提交 59da1a57 编写于 作者: Y yanglbme

docs(high-concurrency): update redis description

Format docs and add some new content
上级 2cbf590a
......@@ -36,7 +36,7 @@
- [如何保证 Redis 高并发、高可用?Redis 的主从复制原理能介绍一下么?Redis 的哨兵原理能介绍一下么?](/docs/high-concurrency/how-to-ensure-high-concurrency-and-high-availability-of-redis.md)
- [Redis 的持久化有哪几种方式?不同的持久化机制都有什么优缺点?持久化机制具体底层是如何实现的?](/docs/high-concurrency/redis-persistence.md)
- [Redis 集群模式的工作原理能说一下么?在集群模式下,Redis 的 key 是如何寻址的?分布式寻址都有哪些算法?了解一致性 hash 算法吗?如何动态增加和删除一个节点?](/docs/high-concurrency/redis-cluster.md)
- [了解什么是 Redis 的雪崩和穿透?Redis 崩溃之后会怎么样?系统该如何应对这种情况?如何处理 Redis 的穿透?](/docs/high-concurrency/redis-caching-avalanche-and-caching-penetration.md)
- [了解什么是 redis 的雪崩、穿透和击穿?Redis 崩溃之后会怎么样?系统该如何应对这种情况?如何处理 Redis 的穿透?](/docs/high-concurrency/redis-caching-avalanche-and-caching-penetration.md)
- [如何保证缓存与数据库的双写一致性?](/docs/high-concurrency/redis-consistence.md)
- [Redis 的并发竞争问题是什么?如何解决这个问题?了解 Redis 事务的 CAS 方案吗?](/docs/high-concurrency/redis-cas.md)
- [生产环境中的 Redis 是怎么部署的?](/docs/high-concurrency/redis-production-environment.md)
......
## 面试题
了解什么是 redis 的雪崩和穿透?redis 崩溃之后会怎么样?系统该如何应对这种情况?如何处理 redis 的穿透?
了解什么是 redis 的雪崩、穿透和击穿?redis 崩溃之后会怎么样?系统该如何应对这种情况?如何处理 redis 的穿透?
## 面试官心理分析
其实这是问到缓存必问的,因为缓存雪崩和穿透,是缓存最大的两个问题,要么不出现,一旦出现就是致命性的问题,所以面试官一定会问你。
## 面试题剖析
### 缓存雪崩
对于系统 A,假设每天高峰期每秒 5000 个请求,本来缓存在高峰期可以扛住每秒 4000 个请求,但是缓存机器意外发生了全盘宕机。缓存挂了,此时 1 秒 5000 个请求全部落数据库,数据库必然扛不住,它会报一下警,然后就挂了。此时,如果没用什么特别的方案来处理这个故障,DBA 很着急,重启数据库,但是数据库立马又被新的流量给打死了。
对于系统 A,假设每天高峰期每秒 5000 个请求,本来缓存在高峰期可以扛住每秒 4000 个请求,但是缓存机器意外发生了全盘宕机。缓存挂了,此时 1 秒 5000 个请求全部落数据库,数据库必然扛不住,它会报一下警,然后就挂了。此时,如果没有采用什么特别的方案来处理这个故障,DBA 很着急,重启数据库,但是数据库立马又被新的流量给打死了。
这就是缓存雪崩。
......@@ -39,4 +39,9 @@
![redis-caching-penetration](/images/redis-caching-penetration.png)
解决方式很简单,每次系统 A 从数据库中只要没查到,就写一个空值到缓存里去,比如 `set -999 UNKNOWN`。这样的话,下次便能走缓存了。
\ No newline at end of file
解决方式很简单,每次系统 A 从数据库中只要没查到,就写一个空值到缓存里去,比如 `set -999 UNKNOWN`。然后设置一个过期时间,这样的话,下次有相同的 key 来访问的时候,在缓存失效之前,都可以直接从缓存中取数据。
### 缓存击穿
缓存击穿,就是说某个 key 非常热点,访问非常频繁,处于集中式高并发访问的情况,当这个 key 在失效的瞬间,大量的请求就击穿了缓存,直接请求数据库,就像是在一道屏障上凿开了一个洞。
