- 11 8月, 2017 19 次提交
-
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164917891
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164916465
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164914552
-
由 Alexandre Passos 提交于
PiperOrigin-RevId: 164911656
-
由 A. Unique TensorFlower 提交于
destination. It will reuse the same underlying buffer in those cases. PiperOrigin-RevId: 164909906
-
由 Alexandre Passos 提交于
PiperOrigin-RevId: 164902588
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164894867
-
由 Benoit Steiner 提交于
PiperOrigin-RevId: 164894645
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164890915
-
由 A. Unique TensorFlower 提交于
Bugfix: number of input channels is not necessarily in the last dimension, after introduction of data_format param. PiperOrigin-RevId: 164889729
-
由 Igor Saprykin 提交于
Recover MonitoredSession when the Coordinator is requested to stop with one of the _PREEMPTION_ERRORS. When SyncReplicasOptimizer is used, a preemption in the Coordinator may result in two cases: Case 1) the session gets silently marked as complete Case 2) the session gets stuck This CL aims to solve and verify solutions for both of these problems. Fix 1 changes the should_stop logic. Fix 2 changes the CoordinatedSession.run() logic. SyncReplicasOptimizer runs a separate set of threads using a Coordinator instance. Those threads do FIFOQueue.enqueue; the main thread does a blocking FIFOQueue.dequeue. `sync_token_q` FIFOQueue is on parameter-servers. When one of the PS instances gets preempted, an AbortedError causes the Coordinator to stop via request_stop(ex). That by itself changes the state of MonitoredSession.should_stop() to True (Fix 1). Results of the blocking Dequeue operation are sent to the chief worker via Recv. What happens next depends on the amount of tokens in `sync_token_q`. If there are enough for the next call to Dequeue to return, then the low-level "tf session run() call" returns. The next iteration of the `while not MonitoredSession.should_stop()` loop decides that the training is complete (Case 1). If there are not enough tokens in `sync_token_q`, then the blocking Dequeue is going to keep waiting for them. This results in the graph execution getting stuck and the whole session getting garbage collected after 10 minutes (Case 2). We decided to fix that by re-creating a session after it gets garbage collected (Fix 2). An alternative was to try to cancel the pending Dequeue operation, but it's not clear that it is the right thing to do and it is also not easy. PiperOrigin-RevId: 164888390
-
由 A. Unique TensorFlower 提交于
END_PUBLIC RELNOTES: n/a BEGIN_PUBLIC Automated g4 rollback of changelist 164825735 PiperOrigin-RevId: 164883478
-
由 Yangzihao Wang 提交于
PiperOrigin-RevId: 164881593
-
由 A. Unique TensorFlower 提交于
point accuracy is not high enough across all supported platforms. PiperOrigin-RevId: 164879933
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164879220
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164867401
-
由 Jianwei Xie 提交于
PiperOrigin-RevId: 164864147
-
由 Benoit Steiner 提交于
PiperOrigin-RevId: 164862849
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164860564
-
- 10 8月, 2017 21 次提交
-
-
由 A. Unique TensorFlower 提交于
Fixes an issue when 'CG' is used as an optimization method. For example, the CG method does not return the `nit` and `nfev` fields which leads to an error during logging. Test cases were also extended to cover additional optimization methods offered through SciPy. PiperOrigin-RevId: 164849933
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164845473
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164831327
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164830580
-
由 A. Unique TensorFlower 提交于
This change allows more kinds of ops to be fused into the loop. Besides increasing spatial locality, fusing the ops can decrease the code size by not generating an extra loop nest. This change also adds two kinds of tests: * Tests to make sure the fusion logic recognizes that fusion can only occur the op acts elementwise on the operand. * More tests in fusion_test to test how fused loops are lowered with the newly added classes of ops. PiperOrigin-RevId: 164825735
-
由 Andrew Harp 提交于
Android demo: revert calls to yuv -> rgb conversion methods so that Java fallback can be used if libtensorflow_demo.so method is not found. Resolves #12110 PiperOrigin-RevId: 164812287
-
由 Suharsh Sivakumar 提交于
RemoveEMA GT: transforms frozen graphs from the FakeQuantizeTraining GT making it compatible with the QuantizeNodes GT. PiperOrigin-RevId: 164810566
-
由 Jiri Simsa 提交于
PiperOrigin-RevId: 164805620
-
由 A. Unique TensorFlower 提交于
This change introduces an LLVMCompiler class, of which the CPU and GPU compilers are subclasses. The LLVMCompiler class provides the ability to inspect LLVM generated compiler code by registering a callback. The callbacks can be used to analyze IR before and after optimizations. This also adds a simple test for the callback mechanism. PiperOrigin-RevId: 164805348
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164804532
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164804406
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164803218
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164802741
-
由 A. Unique TensorFlower 提交于
Update Android Detect demo to use models exported using the Tensorflow Object Detection API. Resolves #6738. PiperOrigin-RevId: 164802542
-
由 William Chargin 提交于
This changes the `samples_per_second` parameter of the `encode_audio` and `decode_audio` ops from an `Attr` to an `Input`, so that it can be given arbitrary tensor values instead of only constants. This change is important for use cases that want to use a single graph to encode audio clips at arbitrary sample rates. (In particular, we want to create a Python function that uses a long-running TensorFlow session to encode audio; the sample rate cannot be known ahead of time, and we don't want to have to reconstruct the graph on every call.) PiperOrigin-RevId: 164799067
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164797105
-
由 A. Unique TensorFlower 提交于
slightly different semantics. PiperOrigin-RevId: 164796436
-
由 Brennan Saeta 提交于
PiperOrigin-RevId: 164794573
-
由 Sukriti Ramesh 提交于
PiperOrigin-RevId: 164791375
-
由 Francois Chollet 提交于
Refactor Keras layers to rely on the core constraint implementation. PiperOrigin-RevId: 164788653
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164787644
-