提交 e88b410b 编写于 作者: J Jeffrey Wilcke

Merge pull request #819 from karalabe/leveldb-update

godeps: refresh leveldb, clean up stale dependencies
......@@ -10,11 +10,6 @@
"Comment": "null-12",
"Rev": "7dda39b2e7d5e265014674c5af696ba4186679e9"
},
{
"ImportPath": "code.google.com/p/snappy-go/snappy",
"Comment": "null-15",
"Rev": "12e4b4183793ac4b061921e7980845e750679fd0"
},
{
"ImportPath": "github.com/codegangsta/cli",
"Comment": "1.2.0-95-g9b2bd2b",
......@@ -25,10 +20,6 @@
"Comment": "v23.1-82-g908aad3",
"Rev": "908aad345c9fbf3ab9bbb94031dc02d0d90df1b8"
},
{
"ImportPath": "github.com/ethereum/serpent-go",
"Rev": "5767a0dbd759d313df3f404dadb7f98d7ab51443"
},
{
"ImportPath": "github.com/howeyc/fsnotify",
"Comment": "v0.9.0-11-g6b1ef89",
......@@ -46,10 +37,6 @@
"ImportPath": "github.com/kardianos/osext",
"Rev": "ccfcd0245381f0c94c68f50626665eed3c6b726a"
},
{
"ImportPath": "github.com/robertkrimen/otto",
"Rev": "dea31a3d392779af358ec41f77a07fcc7e9d04ba"
},
{
"ImportPath": "github.com/obscuren/qml",
"Rev": "c288002b52e905973b131089a8a7c761d4a2c36a"
......@@ -67,27 +54,7 @@
"Rev": "907cca0f578a5316fb864ec6992dc3d9730ec58c"
},
{
"ImportPath": "github.com/robertkrimen/otto/ast",
"Rev": "dea31a3d392779af358ec41f77a07fcc7e9d04ba"
},
{
"ImportPath": "github.com/robertkrimen/otto/dbg",
"Rev": "dea31a3d392779af358ec41f77a07fcc7e9d04ba"
},
{
"ImportPath": "github.com/robertkrimen/otto/file",
"Rev": "dea31a3d392779af358ec41f77a07fcc7e9d04ba"
},
{
"ImportPath": "github.com/robertkrimen/otto/parser",
"Rev": "dea31a3d392779af358ec41f77a07fcc7e9d04ba"
},
{
"ImportPath": "github.com/robertkrimen/otto/registry",
"Rev": "dea31a3d392779af358ec41f77a07fcc7e9d04ba"
},
{
"ImportPath": "github.com/robertkrimen/otto/token",
"ImportPath": "github.com/robertkrimen/otto",
"Rev": "dea31a3d392779af358ec41f77a07fcc7e9d04ba"
},
{
......@@ -96,7 +63,11 @@
},
{
"ImportPath": "github.com/syndtr/goleveldb/leveldb",
"Rev": "832fa7ed4d28545eab80f19e1831fc004305cade"
"Rev": "4875955338b0a434238a31165cb87255ab6e9e4a"
},
{
"ImportPath": "github.com/syndtr/gosnappy/snappy",
"Rev": "156a073208e131d7d2e212cb749feae7c339e846"
},
{
"ImportPath": "golang.org/x/crypto/pbkdf2",
......
[submodule "serp"]
path = serpent
url = https://github.com/ethereum/serpent.git
[serpent](https://github.com/ethereum/serpent) go bindings.
## Build instructions
```
go get -d github.com/ethereum/serpent-go
cd $GOPATH/src/github.com/ethereum/serpent-go
git submodule init
git submodule update
```
You're now ready to go :-)
#include "serpent/bignum.cpp"
#include "serpent/util.cpp"
#include "serpent/tokenize.cpp"
#include "serpent/parser.cpp"
#include "serpent/compiler.cpp"
#include "serpent/funcs.cpp"
#include "serpent/lllparser.cpp"
#include "serpent/rewriter.cpp"
#include "serpent/opcodes.cpp"
#include "serpent/optimize.cpp"
#include "serpent/functions.cpp"
#include "serpent/preprocess.cpp"
#include "serpent/rewriteutils.cpp"
#include "cpp/api.cpp"
#include <string>
#include "serpent/lllparser.h"
#include "serpent/bignum.h"
#include "serpent/util.h"
#include "serpent/tokenize.h"
#include "serpent/parser.h"
#include "serpent/compiler.h"
#include "cpp/api.h"
const char *compileGo(char *code, int *err)
{
try {
std::string c = binToHex(compile(std::string(code)));
return c.c_str();
}
catch(std::string &error) {
*err = 1;
return error.c_str();
}
catch(...) {
return "Unknown error";
}
}
#ifndef CPP_API_H
#define CPP_API_H
#ifdef __cplusplus
extern "C" {
#endif
const char *compileGo(char *code, int *err);
#ifdef __cplusplus
}
#endif
#endif
package serpent
// #cgo CXXFLAGS: -I. -Ilangs/ -std=c++0x -Wall -fno-strict-aliasing
// #cgo LDFLAGS: -lstdc++
//
// #include "cpp/api.h"
//
import "C"
import (
"encoding/hex"
"errors"
"unsafe"
)
func Compile(str string) ([]byte, error) {
var err C.int
out := C.GoString(C.compileGo(C.CString(str), (*C.int)(unsafe.Pointer(&err))))
if err == C.int(1) {
return nil, errors.New(out)
}
bytes, _ := hex.DecodeString(out)
return bytes, nil
}
[._]*.s[a-w][a-z]
[._]s[a-w][a-z]
*.un~
Session.vim
.netrwhist
*~
*.o
serpent
libserpent.a
pyserpent.so
dist
*.egg-info
include *.cpp
include *.h
include *py
include README.md
include Makefile
PLATFORM_OPTS =
PYTHON = /usr/include/python2.7
CXXFLAGS = -fPIC
# -g3 -O0
BOOST_INC = /usr/include
BOOST_LIB = /usr/lib
TARGET = pyserpent
COMMON_OBJS = bignum.o util.o tokenize.o lllparser.o parser.o opcodes.o optimize.o functions.o rewriteutils.o preprocess.o rewriter.o compiler.o funcs.o
HEADERS = bignum.h util.h tokenize.h lllparser.h parser.h opcodes.h functions.h optimize.h rewriteutils.h preprocess.h rewriter.h compiler.h funcs.h
PYTHON_VERSION = 2.7
serpent : serpentc lib
lib:
ar rvs libserpent.a $(COMMON_OBJS)
g++ $(CXXFLAGS) -shared $(COMMON_OBJS) -o libserpent.so
serpentc: $(COMMON_OBJS) cmdline.o
rm -rf serpent
g++ -Wall $(COMMON_OBJS) cmdline.o -o serpent
bignum.o : bignum.cpp bignum.h
opcodes.o : opcodes.cpp opcodes.h
util.o : util.cpp util.h bignum.o
tokenize.o : tokenize.cpp tokenize.h util.o
lllparser.o : lllparser.cpp lllparser.h tokenize.o util.o
parser.o : parser.cpp parser.h tokenize.o util.o
rewriter.o : rewriter.cpp rewriter.h lllparser.o util.o rewriteutils.o preprocess.o opcodes.o functions.o
preprocessor.o: rewriteutils.o functions.o
compiler.o : compiler.cpp compiler.h util.o
funcs.o : funcs.cpp funcs.h
cmdline.o: cmdline.cpp
pyext.o: pyext.cpp
clean:
rm -f serpent *\.o libserpent.a libserpent.so
install:
cp serpent /usr/local/bin
cp libserpent.a /usr/local/lib
cp libserpent.so /usr/local/lib
rm -rf /usr/local/include/libserpent
mkdir -p /usr/local/include/libserpent
cp $(HEADERS) /usr/local/include/libserpent
