Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
wux_labs
Tensorflow
提交
45a8301d
T
Tensorflow
项目概览
wux_labs
/
Tensorflow
通知
1
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
T
Tensorflow
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
45a8301d
编写于
9月 11, 2023
作者:
A
A. Unique TensorFlower
提交者:
TensorFlower Gardener
9月 11, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Go: Update generated wrapper functions for TensorFlow ops.
PiperOrigin-RevId: 564546472
上级
d70aeead
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
102 addition
and
6 deletion
+102
-6
tensorflow/go/op/wrappers.go
tensorflow/go/op/wrappers.go
+102
-6
未找到文件。
tensorflow/go/op/wrappers.go
浏览文件 @
45a8301d
...
...
@@ -47144,6 +47144,17 @@ func SparseReshape(scope *Scope, input_indices tf.Output, input_shape tf.Output,
return op.Output(0), op.Output(1)
}
// SparseSegmentMeanAttr is an optional argument to SparseSegmentMean.
type SparseSegmentMeanAttr func(optionalAttr)
// SparseSegmentMeanSparseGradient sets the optional sparse_gradient attribute to value.
// If not specified, defaults to false
func SparseSegmentMeanSparseGradient(value bool) SparseSegmentMeanAttr {
return func(m optionalAttr) {
m["sparse_gradient"] = value
}
}
// Computes the mean along sparse segments of a tensor.
//
// See `tf.sparse.segment_sum` for usage examples.
...
...
@@ -47158,15 +47169,20 @@ func SparseReshape(scope *Scope, input_indices tf.Output, input_shape tf.Output,
//
// Returns Has same shape as data, except for dimension 0 which
// has size `k`, the number of segments.
func SparseSegmentMean(scope *Scope, data tf.Output, indices tf.Output, segment_ids tf.Output) (output tf.Output) {
func SparseSegmentMean(scope *Scope, data tf.Output, indices tf.Output, segment_ids tf.Output
, optional ...SparseSegmentMeanAttr
) (output tf.Output) {
if scope.Err() != nil {
return
}
attrs := map[string]interface{}{}
for _, a := range optional {
a(attrs)
}
opspec := tf.OpSpec{
Type: "SparseSegmentMean",
Input: []tf.Input{
data, indices, segment_ids,
},
Attrs: attrs,
}
op := scope.AddOperation(opspec)
return op.Output(0)
...
...
@@ -47223,6 +47239,17 @@ func SparseSegmentMeanGradV2(scope *Scope, grad tf.Output, indices tf.Output, se
return op.Output(0), op.Output(1)
}
// SparseSegmentMeanWithNumSegmentsAttr is an optional argument to SparseSegmentMeanWithNumSegments.
type SparseSegmentMeanWithNumSegmentsAttr func(optionalAttr)
// SparseSegmentMeanWithNumSegmentsSparseGradient sets the optional sparse_gradient attribute to value.
// If not specified, defaults to false
func SparseSegmentMeanWithNumSegmentsSparseGradient(value bool) SparseSegmentMeanWithNumSegmentsAttr {
return func(m optionalAttr) {
m["sparse_gradient"] = value
}
}
// Computes the mean along sparse segments of a tensor.
//
// Like `SparseSegmentMean`, but allows missing ids in `segment_ids`. If an id is
...
...
@@ -47240,20 +47267,36 @@ func SparseSegmentMeanGradV2(scope *Scope, grad tf.Output, indices tf.Output, se
//
// Returns Has same shape as data, except for dimension 0 which has size
// `num_segments`.
func SparseSegmentMeanWithNumSegments(scope *Scope, data tf.Output, indices tf.Output, segment_ids tf.Output, num_segments tf.Output) (output tf.Output) {
func SparseSegmentMeanWithNumSegments(scope *Scope, data tf.Output, indices tf.Output, segment_ids tf.Output, num_segments tf.Output
, optional ...SparseSegmentMeanWithNumSegmentsAttr
) (output tf.Output) {
if scope.Err() != nil {
return
}
attrs := map[string]interface{}{}
for _, a := range optional {
a(attrs)
}
opspec := tf.OpSpec{
Type: "SparseSegmentMeanWithNumSegments",
Input: []tf.Input{
data, indices, segment_ids, num_segments,
},
Attrs: attrs,
}
op := scope.AddOperation(opspec)
return op.Output(0)
}
// SparseSegmentSqrtNAttr is an optional argument to SparseSegmentSqrtN.
type SparseSegmentSqrtNAttr func(optionalAttr)
// SparseSegmentSqrtNSparseGradient sets the optional sparse_gradient attribute to value.
// If not specified, defaults to false
func SparseSegmentSqrtNSparseGradient(value bool) SparseSegmentSqrtNAttr {
return func(m optionalAttr) {
m["sparse_gradient"] = value
}
}
// Computes the sum along sparse segments of a tensor divided by the sqrt of N.
//
// N is the size of the segment being reduced.
...
...
@@ -47267,15 +47310,20 @@ func SparseSegmentMeanWithNumSegments(scope *Scope, data tf.Output, indices tf.O
//
// Returns Has same shape as data, except for dimension 0 which
// has size `k`, the number of segments.
func SparseSegmentSqrtN(scope *Scope, data tf.Output, indices tf.Output, segment_ids tf.Output) (output tf.Output) {
func SparseSegmentSqrtN(scope *Scope, data tf.Output, indices tf.Output, segment_ids tf.Output
, optional ...SparseSegmentSqrtNAttr
) (output tf.Output) {
if scope.Err() != nil {
return
}
attrs := map[string]interface{}{}
for _, a := range optional {
a(attrs)
}
opspec := tf.OpSpec{
Type: "SparseSegmentSqrtN",
Input: []tf.Input{
data, indices, segment_ids,
},
Attrs: attrs,
}
op := scope.AddOperation(opspec)
return op.Output(0)
...