解决方式也很简单,可以将热点数据设置为永远不过期;或者基于 redis or zookeeper 实现互斥锁,等待第一个请求构建完缓存之后,再释放锁,进而其它请求才能通过该 key 访问数据。
\ No newline at end of file
......@@ -4,7 +4,7 @@ redis 集群模式的工作原理能说一下么?在集群模式下,redis
## 面试官心理分析
在前几年,redis 如果要搞几个节点,每个节点存储一部分的数据,得**借助一些中间件**来实现,比如说有 `codis`,或者 `twemproxy`,都有。有一些 redis 中间件,你读写 redis 中间件,redis 中间件负责将你的数据分布式存储在多台机器上的 redis 实例中。
这两年,redis 不断在发展,redis 也不断的有新的版本,现在的 redis 集群模式,可以做到在多台机器上,部署多个 redis 实例,每个实例存储一部分的数据,同时每个 redis 实例可以挂 redis 从实例,自动确保说,如果 redis 主实例挂了,会自动切换到 redis 从实例顶上来。
这两年,redis 不断在发展,redis 也不断有新的版本,现在的 redis 集群模式,可以做到在多台机器上,部署多个 redis 实例,每个实例存储一部分的数据,同时每个 redis 主实例可以挂 redis 从实例,自动确保说,如果 redis 主实例挂了,会自动切换到 redis 从实例上来。
现在 redis 的新版本,大家都是用 redis cluster 的,也就是 redis 原生支持的 redis 集群模式,那么面试官肯定会就 redis cluster 对你来个几连炮。要是你没用过 redis cluster,正常,以前很多人用 codis 之类的客户端来支持集群,但是起码你得研究一下 redis cluster 吧。
......@@ -23,8 +23,9 @@ redis cluster,主要是针对**海量数据+高并发+高可用**的场景。r
### 节点间的内部通信机制
#### 基本通信原理
- redis cluster 节点间采用 gossip 协议进行通信
集中式是将集群元数据(节点信息、故障等等)几种存储在某个节点上。集中式元数据集中存储的一个典型代表,就是大数据领域的 `storm`。它是分布式的大数据实时计算引擎,是集中式的元数据存储的结构,底层基于 zookeeper(分布式协调的中间件)对所有元数据进行存储维护。
集群元数据的维护有两种方式:集中式、Gossip 协议。redis cluster 节点间采用 gossip 协议进行通信。
**集中式**是将集群元数据(节点信息、故障等等)几种存储在某个节点上。集中式元数据集中存储的一个典型代表,就是大数据领域的 `storm`。它是分布式的大数据实时计算引擎,是集中式的元数据存储的结构,底层基于 zookeeper(分布式协调的中间件)对所有元数据进行存储维护。
![zookeeper-centralized-storage](/images/zookeeper-centralized-storage.png)
......@@ -34,20 +35,21 @@ redis 维护集群元数据采用另一个方式, `gossip` 协议,所有节
**集中式****好处**在于,元数据的读取和更新,时效性非常好,一旦元数据出现了变更,就立即更新到集中式的存储中,其它节点读取的时候就可以感知到;**不好**在于,所有的元数据的更新压力全部集中在一个地方,可能会导致元数据的存储有压力。
gossip 好处在于,元数据的更新比较分散,不是集中在一个地方,更新请求会陆陆续续打到所有节点上去更新,降低了压力;不好在于,元数据的更新有延时,可能导致集群中的一些操作会有一些滞后。
gossip 好处在于,元数据的更新比较分散,不是集中在一个地方,更新请求会陆陆续续打到所有节点上去更新,降低了压力;不好在于,元数据的更新有延时,可能导致集群中的一些操作会有一些滞后。
- 10000 端口
每个节点都有一个专门用于节点间通信的端口,就是自己提供服务的端口号+10000,比如 7001,那么用于节点间通信的就是 17001 端口。每个节点每隔一段时间都会往另外几个节点发送 `ping` 消息,同时其它几个节点接收到 `ping` 之后返回 `pong`
- 10000 端口:每个节点都有一个专门用于节点间通信的端口,就是自己提供服务的端口号+10000,比如 7001,那么用于节点间通信的就是 17001 端口。每个节点每隔一段时间都会往另外几个节点发送 `ping` 消息,同时其它几个节点接收到 `ping` 之后返回 `pong`