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "bignum.h"
//Integer to string conversion
std::string unsignedToDecimal(unsigned branch) {
if (branch < 10) return nums.substr(branch, 1);
else return unsignedToDecimal(branch / 10) + nums.substr(branch % 10,1);
}
//Add two strings representing decimal values
std::string decimalAdd(std::string a, std::string b) {
std::string o = a;
while (b.length() < a.length()) b = "0" + b;
while (o.length() < b.length()) o = "0" + o;
bool carry = false;
for (int i = o.length() - 1; i >= 0; i--) {
o[i] = o[i] + b[i] - '0';
if (carry) o[i]++;
if (o[i] > '9') {
o[i] -= 10;
carry = true;
}
else carry = false;
}
if (carry) o = "1" + o;
return o;
}
//Helper function for decimalMul
std::string decimalDigitMul(std::string a, int dig) {
if (dig == 0) return "0";
else return decimalAdd(a, decimalDigitMul(a, dig - 1));
}
//Multiply two strings representing decimal values
std::string decimalMul(std::string a, std::string b) {
std::string o = "0";
for (unsigned i = 0; i < b.length(); i++) {
std::string n = decimalDigitMul(a, b[i] - '0');
if (n != "0") {
for (unsigned j = i + 1; j < b.length(); j++) n += "0";
}
o = decimalAdd(o, n);
}
return o;
}
//Modexp
std::string decimalModExp(std::string b, std::string e, std::string m) {
if (e == "0") return "1";
else if (e == "1") return b;
else if (decimalMod(e, "2") == "0") {
std::string o = decimalModExp(b, decimalDiv(e, "2"), m);
return decimalMod(decimalMul(o, o), m);
}
else {
std::string o = decimalModExp(b, decimalDiv(e, "2"), m);
return decimalMod(decimalMul(decimalMul(o, o), b), m);
}
}
//Is a greater than b? Flag allows equality
bool decimalGt(std::string a, std::string b, bool eqAllowed) {
if (a == b) return eqAllowed;
return (a.length() > b.length()) || (a.length() >= b.length() && a > b);
}
//Subtract the two strings representing decimal values
std::string decimalSub(std::string a, std::string b) {
if (b == "0") return a;
if (b == a) return "0";
while (b.length() < a.length()) b = "0" + b;
std::string c = b;
for (unsigned i = 0; i < c.length(); i++) c[i] = '0' + ('9' - c[i]);
std::string o = decimalAdd(decimalAdd(a, c).substr(1), "1");
while (o.size() > 1 && o[0] == '0') o = o.substr(1);
return o;
}
//Divide the two strings representing decimal values
std::string decimalDiv(std::string a, std::string b) {
std::string c = b;
if (decimalGt(c, a)) return "0";
int zeroes = -1;
while (decimalGt(a, c, true)) {
zeroes += 1;
c = c + "0";
}
c = c.substr(0, c.size() - 1);
std::string quot = "0";
while (decimalGt(a, c, true)) {
a = decimalSub(a, c);
quot = decimalAdd(quot, "1");
}
for (int i = 0; i < zeroes; i++) quot += "0";
return decimalAdd(quot, decimalDiv(a, b));
}
//Modulo the two strings representing decimal values
std::string decimalMod(std::string a, std::string b) {
return decimalSub(a, decimalMul(decimalDiv(a, b), b));
}
//String to int conversion
unsigned decimalToUnsigned(std::string a) {
if (a.size() == 0) return 0;
else return (a[a.size() - 1] - '0')
+ decimalToUnsigned(a.substr(0,a.size()-1)) * 10;
}
#ifndef ETHSERP_BIGNUM
#define ETHSERP_BIGNUM
const std::string nums = "0123456789";
const std::string tt256 =
"115792089237316195423570985008687907853269984665640564039457584007913129639936"
;
const std::string tt256m1 =
"115792089237316195423570985008687907853269984665640564039457584007913129639935"
;
const std::string tt255 =
"57896044618658097711785492504343953926634992332820282019728792003956564819968";
const std::string tt176 =
"95780971304118053647396689196894323976171195136475136";
std::string unsignedToDecimal(unsigned branch);
std::string decimalAdd(std::string a, std::string b);
std::string decimalMul(std::string a, std::string b);
std::string decimalSub(std::string a, std::string b);
std::string decimalDiv(std::string a, std::string b);
std::string decimalMod(std::string a, std::string b);
std::string decimalModExp(std::string b, std::string e, std::string m);
bool decimalGt(std::string a, std::string b, bool eqAllowed=false);
unsigned decimalToUnsigned(std::string a);
#define utd unsignedToDecimal
#define dtu decimalToUnsigned
#endif
#include <stdio.h>
#include <string>
#include <iostream>
#include <vector>
#include <map>
#include "funcs.h"
int main(int argv, char** argc) {
if (argv == 1) {
std::cerr << "Must provide a command and arguments! Try parse, rewrite, compile, assemble\n";
return 0;
}
if (argv == 2 && std::string(argc[1]) == "--help" || std::string(argc[1]) == "-h" ) {
std::cout << argc[1] << "\n";
std::cout << "serpent command input\n";
std::cout << "where input -s for from stdin, a file, or interpreted as serpent code if does not exist as file.";
std::cout << "where command: \n";
std::cout << " parse: Just parses and returns s-expression code.\n";
std::cout << " rewrite: Parse, use rewrite rules print s-expressions of result.\n";
std::cout << " compile: Return resulting compiled EVM code in hex.\n";
std::cout << " assemble: Return result from step before compilation.\n";
return 0;
}
std::string flag = "";
std::string command = argc[1];
std::string input;
std::string secondInput;
if (std::string(argc[1]) == "-s") {
flag = command.substr(1);
command = argc[2];
input = "";
std::string line;
while (std::getline(std::cin, line)) {
input += line + "\n";
}
secondInput = argv == 3 ? "" : argc[3];
}
else {
if (argv == 2) {
std::cerr << "Not enough arguments for serpent cmdline\n";
throw(0);
}
input = argc[2];
secondInput = argv == 3 ? "" : argc[3];
}
bool haveSec = secondInput.length() > 0;
if (command == "parse" || command == "parse_serpent") {
std::cout << printAST(parseSerpent(input), haveSec) << "\n";
}
else if (command == "rewrite") {
