- 15 10月, 2022 39 次提交
-
-
由 A. Unique TensorFlower 提交于
http://github.com/tensorflow/runtime/commit/e03a192239c4f59c63db1b4d54b4c15f1d0a1ad7. PiperOrigin-RevId: 481277525
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 481275791
-
由 A. Unique TensorFlower 提交于
Updates LLVM usage to match [d8415b02a519](https://github.com/llvm/llvm-project/commit/d8415b02a519) PiperOrigin-RevId: 481275732
-
由 Faizan Muhammad 提交于
PiperOrigin-RevId: 481266358
-
由 TensorFlower Gardener 提交于
PiperOrigin-RevId: 481265147
-
由 Jian Cai 提交于
PiperOrigin-RevId: 481258105
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 481253023
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 481252019
-
由 Victor Stone 提交于
[XLA:GPU] Check that the types used in the matmul are supported by cublasLt. If they are not supported, we fall back to legacy cublas. This fixes an issue found by some JAX dot_general tests which depended on device (p100/v100). There are certain combinations of types which work on some devices but not on others. However, according to the official cublasLt documentation, these combinations of types are unsupported by cublasLt on all devices. PiperOrigin-RevId: 481251576
-
由 Catherine Payne 提交于
PiperOrigin-RevId: 481251198
-
由 Penporn Koanantakool 提交于
Guard an aarch64-specific TF-oneDNN code block with an ifdef to make sure it doesn't affect the x86 backend, per discussion here: https://github.com/tensorflow/tensorflow/pull/57987#discussion_r993731524 PiperOrigin-RevId: 481247334
-
由 Yash Katariya 提交于
PiperOrigin-RevId: 481246613
-
由 Penporn Koanantakool 提交于
Unify functions to check whether oneDNN is enabled: [Python test_util checker](https://github.com/tensorflow/tensorflow/blob/76b9fa22857148a562f3d9b5af6843402a93c15b/tensorflow/python/framework/test_util.py#L360-L362), [Pywrapped checker](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/util/port.cc#L62-L67) and [C++ checker](https://github.com/tensorflow/tensorflow/blob/76b9fa22857148a562f3d9b5af6843402a93c15b/tensorflow/core/util/util.cc#L130-L183). Move the main function to port.cc to avoid cyclic dependency. Keeping the fix minimal to cherry-pick into TF 2.11. Inconsistencies could cause bugs because Python layer may assume oneDNN is disabled when it's not. For example, `//tensorflow/python/framework:config_test` will fail when run on Cascade Lake or newer CPUs because: * The test is [supposed to be skipped](https://github.com/tensorflow/tensorflow/blob/76b9fa22857148a562f3d9b5af6843402a93c15b/tensorflow/python/framework/config_test.py#L682-L684) when oneDNN is turned on. * Python `test_util` `IsMklEnabled` only checks for [static defines](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/util/port.cc#L62-L67) and [`TF_ENABLE_ONEDNN_OPTS` environment variable](https://github.com/tensorflow/tensorflow/blob/76b9fa22857148a562f3d9b5af6843402a93c15b/tensorflow/python/framework/test_util.py#L362). When the var is unset, the Python checker will just think oneDNN is disabled. But oneDNN is turned on by default on Cascade Lake and newer Intel CPUs (even when the env var is unset). * The test was not skipped when it should have been skipped. PiperOrigin-RevId: 481244351
-
由 Faizan Muhammad 提交于
PiperOrigin-RevId: 481240161
-
由 Peter Hawkins 提交于
[XLA:Python] Expose the Python 3.11 function PyCode_Addr2Location from the XLA:Python traceback library. This allows us to get start column information and end line/column information under Python 3.11. PiperOrigin-RevId: 481240029
-
由 A. Unique TensorFlower 提交于