- 交换的信息
信息包括故障信息,节点的增加和删除,hash slot 信息 等等。
- 交换的信息:信息包括故障信息,节点的增加和删除,hash slot 信息等等。
#### gossip 协议
gossip 协议包含多种消息,包含 `ping`,`pong`,`meet`,`fail` 等等。
- meet:某个节点发送 meet 给新加入的节点,让新节点加入集群中,然后新节点就会开始与其它节点进行通信。
```bash
redis-trib.rb add-node
```
其实内部就是发送了一个 gossip meet 消息给新加入的节点,通知那个节点去加入我们的集群。
- ping:每个节点都会频繁给其它节点发送 ping,其中包含自己的状态还有自己维护的集群元数据,互相通过 ping 交换元数据。
......@@ -59,7 +61,7 @@ ping 时要携带一些元数据,如果很频繁,可能会加重网络负担
每个节点每秒会执行 10 次 ping,每次会选择 5 个最久没有通信的其它节点。当然如果发现某个节点通信延时达到了 `cluster_node_timeout / 2`,那么立即发送 ping,避免数据交换延时过长,落后的时间太长了。比如说,两个节点之间都 10 分钟没有交换数据了,那么整个集群处于严重的元数据不一致的情况,就会有问题。所以 `cluster_node_timeout` 可以调节,如果调得比较大,那么会降低 ping 的频率。
每次 ping,会带上自己节点的信息,还有就是带上 1/10 其它节点的信息,发送出去,进行交换。至少包含 `3` 个其它节点的信息,最多包含`总结点-2` 个其它节点的信息。
每次 ping,会带上自己节点的信息,还有就是带上 1/10 其它节点的信息,发送出去,进行交换。至少包含 `3` 个其它节点的信息,最多包含 `总节点数减 2` 个其它节点的信息。
### 分布式寻址算法
- hash 算法(大量缓存重建)
......@@ -92,7 +94,7 @@ redis cluster 中每个 master 都会持有部分 slot,比如有 3 个 master
![hash-slot](/images/hash-slot.png)
### redis cluster 的高可用与主备切换原理
redis cluster 的高可用的原理,几乎跟哨兵是类似的
redis cluster 的高可用的原理,几乎跟哨兵是类似的
#### 判断节点宕机
如果一个节点认为另外一个节点宕机,那么就是 `pfail`**主观宕机**。如果多个节点都认为另外一个节点宕机了,那么就是 `fail`**客观宕机**,跟哨兵的原理几乎一样,sdown,odown。
......
......@@ -27,11 +27,11 @@
其实删除缓存,而不是更新缓存,就是一个 lazy 计算的思想,不要每次都重新做复杂的计算,不管它会不会用到,而是让它到需要被使用的时候再重新计算。像 mybatis,hibernate,都有懒加载思想。查询一个部门,部门带了一个员工的 list,没有必要说每次查询部门,都里面的 1000 个员工的数据也同时查出来啊。80% 的情况,查这个部门,就只是要访问这个部门的信息就可以了。先查部门,同时要访问里面的员工,那么这个时候只有在你要访问里面的员工的时候,才会去数据库里面查询 1000 个员工。
### 最初级的缓存不一致问题及解决方案
问题:先修改数据库,再删除缓存。如果删除缓存失败了,那么会导致数据库中是新数据,缓存中是旧数据,数据就出现了不一致。
问题:先更新数据库,再删除缓存。如果删除缓存失败了,那么会导致数据库中是新数据,缓存中是旧数据,数据就出现了不一致。
![redis-junior-inconsistent](/images/redis-junior-inconsistent.png)
解决思路:先删除缓存,再修改数据库。如果数据库修改失败了,那么数据库中是旧数据,缓存中是空的,那么数据不会不一致。因为读的时候缓存没有,则读数据库中旧数据,然后更新到缓存中。
解决思路:先删除缓存,再更新数据库。如果数据库更新失败了,那么数据库中是旧数据,缓存中是空的,那么数据不会不一致。因为读的时候缓存没有,所以去读了数据库中的旧数据,然后更新到缓存中。
### 比较复杂的数据不一致问题分析
数据发生了变更,先删除了缓存,然后要去修改数据库,此时还没修改。一个请求过来,去读缓存,发现缓存空了,去查询数据库,**查到了修改前的旧数据**,放到了缓存中。随后数据变更的程序完成了数据库的修改。完了,数据库和缓存中的数据不一样了...