std::cout << printAST(rewrite(parseLLL(input, true)), haveSec) << "\n";
}
else if (command == "compile_to_lll") {
std::cout << printAST(compileToLLL(input), haveSec) << "\n";
}
else if (command == "rewrite_chunk") {
std::cout << printAST(rewriteChunk(parseLLL(input, true)), haveSec) << "\n";
}
else if (command == "compile_chunk_to_lll") {
std::cout << printAST(compileChunkToLLL(input), haveSec) << "\n";
}
else if (command == "build_fragtree") {
std::cout << printAST(buildFragmentTree(parseLLL(input, true))) << "\n";
}
else if (command == "compile_lll") {
std::cout << binToHex(compileLLL(parseLLL(input, true))) << "\n";
}
else if (command == "dereference") {
std::cout << printAST(dereference(parseLLL(input, true)), haveSec) <<"\n";
}
else if (command == "pretty_assemble") {
std::cout << printTokens(prettyAssemble(parseLLL(input, true))) <<"\n";
}
else if (command == "pretty_compile_lll") {
std::cout << printTokens(prettyCompileLLL(parseLLL(input, true))) << "\n";
}
else if (command == "pretty_compile") {
std::cout << printTokens(prettyCompile(input)) << "\n";
}
else if (command == "pretty_compile_chunk") {
std::cout << printTokens(prettyCompileChunk(input)) << "\n";
}
else if (command == "assemble") {
std::cout << assemble(parseLLL(input, true)) << "\n";
}
else if (command == "serialize") {
std::cout << binToHex(serialize(tokenize(input, Metadata(), false))) << "\n";
}
else if (command == "flatten") {
std::cout << printTokens(flatten(parseLLL(input, true))) << "\n";
}
else if (command == "deserialize") {
std::cout << printTokens(deserialize(hexToBin(input))) << "\n";
}
else if (command == "compile") {
std::cout << binToHex(compile(input)) << "\n";
}
else if (command == "compile_chunk") {
std::cout << binToHex(compileChunk(input)) << "\n";
}
else if (command == "encode_datalist") {
std::vector<Node> tokens = tokenize(input);
std::vector<std::string> o;
for (int i = 0; i < (int)tokens.size(); i++) {
o.push_back(tokens[i].val);
}
std::cout << binToHex(encodeDatalist(o)) << "\n";
}
else if (command == "decode_datalist") {
std::vector<std::string> o = decodeDatalist(hexToBin(input));
std::vector<Node> tokens;
for (int i = 0; i < (int)o.size(); i++)
tokens.push_back(token(o[i]));
std::cout << printTokens(tokens) << "\n";
}
else if (command == "tokenize") {
std::cout << printTokens(tokenize(input));
}
else if (command == "biject") {
if (argv == 3)
std::cerr << "Not enough arguments for biject\n";
int pos = decimalToUnsigned(secondInput);
std::vector<Node> n = prettyCompile(input);
if (pos >= (int)n.size())
std::cerr << "Code position too high\n";
Metadata m = n[pos].metadata;
std::cout << "Opcode: " << n[pos].val << ", file: " << m.file <<
", line: " << m.ln << ", char: " << m.ch << "\n";
}
}
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
#include "bignum.h"
#include "opcodes.h"
struct programAux {
std::map<std::string, std::string> vars;
int nextVarMem;
bool allocUsed;
bool calldataUsed;
int step;
int labelLength;
};
struct programVerticalAux {
int height;
std::string innerScopeName;
std::map<std::string, int> dupvars;
std::map<std::string, int> funvars;
std::vector<mss> scopes;
};
struct programData {
programAux aux;
Node code;
int outs;
};
programAux Aux() {
programAux o;
o.allocUsed = false;
o.calldataUsed = false;
o.step = 0;
o.nextVarMem = 32;
return o;
}
programVerticalAux verticalAux() {
programVerticalAux o;
o.height = 0;
o.dupvars = std::map<std::string, int>();
o.funvars = std::map<std::string, int>();
o.scopes = std::vector<mss>();
return o;
}
programData pd(programAux aux = Aux(), Node code=token("_"), int outs=0) {
programData o;
o.aux = aux;
o.code = code;
o.outs = outs;
return o;
}
Node multiToken(Node nodes[], int len, Metadata met) {
std::vector<Node> out;
for (int i = 0; i < len; i++) {
out.push_back(nodes[i]);
}
return astnode("_", out, met);
}
Node finalize(programData c);
Node popwrap(Node node) {
Node nodelist[] = {
node,
token("POP", node.metadata)
};
return multiToken(nodelist, 2, node.metadata);
}
// Grabs variables
mss getVariables(Node node, mss cur=mss()) {
Metadata m = node.metadata;
// Tokens don't contain any variables
if (node.type == TOKEN)
return cur;
// Don't descend into call fragments
else if (node.val == "lll")
return getVariables(node.args[1], cur);
// At global scope get/set/ref also declare
else if (node.val == "get" || node.val == "set" || node.val == "ref") {
if (node.args[0].type != TOKEN)
err("Variable name must be simple token,"
" not complex expression!", m);
if (!cur.count(node.args[0].val)) {
cur[node.args[0].val] = utd(cur.size() * 32 + 32);
//std::cerr << node.args[0].val << " " << cur[node.args[0].val] << "\n";
}
}
// Recursively process children
for (unsigned i = 0; i < node.args.size(); i++) {
cur = getVariables(node.args[i], cur);
}
return cur;
}
// Turns LLL tree into tree of code fragments
programData opcodeify(Node node,
programAux aux=Aux(),
programVerticalAux vaux=verticalAux()) {
std::string symb = "_"+mkUniqueToken();
Metadata m = node.metadata;
// Get variables
if (!aux.vars.size()) {
aux.vars = getVariables(node);
aux.nextVarMem = aux.vars.size() * 32 + 32;
}
// Numbers
if (node.type == TOKEN) {
return pd(aux, nodeToNumeric(node), 1);
}
else if (node.val == "ref" || node.val == "get" || node.val == "set") {
std::string varname = node.args[0].val;
// Determine reference to variable
Node varNode = tkn(aux.vars[varname], m);
//std::cerr << varname << " " << printSimple(varNode) << "\n";
// Set variable
if (node.val == "set") {
programData sub = opcodeify(node.args[1], aux, vaux);
if (!sub.outs)
err("Value to set variable must have nonzero arity!", m);
// What if we are setting a stack variable?