This updates the behavior of flatbuffer_import to be consistent with that of flatbuffer_export -- it's now possible to losslessly round-trip between flatbuffer and MLIR formats in the presence of model_control_dependencies metadata. PiperOrigin-RevId: 481236206
-
由 Matthias Kramm 提交于
Also, add more optimization/simplification passes. PiperOrigin-RevId: 481229419
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 481226973
-
由 Bing Hu 提交于
PiperOrigin-RevId: 481223775
-
由 A. Unique TensorFlower 提交于
http://github.com/tensorflow/runtime/commit/b23dc948cfe0660dd889fb77844d95849876da23. PiperOrigin-RevId: 481216888
-
由 A. Unique TensorFlower 提交于
- Use xla::runtime::DialectRegistry and xla::runtime::PassManager to wrap corresponding mlir types - Restrict visibility of packages under /compiler/xla/mlir/transforms/runtime /compiler/xla/mlir/ir/runtime/ /compiler/xla/mlir/utils/runtime/ PiperOrigin-RevId: 481214910
-
由 Rahul Joshi 提交于
- HloConstantSplitter pass will ensure that each constant has a single use by duplicating multi-use constants. - Doing this before sharding propagation prevents inadvertent and unintended propagation of sharding. As an example, a shared constant between automatic sharded region and manually sharded region can cause the manual sharding to leak into the automatic sharded code. PiperOrigin-RevId: 481203013
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 481195613
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 481195475
-
由 Jake Harmon 提交于
PiperOrigin-RevId: 481193247
-
由 Eugene Zhulenev 提交于
BEFORE --------------------------------------------------------------- Benchmark Time CPU Iterations --------------------------------------------------------------- BM_FlatMemrefX12All 81.3 ns 81.3 ns 8617874 BM_FlatMemrefX12None 69.1 ns 69.1 ns 10129964 AFTER --------------------------------------------------------------- Benchmark Time CPU Iterations --------------------------------------------------------------- BM_FlatMemrefX12All 54.8 ns 54.8 ns 12683098 BM_FlatMemrefX12None 47.7 ns 47.7 ns 14667555 PiperOrigin-RevId: 481192231
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 481192084
-
由 Eugene Zhulenev 提交于
PiperOrigin-RevId: 481190338
-
由 TensorFlower Gardener 提交于
PiperOrigin-RevId: 481184853
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 481184687
-
由 A. Unique TensorFlower 提交于
http://github.com/tensorflow/runtime/commit/0e71dd2f3edc157ac9ef78643618ef2bdad9718c. PiperOrigin-RevId: 481184177
-
由 Benjamin Kramer 提交于
Updates LLVM usage to match [06da9b94ae37](https://github.com/llvm/llvm-project/commit/06da9b94ae37) PiperOrigin-RevId: 481181270
-
由 Michael Delorimier 提交于
Log when TPUReshardVariables is inserted. This information is often needed for performance optimization. PiperOrigin-RevId: 481181240
-
由 TensorFlower Gardener 提交于
PiperOrigin-RevId: 481177778
-
由 Raman Sarokin 提交于
PiperOrigin-RevId: 481176034
-
由 Raman Sarokin 提交于
PiperOrigin-RevId: 481174166
-
由 Eugene Burmako 提交于
This is something that I forgot about when reviewing cl/481105084. Importer needed to be changed manually, but exports is autogenerated and already works properly. PiperOrigin-RevId: 481164618
-
由 Jean-Baptiste Lespiau 提交于
PiperOrigin-RevId: 481159038
-
由 Pauline Sho 提交于
This error was caused by shifting a signed integer: ``` third_party/tensorflow/compiler/mlir/lite/utils/low_bit_utils.cc:44:38: runtime error: left shift of negative value -98 ``` This is fixed by more intentional casting. PiperOrigin-RevId: 481157662
-
- 14 10月, 2022 1 次提交
-
-
由 Eugene Zhulenev 提交于
PiperOrigin-RevId: 481153499
-