Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
wux_labs
Tensorflow
提交
4b7bc317
T
Tensorflow
项目概览
wux_labs
/
Tensorflow
通知
1
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
T
Tensorflow
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
4b7bc317
编写于
4月 22, 2016
作者:
V
Vijay Vasudevan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update cuda instructions to be more specific about versions (#2065)
上级
dc19800e
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
13 addition
and
6 deletion
+13
-6
tensorflow/g3doc/get_started/os_setup.md
tensorflow/g3doc/get_started/os_setup.md
+13
-6
未找到文件。
tensorflow/g3doc/get_started/os_setup.md
浏览文件 @
4b7bc317
...
...
@@ -7,8 +7,10 @@ github source.
The TensorFlow Python API supports Python 2.7 and Python 3.3+.
The GPU version (Linux only) requires the Cuda Toolkit >= 7.0 and cuDNN >=
v2. Please see
[
Cuda installation
](
#optional-install-cuda-gpus-on-linux
)
The GPU version (Linux only) works best with Cuda Toolkit 7.5 and
cuDNN v4. other versions are supported (Cuda toolkit >= 7.0 and
cuDNN 6.5(v2), 7.0(v3), v5) only when installing from sources.
Please see
[
Cuda installation
](
#optional-install-cuda-gpus-on-linux
)
for details.
## Overview
...
...
@@ -325,7 +327,7 @@ You can now [test your installation](#test-the-tensorflow-installation) within t
### (Optional, Linux) Enable GPU Support
If you installed the GPU version of TensorFlow, you must also install the Cuda
Toolkit 7.
0 and cuDNN v2
. Please see
[
Cuda installation
](
#optional-install-cuda-gpus-on-linux
)
.
Toolkit 7.
5 and cuDNN v4
. Please see
[
Cuda installation
](
#optional-install-cuda-gpus-on-linux
)
.
You also need to set the
`LD_LIBRARY_PATH`
and
`CUDA_HOME`
environment
variables. Consider adding the commands below to your
`~/.bash_profile`
. These
...
...
@@ -466,20 +468,25 @@ Supported cards include but are not limited to:
https://developer.nvidia.com/cuda-downloads
Install version 7.5 if using our binary releases.
Install the toolkit into e.g.
`/usr/local/cuda`
##### Download and install cuDNN
https://developer.nvidia.com/cudnn
Download cuDNN v4 (v5 is currently a release candidate and is only supported when
installing TensorFlow from sources).
Uncompress and copy the cuDNN files into the toolkit directory. Assuming the
toolkit is installed in
`/usr/local/cuda`
, run the following commands (edited
to reflect the cuDNN version you downloaded):
```
bash
tar
xvzf cudnn-
6.5-linux-x64-v2
.tgz
sudo cp
cudnn-
6.5-linux-x64-v2
/cudnn.h /usr/local/cuda/include
sudo cp
cudnn-
6.5-linux-x64-v2
/libcudnn
*
/usr/local/cuda/lib64
tar
xvzf cudnn-
7.5-linux-x64-v4
.tgz
sudo cp
cudnn-
7.5-linux-x64-v4
/cudnn.h /usr/local/cuda/include
sudo cp
cudnn-
7.5-linux-x64-v4
/libcudnn
*
/usr/local/cuda/lib64
sudo chmod
a+r /usr/local/cuda/lib64/libcudnn
*
```
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录