if (vaux.dupvars.count(node.args[0].val)) {
int h = vaux.height - vaux.dupvars[node.args[0].val];
if (h > 16) err("Too deep for stack variable (max 16)", m);
Node nodelist[] = {
sub.code,
token("SWAP"+unsignedToDecimal(h), m),
token("POP", m)
};
return pd(sub.aux, multiToken(nodelist, 3, m), 0);
}
// Setting a memory variable
else {
Node nodelist[] = {
sub.code,
varNode,
token("MSTORE", m),
};
return pd(sub.aux, multiToken(nodelist, 3, m), 0);
}
}
// Get variable
else if (node.val == "get") {
// Getting a stack variable
if (vaux.dupvars.count(node.args[0].val)) {
int h = vaux.height - vaux.dupvars[node.args[0].val];
if (h > 16) err("Too deep for stack variable (max 16)", m);
return pd(aux, token("DUP"+unsignedToDecimal(h)), 1);
}
// Getting a memory variable
else {
Node nodelist[] =
{ varNode, token("MLOAD", m) };
return pd(aux, multiToken(nodelist, 2, m), 1);
}
}
// Refer variable
else if (node.val == "ref") {
if (vaux.dupvars.count(node.args[0].val))
err("Cannot ref stack variable!", m);
return pd(aux, varNode, 1);
}
}
// Comments do nothing
else if (node.val == "comment") {
Node nodelist[] = { };
return pd(aux, multiToken(nodelist, 0, m), 0);
}
// Custom operation sequence
// eg. (ops bytez id msize swap1 msize add 0 swap1 mstore) == alloc
if (node.val == "ops") {
std::vector<Node> subs2;
int depth = 0;
for (unsigned i = 0; i < node.args.size(); i++) {
std::string op = upperCase(node.args[i].val);
if (node.args[i].type == ASTNODE || opinputs(op) == -1) {
programVerticalAux vaux2 = vaux;
vaux2.height = vaux.height - i - 1 + node.args.size();
programData sub = opcodeify(node.args[i], aux, vaux2);
aux = sub.aux;
depth += sub.outs;
subs2.push_back(sub.code);
}
else {
subs2.push_back(token(op, m));
depth += opoutputs(op) - opinputs(op);
}
}
if (depth < 0 || depth > 1) err("Stack depth mismatch", m);
return pd(aux, astnode("_", subs2, m), 0);
}
// Code blocks
if (node.val == "lll" && node.args.size() == 2) {
if (node.args[1].val != "0") aux.allocUsed = true;
std::vector<Node> o;
o.push_back(finalize(opcodeify(node.args[0])));
programData sub = opcodeify(node.args[1], aux, vaux);
Node code = astnode("____CODE", o, m);
Node nodelist[] = {
token("$begincode"+symb+".endcode"+symb, m), token("DUP1", m),
token("$begincode"+symb, m), sub.code, token("CODECOPY", m),
token("$endcode"+symb, m), token("JUMP", m),
token("~begincode"+symb, m), code,
token("~endcode"+symb, m), token("JUMPDEST", m)
};
return pd(sub.aux, multiToken(nodelist, 11, m), 1);
}
// Stack variables
if (node.val == "with") {
programData initial = opcodeify(node.args[1], aux, vaux);
programVerticalAux vaux2 = vaux;
vaux2.dupvars[node.args[0].val] = vaux.height;
vaux2.height += 1;
if (!initial.outs)
err("Initial variable value must have nonzero arity!", m);
programData sub = opcodeify(node.args[2], initial.aux, vaux2);
Node nodelist[] = {
initial.code,
sub.code
};
programData o = pd(sub.aux, multiToken(nodelist, 2, m), sub.outs);
if (sub.outs)
o.code.args.push_back(token("SWAP1", m));
o.code.args.push_back(token("POP", m));
return o;
}
// Seq of multiple statements
if (node.val == "seq") {
std::vector<Node> children;
int lastOut = 0;
for (unsigned i = 0; i < node.args.size(); i++) {
programData sub = opcodeify(node.args[i], aux, vaux);
aux = sub.aux;
if (sub.outs == 1) {
if (i < node.args.size() - 1) sub.code = popwrap(sub.code);
else lastOut = 1;
}
children.push_back(sub.code);
}
return pd(aux, astnode("_", children, m), lastOut);
}
// 2-part conditional (if gets rewritten to unless in rewrites)
else if (node.val == "unless" && node.args.size() == 2) {
programData cond = opcodeify(node.args[0], aux, vaux);
programData action = opcodeify(node.args[1], cond.aux, vaux);
aux = action.aux;
if (!cond.outs) err("Condition of if/unless statement has arity 0", m);
if (action.outs) action.code = popwrap(action.code);
Node nodelist[] = {
cond.code,
token("$endif"+symb, m), token("JUMPI", m),
action.code,
token("~endif"+symb, m), token("JUMPDEST", m)
};
return pd(aux, multiToken(nodelist, 6, m), 0);
}
// 3-part conditional
else if (node.val == "if" && node.args.size() == 3) {
programData ifd = opcodeify(node.args[0], aux, vaux);
programData thend = opcodeify(node.args[1], ifd.aux, vaux);
programData elsed = opcodeify(node.args[2], thend.aux, vaux);
aux = elsed.aux;
if (!ifd.outs)
err("Condition of if/unless statement has arity 0", m);
// Handle cases where one conditional outputs something
// and the other does not
int outs = (thend.outs && elsed.outs) ? 1 : 0;
if (thend.outs > outs) thend.code = popwrap(thend.code);
if (elsed.outs > outs) elsed.code = popwrap(elsed.code);
Node nodelist[] = {
ifd.code,
token("ISZERO", m),
token("$else"+symb, m), token("JUMPI", m),
thend.code,
token("$endif"+symb, m), token("JUMP", m),
token("~else"+symb, m), token("JUMPDEST", m),
elsed.code,
token("~endif"+symb, m), token("JUMPDEST", m)
};
return pd(aux, multiToken(nodelist, 12, m), outs);
}
// While (rewritten to this in rewrites)
else if (node.val == "until") {
programData cond = opcodeify(node.args[0], aux, vaux);
programData action = opcodeify(node.args[1], cond.aux, vaux);
aux = action.aux;
if (!cond.outs)
err("Condition of while/until loop has arity 0", m);
if (action.outs) action.code = popwrap(action.code);
Node nodelist[] = {
token("~beg"+symb, m), token("JUMPDEST", m),
cond.code,
token("$end"+symb, m), token("JUMPI", m),
action.code,
token("$beg"+symb, m), token("JUMP", m),
token("~end"+symb, m), token("JUMPDEST", m),
};
return pd(aux, multiToken(nodelist, 10, m));
}
// Memory allocations
else if (node.val == "alloc") {
programData bytez = opcodeify(node.args[0], aux, vaux);
aux = bytez.aux;
if (!bytez.outs)
err("Alloc input has arity 0", m);
aux.allocUsed = true;
Node nodelist[] = {
bytez.code,
token("MSIZE", m), token("SWAP1", m), token("MSIZE", m),
token("ADD", m),
token("0", m), token("SWAP1", m), token("MSTORE", m)
};
return pd(aux, multiToken(nodelist, 8, m), 1);
}
// All other functions/operators
else {
std::vector<Node> subs2;
