2s->Instance->DR, hi2s->TxXferSize);

      /* Enable Tx DMA Request */  
      hi2s->Instance->CR2 |= SPI_CR2_TXDMAEN;

      /* Check if the I2S is already enabled */ 
      if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
      {
        /* Enable I2Sext(receiver) before enabling I2Sx peripheral */
        I2SxEXT(hi2s->Instance)->I2SCFGR |= SPI_I2SCFGR_I2SE;

        /* Enable I2S peripheral after the I2Sext */
        __HAL_I2S_ENABLE(hi2s);
      }
    }
    else
    {
      /* Enable the Tx DMA Stream */
      tmp = (uint32_t*)&pTxData;
      HAL_DMA_Start_IT(hi2s->hdmatx, *(uint32_t*)tmp, (uint32_t)&I2SxEXT(hi2s->Instance)->DR, hi2s->TxXferSize);

      /* Enable Tx DMA Request */  
      I2SxEXT(hi2s->Instance)->CR2 |= SPI_CR2_TXDMAEN;

      /* Enable the Rx DMA Stream */
      tmp = (uint32_t*)&pRxData;
      HAL_DMA_Start_IT(hi2s->hdmarx, (uint32_t)&hi2s->Instance->DR, *(uint32_t*)tmp, hi2s->RxXferSize);

      /* Enable Rx DMA Request */  
      hi2s->Instance->CR2 |= SPI_CR2_RXDMAEN;

      /* Check if the I2S is already enabled */ 
      if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
      {
        /* Enable I2S peripheral before the I2Sext */
        __HAL_I2S_ENABLE(hi2s);

        /* Enable I2Sext(transmitter) after enabling I2Sx peripheral */
        I2SxEXT(hi2s->Instance)->I2SCFGR |= SPI_I2SCFGR_I2SE;
      }
      else
      {
        /* Check if Master Receiver mode is selected */
        if((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_MASTER_RX)
        {
          /* Clear the Overrun Flag by a read operation on the SPI_DR register followed by a read
          access to the SPI_SR register. */ 
          __HAL_I2S_CLEAR_OVRFLAG(hi2s);
        }
      }
    }

    /* Process Unlocked */
    __HAL_UNLOCK(hi2s);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief Pauses the audio stream playing from the Media.
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
  *         the configuration information for I2S module
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_I2S_DMAPause(I2S_HandleTypeDef *hi2s)
{
  /* Process Locked */
  __HAL_LOCK(hi2s);
  
  if(hi2s->State == HAL_I2S_STATE_BUSY_TX)
  {
    /* Disable the I2S DMA Tx request */
    hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);
  }
  else if(hi2s->State == HAL_I2S_STATE_BUSY_RX)
  {
    /* Disable the I2S DMA Rx request */
    hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN);
  }
  else if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX)
  {
    if((hi2s->Init.Mode == I2S_MODE_SLAVE_TX)||(hi2s->Init.Mode == I2S_MODE_MASTER_TX))
    {
      /* Disable the I2S DMA Tx request */
      hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);
      /* Disable the I2SEx Rx DMA Request */
      I2SxEXT(hi2s->Instance)->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN);
    }
    else
    {
      /* Disable the I2S DMA Rx request */
      hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN);
      /* Disable the I2SEx Tx DMA Request */
      I2SxEXT(hi2s->Instance)->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);      
    }
  }