......@@ -44,7 +44,7 @@
更新数据的时候,根据**数据的唯一标识**,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。
一个队列对应一个工作线程,每个工作线程**串行**拿到对应的操作,然后一条一条的执行。这样的话,一个数据变更的操作,先删除缓存,然后再去更新数据库,但是还没完成更新。此时如果一个读请求过来,读到了空的缓存,那么可以先将缓存更新的请求发送到队列中,此时会在队列中积压,然后同步等待缓存更新完成。
一个队列对应一个工作线程,每个工作线程**串行**拿到对应的操作,然后一条一条的执行。这样的话,一个数据变更的操作,先删除缓存,然后再去更新数据库,但是还没完成更新。此时如果一个读请求过来,没有读到缓存,那么可以先将缓存更新的请求发送到队列中,此时会在队列中积压,然后同步等待缓存更新完成。
这里有一个**优化点**,一个队列中,其实**多个更新缓存请求串在一起是没意义的**,因此可以做过滤,如果发现队列中已经有一个更新缓存的请求了,那么就不用再放个更新请求操作进去了,直接等待前面的更新操作请求完成即可。
......@@ -53,6 +53,7 @@
如果请求还在等待时间范围内,不断轮询发现可以取到值了,那么就直接返回;如果请求等待的时间超过一定时长,那么这一次直接从数据库中读取当前的旧值。
高并发的场景下,该解决方案要注意的问题:
- 读请求长时阻塞
由于读请求进行了非常轻度的异步化,所以一定要注意读超时的问题,每个读请求必须在超时时间范围内返回。
......
......@@ -11,7 +11,7 @@ redis 如果仅仅只是将数据缓存在内存里面,如果 redis 宕机了
## 面试题剖析
持久化主要是做灾难恢复、数据恢复,也可以归类到高可用的一个环节中去,比如你 redis 整个挂了,然后 redis 就不可用了,你要做的事情就是让 redis 变得可用,尽快变得可用。
重启 redis,尽快让它外提供服务,如果没做数据备份,这时候 redis 启动了,也不可用啊,数据都没了。
重启 redis,尽快让它外提供服务,如果没做数据备份,这时候 redis 启动了,也不可用啊,数据都没了。
很可能说,大量的请求过来,缓存全部无法命中,在 redis 里根本找不到数据,这个时候就死定了,出现**缓存雪崩**问题。所有请求没有在 redis 命中,就会去 mysql 数据库这种数据源头中去找,一下子 mysql 承接高并发,然后就挂了...