int depth = opinputs(upperCase(node.val));
if (depth == -1)
err("Not a function or opcode: "+node.val, m);
if ((int)node.args.size() != depth)
err("Invalid arity for "+node.val, m);
for (int i = node.args.size() - 1; i >= 0; i--) {
programVerticalAux vaux2 = vaux;
vaux2.height = vaux.height - i - 1 + node.args.size();
programData sub = opcodeify(node.args[i], aux, vaux2);
aux = sub.aux;
if (!sub.outs)
err("Input "+unsignedToDecimal(i)+" has arity 0", sub.code.metadata);
subs2.push_back(sub.code);
}
subs2.push_back(token(upperCase(node.val), m));
int outdepth = opoutputs(upperCase(node.val));
return pd(aux, astnode("_", subs2, m), outdepth);
}
}
// Adds necessary wrappers to a program
Node finalize(programData c) {
std::vector<Node> bottom;
Metadata m = c.code.metadata;
// If we are using both alloc and variables, we need to pre-zfill
// some memory
if ((c.aux.allocUsed || c.aux.calldataUsed) && c.aux.vars.size() > 0) {
Node nodelist[] = {
token("0", m),
token(unsignedToDecimal(c.aux.nextVarMem - 1)),
token("MSTORE8", m)
};
bottom.push_back(multiToken(nodelist, 3, m));
}
// The actual code
bottom.push_back(c.code);
return astnode("_", bottom, m);
}
//LLL -> code fragment tree
Node buildFragmentTree(Node node) {
return finalize(opcodeify(node));
}
// Builds a dictionary mapping labels to variable names
programAux buildDict(Node program, programAux aux, int labelLength) {
Metadata m = program.metadata;
// Token
if (program.type == TOKEN) {
if (isNumberLike(program)) {
aux.step += 1 + toByteArr(program.val, m).size();
}
else if (program.val[0] == '~') {
aux.vars[program.val.substr(1)] = unsignedToDecimal(aux.step);
}
else if (program.val[0] == '$') {
aux.step += labelLength + 1;
}
else aux.step += 1;
}
// A sub-program (ie. LLL)
else if (program.val == "____CODE") {
programAux auks = Aux();
for (unsigned i = 0; i < program.args.size(); i++) {
auks = buildDict(program.args[i], auks, labelLength);
}
for (std::map<std::string,std::string>::iterator it=auks.vars.begin();
it != auks.vars.end();
it++) {
aux.vars[(*it).first] = (*it).second;
}
aux.step += auks.step;
}
// Normal sub-block
else {
for (unsigned i = 0; i < program.args.size(); i++) {
aux = buildDict(program.args[i], aux, labelLength);
}
}
return aux;
}
// Applies that dictionary
Node substDict(Node program, programAux aux, int labelLength) {
Metadata m = program.metadata;
std::vector<Node> out;
std::vector<Node> inner;
if (program.type == TOKEN) {
if (program.val[0] == '$') {
std::string tokStr = "PUSH"+unsignedToDecimal(labelLength);
out.push_back(token(tokStr, m));
int dotLoc = program.val.find('.');
if (dotLoc == -1) {
std::string val = aux.vars[program.val.substr(1)];
inner = toByteArr(val, m, labelLength);
}
else {
std::string start = aux.vars[program.val.substr(1, dotLoc-1)],
end = aux.vars[program.val.substr(dotLoc + 1)],
dist = decimalSub(end, start);
inner = toByteArr(dist, m, labelLength);
}
out.push_back(astnode("_", inner, m));
}
else if (program.val[0] == '~') { }
else if (isNumberLike(program)) {
inner = toByteArr(program.val, m);
out.push_back(token("PUSH"+unsignedToDecimal(inner.size())));
out.push_back(astnode("_", inner, m));
}
else return program;
}
else {
for (unsigned i = 0; i < program.args.size(); i++) {
Node n = substDict(program.args[i], aux, labelLength);
if (n.type == TOKEN || n.args.size()) out.push_back(n);
}
}
return astnode("_", out, m);
}
// Compiled fragtree -> compiled fragtree without labels
Node dereference(Node program) {
int sz = treeSize(program) * 4;
int labelLength = 1;
while (sz >= 256) { labelLength += 1; sz /= 256; }
programAux aux = buildDict(program, Aux(), labelLength);
return substDict(program, aux, labelLength);
}
// Dereferenced fragtree -> opcodes
std::vector<Node> flatten(Node derefed) {
std::vector<Node> o;
if (derefed.type == TOKEN) {
o.push_back(derefed);
}
else {
for (unsigned i = 0; i < derefed.args.size(); i++) {
std::vector<Node> oprime = flatten(derefed.args[i]);
for (unsigned j = 0; j < oprime.size(); j++) o.push_back(oprime[j]);
}
}
return o;
}
// Opcodes -> bin
std::string serialize(std::vector<Node> codons) {
std::string o;
for (unsigned i = 0; i < codons.size(); i++) {
int v;
if (isNumberLike(codons[i])) {
v = decimalToUnsigned(codons[i].val);
}
else if (codons[i].val.substr(0,4) == "PUSH") {
v = 95 + decimalToUnsigned(codons[i].val.substr(4));
}
else {
v = opcode(codons[i].val);
}
o += (char)v;
}
return o;
}
// Bin -> opcodes
std::vector<Node> deserialize(std::string ser) {
std::vector<Node> o;
int backCount = 0;
for (unsigned i = 0; i < ser.length(); i++) {
unsigned char v = (unsigned char)ser[i];
std::string oper = op((int)v);
if (oper != "" && backCount <= 0) o.push_back(token(oper));
else if (v >= 96 && v < 128 && backCount <= 0) {
o.push_back(token("PUSH"+unsignedToDecimal(v - 95)));
}
else o.push_back(token(unsignedToDecimal(v)));
if (v >= 96 && v < 128 && backCount <= 0) {
backCount = v - 95;
}
else backCount--;
}
return o;
}
// Fragtree -> bin
std::string assemble(Node fragTree) {
return serialize(flatten(dereference(fragTree)));
}
// Fragtree -> tokens
std::vector<Node> prettyAssemble(Node fragTree) {
return flatten(dereference(fragTree));
}
// LLL -> bin
std::string compileLLL(Node program) {
return assemble(buildFragmentTree(program));
}
// LLL -> tokens
std::vector<Node> prettyCompileLLL(Node program) {
return prettyAssemble(buildFragmentTree(program));
}
// Converts a list of integer values to binary transaction data
std::string encodeDatalist(std::vector<std::string> vals) {
std::string o;
for (unsigned i = 0; i < vals.size(); i++) {
std::vector<Node> n = toByteArr(strToNumeric(vals[i]), Metadata(), 32);
for (unsigned j = 0; j < n.size(); j++) {
int v = decimalToUnsigned(n[j].val);
o += (char)v;
}
}
return o;
}
// Converts binary transaction data into a list of integer values
std::vector<std::string> decodeDatalist(std::string ser) {
std::vector<std::string> out;
for (unsigned i = 0; i < ser.length(); i+= 32) {
std::string o = "0";