  /* Process Unlocked */
  __HAL_UNLOCK(hi2s);
  
  return HAL_OK; 
}

/**
  * @brief Resumes the audio stream playing from the Media.
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
  *         the configuration information for I2S module
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_I2S_DMAResume(I2S_HandleTypeDef *hi2s)
{
  /* Process Locked */
  __HAL_LOCK(hi2s);
  
  if(hi2s->State == HAL_I2S_STATE_BUSY_TX)
  {
    /* Enable the I2S DMA Tx request */
    hi2s->Instance->CR2 |= SPI_CR2_TXDMAEN;
  }
  else if(hi2s->State == HAL_I2S_STATE_BUSY_RX)
  {
    /* Enable the I2S DMA Rx request */
    hi2s->Instance->CR2 |= SPI_CR2_RXDMAEN;
  }
  else if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX)
  {
    if((hi2s->Init.Mode == I2S_MODE_SLAVE_TX)||(hi2s->Init.Mode == I2S_MODE_MASTER_TX))
    {
      /* Enable the I2S DMA Tx request */
      hi2s->Instance->CR2 |= SPI_CR2_TXDMAEN;
      /* Disable the I2SEx Rx DMA Request */  
      I2SxEXT(hi2s->Instance)->CR2 |= SPI_CR2_RXDMAEN;
    }
    else
    {
      /* Enable the I2S DMA Rx request */
      hi2s->Instance->CR2 |= SPI_CR2_RXDMAEN;
      /* Enable the I2SEx Tx DMA Request */  
      I2SxEXT(hi2s->Instance)->CR2 |= SPI_CR2_TXDMAEN;
    }
  }

  /* If the I2S peripheral is still not enabled, enable it */
  if ((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SE) == 0)
  {
    /* Enable I2S peripheral */    
    __HAL_I2S_ENABLE(hi2s);
  }
  
  /* Process Unlocked */
  __HAL_UNLOCK(hi2s);
  
  return HAL_OK;
}

/**
  * @brief Resumes the audio stream playing from the Media.
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
  *         the configuration information for I2S module
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_I2S_DMAStop(I2S_HandleTypeDef *hi2s)
{
  /* Process Locked */
  __HAL_LOCK(hi2s);
  
  /* Disable the I2S Tx/Rx DMA requests */
  hi2s->Instance->CR2 &= ~SPI_CR2_TXDMAEN;
  hi2s->Instance->CR2 &= ~SPI_CR2_RXDMAEN;
  
  if(hi2s->Init.FullDuplexMode == I2S_FULLDUPLEXMODE_ENABLE)
  {
    /* Disable the I2S extended Tx/Rx DMA requests */  
    I2SxEXT(hi2s->Instance)->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);
    I2SxEXT(hi2s->Instance)->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN);
  }
  
  /* Abort the I2S DMA Stream tx */
  if(hi2s->hdmatx != NULL)
  {
    HAL_DMA_Abort(hi2s->hdmatx);
  }
  /* Abort the I2S DMA Stream rx */
  if(hi2s->hdmarx != NULL)
  {
    HAL_DMA_Abort(hi2s->hdmarx);
  }

  /* Disable I2S peripheral */
  __HAL_I2S_DISABLE(hi2s);
 
  if(hi2s->Init.FullDuplexMode == I2S_FULLDUPLEXMODE_ENABLE)
  {
    /* Disable the I2Sext peripheral */
    I2SxEXT(hi2s->Instance)->I2SCFGR &= ~SPI_I2SCFGR_I2SE;
  }
  hi2s->State = HAL_I2S_STATE_READY;
  
  /* Process Unlocked */
  __HAL_UNLOCK(hi2s);
  
  return HAL_OK;
}

/**
  * @brief  This function handles I2S interrupt request.
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
  *         the configuration information for I2S module
  * @retval None
  */
void HAL_I2S_IRQHandler(I2S_HandleTypeDef *hi2s)
{  
  uint32_t tmp1 = 0, tmp2 = 0;
  __IO uint32_t tmpreg1 = 0;    
  if(hi2s->Init.FullDuplexMode != I2S_FULLDUPLEXMODE_ENABLE)
  {
    if(hi2s->State == HAL_I2S_STATE_BUSY_RX)
    {
      tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_RXNE);
      tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_RXNE);
      /* I2S in mode Receiver ------------------------------------------------*/
      if((tmp1 != RESET) && (tmp2 != RESET))
      {
        I2S_Receive_IT(hi2s);
      }

      tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_OVR);
      tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_ERR);
      /* I2S Overrun error interrupt occurred ---------------------------------*/
      if((tmp1 != RESET) && (tmp2 != RESET))
      {
        __HAL_I2S_CLEAR_OVRFLAG(hi2s);
        hi2s->ErrorCode |= HAL_I2S_ERROR_OVR;
      }
    }

    if(hi2s->State == HAL_I2S_STATE_BUSY_TX)
    {
      tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_TXE);
      tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_TXE);
      /* I2S in mode Tramitter -----------------------------------------------*/
      if((tmp1 != RESET) && (tmp2 != RESET))
      {
        I2S_Transmit_IT(hi2s);
      } 

      tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_UDR);
      tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_ERR);
      /* I2S Underrun error interrupt occurred --------------------------------*/
      if((tmp1 != RESET) && (tmp2 != RESET))
      {
        __HAL_I2S_CLEAR_UDRFLAG(hi2s);
        hi2s->ErrorCode |= HAL_I2S_ERROR_UDR;
      }
    }
  }
  else
  {
    tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
    /* Check if the I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX Mode is selected */
    if((tmp1 == I2S_MODE_MASTER_TX) || (tmp1 == I2S_MODE_SLAVE_TX))
    { 
      tmp1 = I2SxEXT(hi2s->Instance)->SR & SPI_SR_RXNE; 
      tmp2 = I2SxEXT(hi2s->Instance)->CR2 & I2S_IT_RXNE;  
      /* I2Sext in mode Receiver ---------------------------------------------*/
      if((tmp1 == SPI_SR_RXNE) && (tmp2 == I2S_IT_RXNE))
      {
        /* When the I2S mode is configured as I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX,
        the I2Sext RXNE interrupt will be generated to manage the full-duplex receive phase. */
        I2SEx_TransmitReceive_IT(hi2s);
      }

      tmp1 = I2SxEXT(hi2s->Instance)->SR & SPI_SR_OVR;
      tmp2 = I2SxEXT(hi2s->Instance)->CR2 & I2S_IT_ERR;
      /* I2Sext Overrun error interrupt occurred -----------------------------*/
      if((tmp1 == SPI_SR_OVR) && (tmp2 == I2S_IT_ERR))
      {
        /* Clear I2Sext OVR Flag */ 
        tmpreg1 = I2SxEXT(hi2s->Instance)->DR;
        tmpreg1 = I2SxEXT(hi2s->Instance)->SR;
        hi2s->ErrorCode |= HAL_I2SEX_ERROR_OVR;
        UNUSED(tmpreg1);
      }

      tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_TXE);
      tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_TXE);
      /* I2S in mode Tramitter -----------------------------------------------*/
      if((tmp1 != RESET) && (tmp2 != RESET))
      {
        /* When the I2S mode is configured as I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX,
        the I2S TXE interrupt will be generated to manage the full-duplex transmit phase. */
        I2SEx_TransmitReceive_IT(hi2s);
      }

      tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_UDR);
      tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_ERR);
      /* I2S Underrun error interrupt occurred -------------------------------*/
      if((tmp1 != RESET) && (tmp2 != RESET))
      {
        __HAL_I2S_CLEAR_UDRFLAG(hi2s);
        hi2s->ErrorCode |= HAL_I2S_ERROR_UDR;
      }
    }
    /* The I2S_MODE_MASTER_RX or I2S_MODE_SLAVE_RX Mode is selected */
    else
    {
      tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_RXNE);
      tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_RXNE);
      /* I2S in mode Receiver ------------------------------------------------*/
      if((tmp1 != RESET) && (tmp2 != RESET))
      {
        /* When the I2S mode is configured as I2S_MODE_MASTER_RX or I2S_MODE_SLAVE_RX,
        the I2S RXNE interrupt will be generated to manage the full-duplex receive phase. */
        I2SEx_TransmitReceive_IT(hi2s);
      }

      tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_OVR);
      tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_ERR);
      /* I2S Overrun error interrupt occurred --------------------------------*/
      if((tmp1 != RESET) && (tmp2 != RESET))
      {
        __HAL_I2S_CLEAR_OVRFLAG(hi2s);
        hi2s->ErrorCode |= HAL_I2S_ERROR_OVR;
      }

      tmp1 = I2SxEXT(hi2s->Instance)->SR & SPI_SR_TXE;
      tmp2 = I2SxEXT(hi2s->Instance)->CR2 & I2S_IT_TXE; 
      /* I2Sext in mode Tramitter --------------------------------------------*/
      if((tmp1 == SPI_SR_TXE) && (tmp2 == I2S_IT_TXE))
      {
        /* When the I2S mode is configured as I2S_MODE_MASTER_RX or I2S_MODE_SLAVE_RX,
        the I2Sext TXE interrupt will be generated to manage the full-duplex transmit phase. */
        I2SEx_TransmitReceive_IT(hi2s);
      }

      tmp1 = I2SxEXT(hi2s->Instance)->SR & SPI_SR_UDR;
      tmp2 = I2SxEXT(hi2s->Instance)->CR2 & I2S_IT_ERR;
      /* I2Sext Underrun error interrupt occurred ----------------------------*/
      if((tmp1 == SPI_SR_UDR) && (tmp2 == I2S_IT_ERR))
      {
        /* Clear I2Sext UDR Flag */ 
        tmpreg1 = I2SxEXT(hi2s->Instance)->SR;
        hi2s->ErrorCode |= HAL_I2SEX_ERROR_UDR;
        UNUSED(tmpreg1);
      }
    }
  }

  /* Call the Error call Back in case of Errors */
  if(hi2s->ErrorCode != HAL_I2S_ERROR_NONE)
  {
    /* Set the I2S state ready to be able to start again the process */
    hi2s->State= HAL_I2S_STATE_READY;
    HAL_I2S_ErrorCallback(hi2s);
  }
}

/**
  * @}
  */

/**
  * @brief Full-Duplex Transmit/Receive data in non-blocking mode using Interrupt 
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
  *         the configuration information for I2S module
  * @retval HAL status
  */
HAL_StatusTypeDef I2SEx_TransmitReceive_IT(I2S_HandleTypeDef *hi2s)
{
  uint32_t tmp1 = 0, tmp2 = 0;
  
  if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX)
  {
    /* Process Locked */
    __HAL_LOCK(hi2s);

    tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
    /* Check if the I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX Mode is selected */
    if((tmp1 == I2S_MODE_MASTER_TX) || (tmp1 == I2S_MODE_SLAVE_TX))
    {
      if(hi2s->TxXferCount != 0)
      {
        if(__HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_TXE) != RESET)
        {        
          /* Transmit data */
          hi2s->Instance->DR = (*hi2s->pTxBuffPtr++);
          hi2s->TxXferCount--;

          if(hi2s->TxXferCount == 0)
          {
            /* Disable TXE interrupt */
            __HAL_I2S_DISABLE_IT(hi2s, I2S_IT_TXE);
          }
        }
      }

      if(hi2s->RxXferCount != 0)
      {
        if((I2SxEXT(hi2s->Instance)->SR & SPI_SR_RXNE) == SPI_SR_RXNE)
        {
          /* Receive data */
          (*hi2s->pRxBuffPtr++) = I2SxEXT(hi2s->Instance)->DR;
          hi2s->RxXferCount--;

