- 10 8月, 2017 35 次提交
-
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164845473
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164831327
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164830580
-
由 A. Unique TensorFlower 提交于
This change allows more kinds of ops to be fused into the loop. Besides increasing spatial locality, fusing the ops can decrease the code size by not generating an extra loop nest. This change also adds two kinds of tests: * Tests to make sure the fusion logic recognizes that fusion can only occur the op acts elementwise on the operand. * More tests in fusion_test to test how fused loops are lowered with the newly added classes of ops. PiperOrigin-RevId: 164825735
-
由 Andrew Harp 提交于
Android demo: revert calls to yuv -> rgb conversion methods so that Java fallback can be used if libtensorflow_demo.so method is not found. Resolves #12110 PiperOrigin-RevId: 164812287
-
由 Suharsh Sivakumar 提交于
RemoveEMA GT: transforms frozen graphs from the FakeQuantizeTraining GT making it compatible with the QuantizeNodes GT. PiperOrigin-RevId: 164810566
-
由 Jiri Simsa 提交于
PiperOrigin-RevId: 164805620
-
由 A. Unique TensorFlower 提交于
This change introduces an LLVMCompiler class, of which the CPU and GPU compilers are subclasses. The LLVMCompiler class provides the ability to inspect LLVM generated compiler code by registering a callback. The callbacks can be used to analyze IR before and after optimizations. This also adds a simple test for the callback mechanism. PiperOrigin-RevId: 164805348
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164804532
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164804406
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164803218
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164802741
-
由 A. Unique TensorFlower 提交于
Update Android Detect demo to use models exported using the Tensorflow Object Detection API. Resolves #6738. PiperOrigin-RevId: 164802542
-
由 William Chargin 提交于
This changes the `samples_per_second` parameter of the `encode_audio` and `decode_audio` ops from an `Attr` to an `Input`, so that it can be given arbitrary tensor values instead of only constants. This change is important for use cases that want to use a single graph to encode audio clips at arbitrary sample rates. (In particular, we want to create a Python function that uses a long-running TensorFlow session to encode audio; the sample rate cannot be known ahead of time, and we don't want to have to reconstruct the graph on every call.) PiperOrigin-RevId: 164799067
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164797105
-
由 A. Unique TensorFlower 提交于
slightly different semantics. PiperOrigin-RevId: 164796436
-
由 Brennan Saeta 提交于
PiperOrigin-RevId: 164794573
-
由 Sukriti Ramesh 提交于
PiperOrigin-RevId: 164791375
-
由 Francois Chollet 提交于
Refactor Keras layers to rely on the core constraint implementation. PiperOrigin-RevId: 164788653
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164787644
-
由 Yangzihao Wang 提交于
PiperOrigin-RevId: 164786167
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164782851
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164782742
-
由 Derek Murray 提交于
This transformation is a simpler (and potentially more efficient) replacement for `Dataset.map(lambda x: x, num_threads=1, output_buffer_size=N)`, avoiding the overhead of function invocation and simplifying the synchronization slightly. PiperOrigin-RevId: 164781954
-
由 Kay Zhu 提交于
[XLA] Fix Broadcast implementation in HloEvaluator to handle the special case of scalar broadcast to be consistent with other backends. Also add a test for scalar broadcast. PiperOrigin-RevId: 164781786
-
由 Mark Heffernan 提交于
Updating is possible if operands/uses or computation roots change in the graph. Updating is not possible if instructions are deleted or if new instructions are added. Specific changes: * Add verification methods for asserting invariants and checking the analysis after updating. * Always add phi values at while instructions. Previously these were added only if the phi had different inputs. The advantage of using phi's unconditionally is that the set of values is fixed for a module. Updates due to changing operands/uses in the graph do not create new values. * Store values in a vector rather than a map. With unconditional phi values, the number of HloValues is fixed so the values can be held in a vector with stable references to elements. PiperOrigin-RevId: 164778750
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164777455
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164775849
-
由 Yao Zhang 提交于
PiperOrigin-RevId: 164771538
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164762982
-
由 Brennan Saeta 提交于
A common failure mode of the new datasets input pipeline is an extremely long first sess.run call. It can sometimes appear to users that things are simply hanging, when instead a large shuffle buffer is being filled. When filling large shuffle buffers, we should let users know what's going on. PiperOrigin-RevId: 164760903
-
由 A. Unique TensorFlower 提交于
Don't run contrib/timeseries/python/timeseries:state_management_test pip test until crash has been resolved. PiperOrigin-RevId: 164759761
-
由 Benoit Steiner 提交于
PiperOrigin-RevId: 164739939
-
由 David Soergel 提交于
PiperOrigin-RevId: 164739283
-
由 Eric Liu 提交于
Also make version name alpha instead of RC. PiperOrigin-RevId: 164735457
-
- 09 8月, 2017 5 次提交
-
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164728247
-
由 HyoukJoong Lee 提交于
removable from a computation. This is to prevent DCE from removing a while instruction that includes a send/recv instruction. PiperOrigin-RevId: 164722478
-
由 A. Unique TensorFlower 提交于
PiperOrigin-RevId: 164718342
-
由 James Qin 提交于
PiperOrigin-RevId: 164686075
-
由 RJ Ryan 提交于
Prevents bad formatting: https://www.tensorflow.org/versions/r1.2/api_docs/python/tf/nn/dynamic_rnn PiperOrigin-RevId: 164675585
-