for (unsigned j = i; j < i + 32; j++) {
int vj = (int)(unsigned char)ser[j];
o = decimalAdd(decimalMul(o, "256"), unsignedToDecimal(vj));
}
out.push_back(o);
}
return out;
}
#ifndef ETHSERP_COMPILER
#define ETHSERP_COMPILER
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
// Compiled fragtree -> compiled fragtree without labels
Node dereference(Node program);
// LLL -> fragtree
Node buildFragmentTree(Node program);
// Dereferenced fragtree -> opcodes
std::vector<Node> flatten(Node derefed);
// opcodes -> bin
std::string serialize(std::vector<Node> codons);
// Fragtree -> bin
std::string assemble(Node fragTree);
// Fragtree -> opcodes
std::vector<Node> prettyAssemble(Node fragTree);
// LLL -> bin
std::string compileLLL(Node program);
// LLL -> opcodes
std::vector<Node> prettyCompileLLL(Node program);
// bin -> opcodes
std::vector<Node> deserialize(std::string ser);
// Converts a list of integer values to binary transaction data
std::string encodeDatalist(std::vector<std::string> vals);
// Converts binary transaction data into a list of integer values
std::vector<std::string> decodeDatalist(std::string ser);
#endif
#include <libserpent/funcs.h>
#include <libserpent/bignum.h>
#include <iostream>
using namespace std;
int main() {
cout << printAST(compileToLLL(get_file_contents("examples/namecoin.se"))) << "\n";
cout << decimalSub("10234", "10234") << "\n";
cout << decimalSub("10234", "10233") << "\n";
}
x = msg.data[0]
steps = 0
while x > 1:
steps += 1
if (x % 2) == 0:
x /= 2
else:
x = 3 * x + 1
return(steps)
# Ethereum forks Counterparty in 340 lines of serpent
# Not yet tested
# assets[i] = a registered asset, assets[i].holders[j] = former or current i-holder
data assets[2^50](creator, name, calldate, callprice, dividend_paid, holders[2^50], holdersCount)
data nextAssetId
# holdersMap: holdersMap[addr][asset] = 1 if addr holds asset
data holdersMap[2^160][2^50]
# balances[x][y] = how much of y x holds
data balances[2^160][2^50]
# orders[a][b] = heap of indices to (c, d, e)
# = c offers to sell d units of a at a price of e units of b per 10^18 units
# of a
data orderbooks[2^50][2^50]
# store of general order data
data orders[2^50](seller, asset_sold, quantity, price)
data ordersCount
# data feeds
data feeds[2^50](owner, value)
data feedCount
# heap
data heap
extern heap: [register, push, pop, top, size]
data cfds[2^50](maker, acceptor, feed, asset, strike, leverage, min, max, maturity)
data cfdCount
data bets[2^50](maker, acceptor, feed, asset, makerstake, acceptorstake, eqtest, maturity)
data betCount
def init():
heap = create('heap.se')
# Add units (internal method)
def add(to, asset, value):
assert msg.sender == self
self.balances[to][asset] += value
# Add the holder to the holders list
if not self.holdersMap[to][asset]:
self.holdersMap[to][asset] = 1
c = self.assets[asset].holdersCount
self.assets[asset].holders[c] = to
self.assets[asset].holdersCount = c + 1
# Register a new asset
def register_asset(q, name, calldate, callprice):
newid = self.nextAssetId
self.assets[newid].creator = msg.sender
self.assets[newid].name = name
self.assets[newid].calldate = calldate
self.assets[newid].callprice = callprice
self.assets[newid].holders[0] = msg.sender
self.assets[newid].holdersCount = 1
self.balances[msg.sender][newid] = q
self.holdersMap[msg.sender][newid] = 1
# Send
def send(to, asset, value):
fromval = self.balances[msg.sender][asset]
if fromval >= value:
self.balances[msg.sender][asset] -= value
self.add(to, asset, value)
# Order
def mkorder(selling, buying, quantity, price):
# Make sure you have enough to pay for the order
assert self.balances[msg.sender][selling] >= quantity:
# Try to match existing orders
o = orderbooks[buying][selling]
if not o:
o = self.heap.register()
orderbooks[selling][buying] = o
sz = self.heap.size(o)
invprice = 10^36 / price
while quantity > 0 and sz > 0:
orderid = self.heap.pop()
p = self.orders[orderid].price
if p > invprice:
sz = 0
else:
q = self.orders[orderid].quantity
oq = min(q, quantity)
b = self.orders[orderid].seller
self.balances[msg.sender][selling] -= oq * p / 10^18
self.add(msg.sender, buying, oq)
self.add(b, selling, oq * p / 10^18)
self.orders[orderid].quantity = q - oq
if oq == q:
self.orders[orderid].seller = 0
self.orders[orderid].price = 0
self.orders[orderid].asset_sold = 0
quantity -= oq
sz -= 1
assert quantity > 0
# Make the order
c = self.ordersCount
self.orders[c].seller = msg.sender
self.orders[c].asset_sold = selling
self.orders[c].quantity = quantity
self.orders[c].price = price
self.ordersCount += 1
# Add it to the heap
o = orderbooks[selling][buying]
if not o:
o = self.heap.register()
orderbooks[selling][buying] = o
self.balances[msg.sender][selling] -= quantity
self.heap.push(o, price, c)
return(c)
def cancel_order(id):
if self.orders[id].seller == msg.sender:
self.orders[id].seller = 0
self.orders[id].price = 0
self.balances[msg.sender][self.orders[id].asset_sold] += self.orders[id].quantity
self.orders[id].quantity = 0
self.orders[id].asset_sold = 0
def register_feed():
c = self.feedCount
self.feeds[c].owner = msg.sender
self.feedCount = c + 1
return(c)
def set_feed(id, v):
if self.feeds[id].owner == msg.sender:
self.feeds[id].value = v
def mk_cfd_offer(feed, asset, strike, leverage, min, max, maturity):
b = self.balances[msg.sender][asset]
req = max((strike - min) * leverage, (strike - max) * leverage)
assert b >= req
self.balances[msg.sender][asset] = b - req
c = self.cfdCount
self.cfds[c].maker = msg.sender
self.cfds[c].feed = feed
self.cfds[c].asset = asset
self.cfds[c].strike = strike
self.cfds[c].leverage = leverage
self.cfds[c].min = min
self.cfds[c].max = max
self.cfds[c].maturity = maturity
self.cfdCount = c + 1
return(c)
def accept_cfd_offer(c):
assert not self.cfds[c].acceptor and self.cfds[c].maker
asset = self.cfds[c].asset
strike = self.cfds[c].strike
min = self.cfds[c].min
max = self.cfds[c].max
leverage = self.cfds[c].leverage
b = self.balances[msg.sender][asset]
req = max((min - strike) * leverage, (max - strike) * leverage)