          if(hi2s->RxXferCount == 0)
          {
            /* Disable I2Sext RXNE interrupt */
            I2SxEXT(hi2s->Instance)->CR2 &= ~I2S_IT_RXNE;
          }
        }
      }
    }
    /* The I2S_MODE_MASTER_RX or I2S_MODE_SLAVE_RX Mode is selected */ 
    else
    {
      if(hi2s->TxXferCount != 0)
      {
        if((I2SxEXT(hi2s->Instance)->SR & SPI_SR_TXE) == SPI_SR_TXE)
        {        
          /* Transmit data */
          I2SxEXT(hi2s->Instance)->DR = (*hi2s->pTxBuffPtr++);
          hi2s->TxXferCount--;

          if(hi2s->TxXferCount == 0)
          {
            /* Disable I2Sext TXE interrupt */
            I2SxEXT(hi2s->Instance)->CR2 &= ~I2S_IT_TXE;

            HAL_I2S_TxCpltCallback(hi2s);
          }
        }
      }
      if(hi2s->RxXferCount != 0)
      {
        if(__HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_RXNE) != RESET)
        {
          /* Receive data */
          (*hi2s->pRxBuffPtr++) = hi2s->Instance->DR;
          hi2s->RxXferCount--;

          if(hi2s->RxXferCount == 0)
          {
            /* Disable RXNE interrupt */
            __HAL_I2S_DISABLE_IT(hi2s, I2S_IT_RXNE);

            HAL_I2S_RxCpltCallback(hi2s);
          }
        }
      }
    }

    tmp1 = hi2s->RxXferCount;
    tmp2 = hi2s->TxXferCount;
    if((tmp1 == 0) && (tmp2 == 0))
    {
      /* Disable I2Sx ERR interrupt */
      __HAL_I2S_DISABLE_IT(hi2s, I2S_IT_ERR);
      /* Disable I2Sext ERR interrupt */
      I2SxEXT(hi2s->Instance)->CR2 &= ~I2S_IT_ERR;
      
      hi2s->State = HAL_I2S_STATE_READY; 
    }

    /* Process Unlocked */
    __HAL_UNLOCK(hi2s);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY; 
  }
}
#endif /* STM32F40xxx || STM32F41xxx || STM32F42xxx || STM32F43xxx || STM32F401xx ||\
          STM32F411xx || STM32F469xx || STM32F479xx */
/**
  * @brief DMA I2S transmit process complete callback 
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
  *                the configuration information for the specified DMA module.
  * @retval None
  */
void I2S_DMATxCplt(DMA_HandleTypeDef *hdma)
{
  I2S_HandleTypeDef* hi2s = (I2S_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
  
  if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0)
  {
    hi2s->TxXferCount = 0;

    /* Disable Tx DMA Request */
    hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);
#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) ||\
    defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx) ||\
    defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F411xE) || defined(STM32F469xx) ||\
    defined(STM32F479xx)
    if(hi2s->Init.FullDuplexMode == I2S_FULLDUPLEXMODE_ENABLE)
    {
      /* Disable Rx DMA Request for the slave*/  
      I2SxEXT(hi2s->Instance)->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN);
    }
#endif /* STM32F40xxx || STM32F41xxx || STM32F42xxx || STM32F43xxx || STM32F401xx || STM32F411xx ||\
          STM32F469xx || STM32F479xx */
    if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX)
    {
      if(hi2s->RxXferCount == 0)
      {
        hi2s->State = HAL_I2S_STATE_READY;
      }
    }
    else
    {
      hi2s->State = HAL_I2S_STATE_READY; 
    }
  }
  HAL_I2S_TxCpltCallback(hi2s);
}