...
@@ -47332,6 +47380,17 @@ func SparseSegmentSqrtNGradV2(scope *Scope, grad tf.Output, indices tf.Output, s
return op.Output(0), op.Output(1)
}
// SparseSegmentSqrtNWithNumSegmentsAttr is an optional argument to SparseSegmentSqrtNWithNumSegments.
type SparseSegmentSqrtNWithNumSegmentsAttr func(optionalAttr)
// SparseSegmentSqrtNWithNumSegmentsSparseGradient sets the optional sparse_gradient attribute to value.
// If not specified, defaults to false
func SparseSegmentSqrtNWithNumSegmentsSparseGradient(value bool) SparseSegmentSqrtNWithNumSegmentsAttr {
return func(m optionalAttr) {
m["sparse_gradient"] = value
}
}
// Computes the sum along sparse segments of a tensor divided by the sqrt of N.
//
// N is the size of the segment being reduced.
...
...
@@ -47351,20 +47410,36 @@ func SparseSegmentSqrtNGradV2(scope *Scope, grad tf.Output, indices tf.Output, s
//
// Returns Has same shape as data, except for dimension 0 which
// has size `k`, the number of segments.
func SparseSegmentSqrtNWithNumSegments(scope *Scope, data tf.Output, indices tf.Output, segment_ids tf.Output, num_segments tf.Output) (output tf.Output) {
func SparseSegmentSqrtNWithNumSegments(scope *Scope, data tf.Output, indices tf.Output, segment_ids tf.Output, num_segments tf.Output
, optional ...SparseSegmentSqrtNWithNumSegmentsAttr
) (output tf.Output) {
if scope.Err() != nil {
return
}
attrs := map[string]interface{}{}
for _, a := range optional {
a(attrs)
}
opspec := tf.OpSpec{
Type: "SparseSegmentSqrtNWithNumSegments",
Input: []tf.Input{
data, indices, segment_ids, num_segments,
},
Attrs: attrs,
}
op := scope.AddOperation(opspec)
return op.Output(0)
}
// SparseSegmentSumAttr is an optional argument to SparseSegmentSum.
type SparseSegmentSumAttr func(optionalAttr)
// SparseSegmentSumSparseGradient sets the optional sparse_gradient attribute to value.
// If not specified, defaults to false
func SparseSegmentSumSparseGradient(value bool) SparseSegmentSumAttr {
return func(m optionalAttr) {
m["sparse_gradient"] = value
}
}
// Computes the sum along sparse segments of a tensor.
//
// Read
...
...
@@ -47404,15 +47479,20 @@ func SparseSegmentSqrtNWithNumSegments(scope *Scope, data tf.Output, indices tf.
//
// Returns Has same shape as data, except for dimension 0 which
// has size `k`, the number of segments.
func SparseSegmentSum(scope *Scope, data tf.Output, indices tf.Output, segment_ids tf.Output) (output tf.Output) {
func SparseSegmentSum(scope *Scope, data tf.Output, indices tf.Output, segment_ids tf.Output
, optional ...SparseSegmentSumAttr
) (output tf.Output) {
if scope.Err() != nil {
return
}
attrs := map[string]interface{}{}
for _, a := range optional {
a(attrs)
}
opspec := tf.OpSpec{
Type: "SparseSegmentSum",
Input: []tf.Input{
data, indices, segment_ids,
},
Attrs: attrs,
}
op := scope.AddOperation(opspec)
return op.Output(0)
...
...
@@ -47469,6 +47549,17 @@ func SparseSegmentSumGradV2(scope *Scope, grad tf.Output, indices tf.Output, seg
return op.Output(0), op.Output(1)
}
// SparseSegmentSumWithNumSegmentsAttr is an optional argument to SparseSegmentSumWithNumSegments.
type SparseSegmentSumWithNumSegmentsAttr func(optionalAttr)
// SparseSegmentSumWithNumSegmentsSparseGradient sets the optional sparse_gradient attribute to value.
// If not specified, defaults to false
func SparseSegmentSumWithNumSegmentsSparseGradient(value bool) SparseSegmentSumWithNumSegmentsAttr {
return func(m optionalAttr) {
m["sparse_gradient"] = value
}
}
// Computes the sum along sparse segments of a tensor.
//
// Like `SparseSegmentSum`, but allows missing ids in `segment_ids`. If an id is
...
...
@@ -47511,15 +47602,20 @@ func SparseSegmentSumGradV2(scope *Scope, grad tf.Output, indices tf.Output, seg
//
// Returns Has same shape as data, except for dimension 0 which
// has size `num_segments`.
func SparseSegmentSumWithNumSegments(scope *Scope, data tf.Output, indices tf.Output, segment_ids tf.Output, num_segments tf.Output) (output tf.Output) {
func SparseSegmentSumWithNumSegments(scope *Scope, data tf.Output, indices tf.Output, segment_ids tf.Output, num_segments tf.Output
, optional ...SparseSegmentSumWithNumSegmentsAttr
) (output tf.Output) {
if scope.Err() != nil {
return
}
attrs := map[string]interface{}{}
for _, a := range optional {
a(attrs)
}
opspec := tf.OpSpec{
Type: "SparseSegmentSumWithNumSegments",
Input: []tf.Input{
data, indices, segment_ids, num_segments,
},
Attrs: attrs,
}
op := scope.AddOperation(opspec)
return op.Output(0)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录