assert b >= req
self.balances[msg.sender][asset] = b - req
self.cfds[c].acceptor = msg.sender
self.cfds[c].maturity += block.timestamp
def claim_cfd_offer(c):
asset = self.cfds[c].asset
strike = self.cfds[c].strike
min = self.cfds[c].min
max = self.cfds[c].max
leverage = self.cfds[c].leverage
v = self.feeds[self.cfds[c].feed].value
assert v <= min or v >= max or block.timestamp >= self.cfds[c].maturity
maker_req = max((strike - min) * leverage, (strike - max) * leverage)
acceptor_req = max((min - strike) * leverage, (max - strike) * leverage)
paydelta = (strike - v) * leverage
self.add(self.cfds[c].maker, asset, maker_req + paydelta)
self.add(self.cfds[c].acceptor, asset, acceptor_req - paydelta)
self.cfds[c].maker = 0
self.cfds[c].acceptor = 0
self.cfds[c].feed = 0
self.cfds[c].asset = 0
self.cfds[c].strike = 0
self.cfds[c].leverage = 0
self.cfds[c].min = 0
self.cfds[c].max = 0
self.cfds[c].maturity = 0
def withdraw_cfd_offer(c):
if self.cfds[c].maker == msg.sender and not self.cfds[c].acceptor:
asset = self.cfds[c].asset
strike = self.cfds[c].strike
min = self.cfds[c].min
max = self.cfds[c].max
leverage = self.cfds[c].leverage
maker_req = max((strike - min) * leverage, (strike - max) * leverage)
self.balances[self.cfds[c].maker][asset] += maker_req
self.cfds[c].maker = 0
self.cfds[c].acceptor = 0
self.cfds[c].feed = 0
self.cfds[c].asset = 0
self.cfds[c].strike = 0
self.cfds[c].leverage = 0
self.cfds[c].min = 0
self.cfds[c].max = 0
self.cfds[c].maturity = 0
def mk_bet_offer(feed, asset, makerstake, acceptorstake, eqtest, maturity):
assert self.balances[msg.sender][asset] >= makerstake
c = self.betCount
self.bets[c].maker = msg.sender
self.bets[c].feed = feed
self.bets[c].asset = asset
self.bets[c].makerstake = makerstake
self.bets[c].acceptorstake = acceptorstake
self.bets[c].eqtest = eqtest
self.bets[c].maturity = maturity
self.balances[msg.sender][asset] -= makerstake
self.betCount = c + 1
return(c)
def accept_bet_offer(c):
assert self.bets[c].maker and not self.bets[c].acceptor
asset = self.bets[c].asset
acceptorstake = self.bets[c].acceptorstake
assert self.balances[msg.sender][asset] >= acceptorstake
self.balances[msg.sender][asset] -= acceptorstake
self.bets[c].acceptor = msg.sender
def claim_bet_offer(c):
assert block.timestamp >= self.bets[c].maturity
v = self.feeds[self.bets[c].feed].value
totalstake = self.bets[c].makerstake + self.bets[c].acceptorstake
if v == self.bets[c].eqtest:
self.add(self.bets[c].maker, self.bets[c].asset, totalstake)
else:
self.add(self.bets[c].acceptor, self.bets[c].asset, totalstake)
self.bets[c].maker = 0
self.bets[c].feed = 0
self.bets[c].asset = 0
self.bets[c].makerstake = 0
self.bets[c].acceptorstake = 0
self.bets[c].eqtest = 0
self.bets[c].maturity = 0
def cancel_bet(c):
assert not self.bets[c].acceptor and msg.sender == self.bets[c].maker
self.balances[msg.sender][self.bets[c].asset] += self.bets[c].makerstake
self.bets[c].maker = 0
self.bets[c].feed = 0
self.bets[c].asset = 0
self.bets[c].makerstake = 0
self.bets[c].acceptorstake = 0
self.bets[c].eqtest = 0
self.bets[c].maturity = 0
def dividend(holder_asset, divvying_asset, ratio):
i = 0
sz = self.assets[holder_asset].holdersCount
t = 0
holders = array(sz)
payments = array(sz)
while i < sz:
holders[i] = self.assets[holder_asset].holders[i]
payments[i] = self.balances[holders[i]][holder_asset] * ratio / 10^18
t += payments[i]
i += 1
if self.balances[msg.sender][divvying_asset] >= t:
i = 0
while i < sz:
self.add(holders[i], divvying_asset, payments[i])
i += 1
self.balances[msg.sender][divvying_asset] -= t
data heaps[2^50](owner, size, nodes[2^50](key, value))
data heapIndex
def register():
i = self.heapIndex
self.heaps[i].owner = msg.sender
self.heapIndex = i + 1
return(i)
def push(heap, key, value):
assert msg.sender == self.heaps[heap].owner
sz = self.heaps[heap].size
self.heaps[heap].nodes[sz].key = key
self.heaps[heap].nodes[sz].value = value
k = sz + 1
while k > 1:
bottom = self.heaps[heap].nodes[k].key
top = self.heaps[heap].nodes[k/2].key
if bottom < top:
tvalue = self.heaps[heap].nodes[k/2].value
bvalue = self.heaps[heap].nodes[k].value
self.heaps[heap].nodes[k].key = top
self.heaps[heap].nodes[k].value = tvalue
self.heaps[heap].nodes[k/2].key = bottom
self.heaps[heap].nodes[k/2].value = bvalue
k /= 2
else:
k = 0
self.heaps[heap].size = sz + 1
def pop(heap):
sz = self.heaps[heap].size
assert sz
prevtop = self.heaps[heap].nodes[1].value
self.heaps[heap].nodes[1].key = self.heaps[heap].nodes[sz].key
self.heaps[heap].nodes[1].value = self.heaps[heap].nodes[sz].value
self.heaps[heap].nodes[sz].key = 0
self.heaps[heap].nodes[sz].value = 0
top = self.heaps[heap].nodes[1].key
k = 1
while k * 2 < sz:
bottom1 = self.heaps[heap].nodes[k * 2].key
bottom2 = self.heaps[heap].nodes[k * 2 + 1].key
if bottom1 < top and (bottom1 < bottom2 or k * 2 + 1 >= sz):
tvalue = self.heaps[heap].nodes[1].value
bvalue = self.heaps[heap].nodes[k * 2].value
self.heaps[heap].nodes[k].key = bottom1
self.heaps[heap].nodes[k].value = bvalue
self.heaps[heap].nodes[k * 2].key = top
self.heaps[heap].nodes[k * 2].value = tvalue
k = k * 2
elif bottom2 < top and bottom2 < bottom1 and k * 2 + 1 < sz:
tvalue = self.heaps[heap].nodes[1].value
bvalue = self.heaps[heap].nodes[k * 2 + 1].value
self.heaps[heap].nodes[k].key = bottom2
self.heaps[heap].nodes[k].value = bvalue
self.heaps[heap].nodes[k * 2 + 1].key = top
self.heaps[heap].nodes[k * 2 + 1].value = tvalue
k = k * 2 + 1
else:
k = sz
self.heaps[heap].size = sz - 1
return(prevtop)
def top(heap):
return(self.heaps[heap].nodes[1].value)
def size(heap):
return(self.heaps[heap].size)
data campaigns[2^80](recipient, goal, deadline, contrib_total, contrib_count, contribs[2^50](sender, value))
def create_campaign(id, recipient, goal, timelimit):
if self.campaigns[id].recipient:
return(0)
self.campaigns[id].recipient = recipient
self.campaigns[id].goal = goal
self.campaigns[id].deadline = block.timestamp + timelimit
def contribute(id):