/**
  * @brief DMA I2S receive process complete callback 
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
  *                the configuration information for the specified DMA module.
  * @retval None
  */
void I2S_DMARxCplt(DMA_HandleTypeDef *hdma)
{
  I2S_HandleTypeDef* hi2s = (I2S_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;

  if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0)
  {
    /* Disable Rx DMA Request */
    hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN);
#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) ||\
    defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx) ||\
    defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F411xE) || defined(STM32F469xx) ||\
    defined(STM32F479xx)
    if(hi2s->Init.FullDuplexMode == I2S_FULLDUPLEXMODE_ENABLE)
    {
      /* Disable Tx DMA Request for the slave*/  
      I2SxEXT(hi2s->Instance)->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);
    }
#endif /* STM32F40xxx || STM32F41xxx || STM32F42xxx || STM32F43xxx || STM32F401xx || STM32F411xx ||\
          STM32F469xx || STM32F479xx */
    hi2s->RxXferCount = 0;
    if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX)
    {
      if(hi2s->TxXferCount == 0)
      {
        hi2s->State = HAL_I2S_STATE_READY;
      }
    }
    else
    {
      hi2s->State = HAL_I2S_STATE_READY; 
    }
  }
  HAL_I2S_RxCpltCallback(hi2s); 
}

/**
  * @brief  Get I2S clock Input based on Source clock selection in RCC
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
  *         the configuration information for I2S module
  * @retval I2S Clock Input
  */
uint32_t I2S_GetInputClock(I2S_HandleTypeDef *hi2s)
{
  /* This variable used to store the VCO Input (value in Hz) */
  uint32_t vcoinput = 0;
  /* This variable used to store the VCO Output (value in Hz) */
  uint32_t vcooutput = 0;
  /* This variable used to store the I2S_CK_x (value in Hz) */
  uint32_t i2ssourceclock = 0;

  /* Configure 12S Clock based on I2S source clock selection */ 
#if defined(STM32F410Tx) || defined(STM32F410Cx) || defined(STM32F410Rx) || defined(STM32F446xx)
  switch(hi2s->Init.ClockSource)
  {
    case I2S_CLOCK_EXTERNAL :
    {
      /* Set the I2S clock to the external clock  value */
      i2ssourceclock = EXTERNAL_CLOCK_VALUE;
      break;
    }
#if defined(STM32F446xx)
    case I2S_CLOCK_PLL :
    { 
      /* Configure the PLLI2S division factor */
      /* PLLI2S_VCO Input  = PLL_SOURCE/PLLI2SM */
      if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSE)
      {
        /* Get the I2S source clock value */
        vcoinput = (uint32_t)(HSE_VALUE / (uint32_t)(RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SM));
      }
      else
      {
        /* Get the I2S source clock value */
        vcoinput = (uint32_t)(HSI_VALUE / (uint32_t)(RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SM));
      }
      
      /* PLLI2S_VCO Output = PLLI2S_VCO Input * PLLI2SN */
      vcooutput = (uint32_t)(vcoinput * (((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SN) >> 6) & (RCC_PLLI2SCFGR_PLLI2SN >> 6)));
      /* I2S_CLK = PLLI2S_VCO Output/PLLI2SR */
      i2ssourceclock = (uint32_t)(vcooutput /(((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SR) >> 28) & (RCC_PLLI2SCFGR_PLLI2SR >> 28)));
      break;
    }
#endif /* STM32F446xx */
    case I2S_CLOCK_PLLR :
    { 
      /* Configure the PLLI2S division factor */
      /* PLL_VCO Input  = PLL_SOURCE/PLLM */
      if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSE)
      {
        /* Get the I2S source clock value */
        vcoinput = (uint32_t)(HSE_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM));
      }
      else
      {
        /* Get the I2S source clock value */
        vcoinput = (uint32_t)(HSI_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM));
      }
      
      /* PLL_VCO Output = PLL_VCO Input * PLLN */
      vcooutput = (uint32_t)(vcoinput * (((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 6) & (RCC_PLLCFGR_PLLN >> 6)));
      /* I2S_CLK = PLLI2S_VCO Output/PLLI2SR */
      i2ssourceclock = (uint32_t)(vcooutput /(((RCC->PLLCFGR & RCC_PLLCFGR_PLLR) >> 28) & (RCC_PLLCFGR_PLLR >> 28)));
      break;
    }
    case I2S_CLOCK_PLLSRC :
    { 
      /* Configure the PLLI2S division factor */
      /* PLL_VCO Input  = PLL_SOURCE/PLLM */
      if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSE)
      {
        /* Get the I2S source clock value */
        i2ssourceclock = (uint32_t)(HSE_VALUE);
      }
      else
      {
        /* Get the I2S source clock value */
        i2ssourceclock = (uint32_t)(HSI_VALUE);
      }
      break;
    }
    default :
    {
      break;
    }
  }
#endif /* STM32F410xx || STM32F446xx */