......@@ -28,7 +28,7 @@ redis 如果仅仅只是将数据缓存在内存里面,如果 redis 宕机了
如果同时使用 RDB 和 AOF 两种持久化机制,那么在 redis 重启的时候,会使用 **AOF** 来重新构建数据,因为 AOF 中的**数据更加完整**
#### RDB 优缺点
- RDB会生成多个数据文件,每个数据文件都代表了某一个时刻中 redis 的数据,这种多个数据文件的方式,**非常适合做冷备**,可以将这种完整的数据文件发送到一些远程的安全存储上去,比如说 Amazon 的 S3 云服务上去,在国内可以是阿里云的 ODPS 分布式存储上,以预定好的备份策略来定期备份 redis 中的数据。
- RDB 会生成多个数据文件,每个数据文件都代表了某一个时刻中 redis 的数据,这种多个数据文件的方式,**非常适合做冷备**,可以将这种完整的数据文件发送到一些远程的安全存储上去,比如说 Amazon 的 S3 云服务上去,在国内可以是阿里云的 ODPS 分布式存储上,以预定好的备份策略来定期备份 redis 中的数据。
- RDB 对 redis 对外提供的读写服务,影响非常小,可以让 redis **保持高性能**,因为 redis 主进程只需要 fork 一个子进程,让子进程执行磁盘 IO 操作来进行 RDB 持久化即可。
- 相对于 AOF 持久化机制来说,直接基于 RDB 数据文件来重启和恢复 redis 进程,更加快速。
......@@ -38,13 +38,13 @@ redis 如果仅仅只是将数据缓存在内存里面,如果 redis 宕机了
#### AOF 优缺点
- AOF 可以更好的保护数据不丢失,一般 AOF 会每隔 1 秒,通过一个后台线程执行一次`fsync`操作,最多丢失 1 秒钟的数据。
- AOF 日志文件以 `append-only` 模式写入,所以没有任何磁盘寻址的开销,写入性能非常高,而且文件不容易破损,即使文件尾部破损,也很容易修复。
- AOF 日志文件即使过大的时候,出现后台重写操作,也不会影响客户端的读写。因为在 `rewrite` log 的时候,会对其中的指导进行压缩,创建出一份需要恢复数据的最小日志出来。再创建新日志文件的时候,老的日志文件还是照常写入。当新的 merge 后的日志文件 ready 的时候,再交换新老日志文件即可。
- AOF 日志文件即使过大的时候,出现后台重写操作,也不会影响客户端的读写。因为在 `rewrite` log 的时候,会对其中的指令进行压缩,创建出一份需要恢复数据的最小日志出来。在创建新日志文件的时候,老的日志文件还是照常写入。当新的 merge 后的日志文件 ready 的时候,再交换新老日志文件即可。
- AOF 日志文件的命令通过非常可读的方式进行记录,这个特性非常**适合做灾难性的误删除的紧急恢复**。比如某人不小心用 `flushall` 命令清空了所有数据,只要这个时候后台 `rewrite` 还没有发生,那么就可以立即拷贝 AOF 文件,将最后一条 `flushall` 命令给删了,然后再将该 `AOF` 文件放回去,就可以通过恢复机制,自动恢复所有数据。
- 对于同一份数据来说,AOF 日志文件通常比 RDB 数据快照文件更大。
- AOF 开启后,支持的写 QPS 会比 RDB 支持的写 QPS 低,因为 AOF 一般会配置成每秒 `fsync` 一次日志文件,当然,每秒一次 `fsync`,性能也还是很高的。(如果实时写入,那么 QPS 会大降,redis 性能会大大降低)
- 以前 AOF 发生过 bug,就是通过 AOF 记录的日志,进行数据恢复的时候,没有恢复一模一样的数据出来。所以说,类似 AOF 这种较为复杂的基于命令日志 / merge / 回放的方式,比基于 RDB 每次持久化一份完整的数据快照文件的方式,更加脆弱一些,容易有 bug。不过 AOF 就是为了避免 rewrite 过程导致的 bug,因此每次 rewrite 并不是基于旧的指令日志进行 merge 的,而是**基于当时内存中的数据进行指令的重新构建**,这样健壮性会好很多。
### RDB和AOF到底该如何选择
### RDB 和 AOF 到底该如何选择
- 不要仅仅使用 RDB,因为那样会导致你丢失很多数据;
- 也不要仅仅使用 AOF,因为那样有两个问题:第一,你通过 AOF 做冷备,没有 RDB 做冷备来的恢复速度更快;第二,RDB 每次简单粗暴生成数据快照,更加健壮,可以避免 AOF 这种复杂的备份和恢复机制的 bug;
- redis 支持同时开启开启两种持久化方式,我们可以综合使用 AOF 和 RDB 两种持久化机制,用 AOF 来保证数据不丢失,作为数据恢复的第一选择; 用 RDB 来做不同程度的冷备,在 AOF 文件都丢失或损坏不可用的时候,还可以使用 RDB 来进行快速的数据恢复。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册