#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx) ||\
    defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) ||\
    defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F469xx) || defined(STM32F479xx)
      
  /* If an external I2S clock has to be used, the specific define should be set  
  in the project configuration or in the stm32f4xx_conf.h file */
  if(hi2s->Init.ClockSource == I2S_CLOCK_EXTERNAL)
  {
    __HAL_RCC_I2S_CONFIG(RCC_I2SCLKSOURCE_EXT);
    /* Set the I2S clock to the external clock  value */
    i2ssourceclock = EXTERNAL_CLOCK_VALUE;
  }
  else
  { 
    /* Configure the PLLI2S division factor */
    /* PLLI2S_VCO Input  = PLL_SOURCE/PLLM */
    if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSE)
    {
      /* Get the I2S source clock value */
      vcoinput = (uint32_t)(HSE_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM));
    }
    else
    {
      /* Get the I2S source clock value */
      vcoinput = (uint32_t)(HSI_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM));
    }
    
    /* PLLI2S_VCO Output = PLLI2S_VCO Input * PLLI2SN */
    vcooutput = (uint32_t)(vcoinput * (((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SN) >> 6) & (RCC_PLLI2SCFGR_PLLI2SN >> 6)));
    /* I2S_CLK = PLLI2S_VCO Output/PLLI2SR */
    i2ssourceclock = (uint32_t)(vcooutput /(((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SR) >> 28) & (RCC_PLLI2SCFGR_PLLI2SR >> 28)));
  }
#endif /* STM32F40xxx || STM32F41xxx || STM32F42xxx || STM32F43xxx || STM32F469xx || STM32F479xx */

#if defined(STM32F411xE)
      
  /* If an external I2S clock has to be used, the specific define should be set  
  in the project configuration or in the stm32f4xx_conf.h file */
  if(hi2s->Init.ClockSource == I2S_CLOCK_EXTERNAL)
  {
    __HAL_RCC_I2S_CONFIG(RCC_I2SCLKSOURCE_EXT);
    /* Set the I2S clock to the external clock  value */
    i2ssourceclock = EXTERNAL_CLOCK_VALUE;
  }
  else
  { 
    /* Configure the PLLI2S division factor */
    /* PLLI2S_VCO Input  = PLL_SOURCE/PLLI2SM */
    if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSE)
    {
      /* Get the I2S source clock value */
      vcoinput = (uint32_t)(HSE_VALUE / (uint32_t)(RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SM));
    }
    else
    {
      /* Get the I2S source clock value */
      vcoinput = (uint32_t)(HSI_VALUE / (uint32_t)(RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SM));
    }
    
    /* PLLI2S_VCO Output = PLLI2S_VCO Input * PLLI2SN */
    vcooutput = (uint32_t)(vcoinput * (((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SN) >> 6) & (RCC_PLLI2SCFGR_PLLI2SN >> 6)));
    /* I2S_CLK = PLLI2S_VCO Output/PLLI2SR */
    i2ssourceclock = (uint32_t)(vcooutput /(((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SR) >> 28) & (RCC_PLLI2SCFGR_PLLI2SR >> 28)));
  }
#endif /* STM32F411xE */

  /* the return result is the value of SAI clock */
  return i2ssourceclock; 
}
/**
  * @}
  */
  
/**
  * @}
  */  
  
#endif /* HAL_I2S_MODULE_ENABLED */
/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/