# Update contribution total
total_contributed = self.campaigns[id].contrib_total + msg.value
self.campaigns[id].contrib_total = total_contributed
# Record new contribution
sub_index = self.campaigns[id].contrib_count
self.campaigns[id].contribs[sub_index].sender = msg.sender
self.campaigns[id].contribs[sub_index].value = msg.value
self.campaigns[id].contrib_count = sub_index + 1
# Enough funding?
if total_contributed >= self.campaigns[id].goal:
send(self.campaigns[id].recipient, total_contributed)
self.clear(id)
return(1)
# Expired?
if block.timestamp > self.campaigns[id].deadline:
i = 0
c = self.campaigns[id].contrib_count
while i < c:
send(self.campaigns[id].contribs[i].sender, self.campaigns[id].contribs[i].value)
i += 1
self.clear(id)
return(2)
def progress_report(id):
return(self.campaigns[id].contrib_total)
# Clearing function for internal use
def clear(id):
if self == msg.sender:
self.campaigns[id].recipient = 0
self.campaigns[id].goal = 0
self.campaigns[id].deadline = 0
c = self.campaigns[id].contrib_count
self.campaigns[id].contrib_count = 0
self.campaigns[id].contrib_total = 0
i = 0
while i < c:
self.campaigns[id].contribs[i].sender = 0
self.campaigns[id].contribs[i].value = 0
i += 1
# 0: current epoch
# 1: number of proposals
# 2: master currency
# 3: last winning market
# 4: last txid
# 5: long-term ema currency units purchased
# 6: last block when currency units purchased
# 7: ether allocated to last round
# 8: last block when currency units claimed
# 9: ether allocated to current round
# 1000+: [proposal address, market ID, totprice, totvolume]
init:
# We technically have two levels of epoch here. We have
# one epoch of 1000, to synchronize with the 1000 epoch
# of the market, and then 100 of those epochs make a
# meta-epoch (I'll nominate the term "seculum") over
# which the futarchy protocol will take place
contract.storage[0] = block.number / 1000
# The master currency of the futarchy. The futarchy will
# assign currency units to whoever the prediction market
# thinks will best increase the currency's value
master_currency = create('subcurrency.se')
contract.storage[2] = master_currency
code:
curepoch = block.number / 1000
prevepoch = contract.storage[0]
if curepoch > prevepoch:
if (curepoch % 100) > 50:
# Collect price data
# We take an average over 50 subepochs to determine
# the price of each asset, weighting by volume to
# prevent abuse
contract.storage[0] = curepoch
i = 0
numprop = contract.storage[1]
while i < numprop:
market = contract.storage[1001 + i * 4]
price = call(market, 2)
volume = call(market, 3)
contract.storage[1002 + i * 4] += price
contract.storage[1003 + i * 4] += volume * price
i += 1
if (curepoch / 100) > (prevepoch / 100):
# If we are entering a new seculum, we determine the
# market with the highest total average price
best = 0
bestmarket = 0
besti = 0
i = 0
while i < numprop:
curtotprice = contract.storage[1002 + i * 4]
curvolume = contract.storage[1002 + i * 4]
curavgprice = curtotprice / curvolume
if curavgprice > best:
best = curavgprice
besti = i
bestmarket = contract.storage[1003 + i * 4]
i += 1
# Reset the number of proposals to 0
contract.storage[1] = 0
# Reward the highest proposal
call(contract.storage[2], [best, 10^9, 0], 3)
# Record the winning market so we can later appropriately
# compensate the participants
contract.storage[2] = bestmarket
# The amount of ether allocated to the last round
contract.storage[7] = contract.storage[9]
# The amount of ether allocated to the next round
contract.storage[9] = contract.balance / 2
# Make a proposal [0, address]
if msg.data[0] == 0 and curepoch % 100 < 50:
pid = contract.storage[1]
market = create('market.se')
c1 = create('subcurrency.se')
c2 = create('subcurrency.se')
call(market, [c1, c2], 2)
contract.storage[1000 + pid * 4] = msg.data[1]
contract.storage[1001 + pid * 4] = market
contract.storage[1] += 1
# Claim ether [1, address]
# One unit of the first currency in the last round's winning
# market entitles you to a quantity of ether that was decided
# at the start of that epoch
elif msg.data[0] == 1:
first_subcurrency = call(contract.storage[2], 3)
# We ask the first subcurrency contract what the last transaction was. The
# way to make a claim is to send the amount of first currency units that
# you wish to claim with, and then immediately call this contract. For security
# it makes sense to set up a tx which sends both messages in sequence atomically
data = call(first_subcurrency, [], 0, 4)
from = data[0]
to = data[1]
value = data[2]
txid = data[3]
if txid > contract.storage[4] and to == contract.address:
send(to, contract.storage[7] * value / 10^9)
contract.storage[4] = txid
# Claim second currency [2, address]
# One unit of the second currency in the last round's winning
# market entitles you to one unit of the futarchy's master
# currency
elif msg.data[0] == 2:
second_subcurrency = call(contract.storage[2], 3)
data = call(first_subcurrency, [], 0, 4)
from = data[0]
to = data[1]
value = data[2]
txid = data[3]
if txid > contract.storage[4] and to == contract.address:
call(contract.storage[2], [to, value], 2)
contract.storage[4] = txid
# Purchase currency for ether (target releasing 10^9 units per seculum)
# Price starts off 1 eth for 10^9 units but increases hyperbolically to
# limit issuance
elif msg.data[0] == 3:
pre_ema = contract.storage[5]
post_ema = pre_ema + msg.value
pre_reserve = 10^18 / (10^9 + pre_ema / 10^9)
post_reserve = 10^18 / (10^9 + post_ema / 10^9)
call(contract.storage[2], [msg.sender, pre_reserve - post_reserve], 2)
last_sold = contract.storage[6]
contract.storage[5] = pre_ema * (100000 + last_sold - block.number) + msg.value
contract.storage[6] = block.number
# Claim all currencies as the ether miner of the current block
elif msg.data[0] == 2 and msg.sender == block.coinbase and block.number > contract.storage[8]:
i = 0
numproposals = contract.storage[1]
while i < numproposals:
market = contract.storage[1001 + i * 3]
fc = call(market, 4)
sc = call(market, 5)
call(fc, [msg.sender, 1000], 2)
call(sc, [msg.sender, 1000], 2)
i += 1
contract.storage[8] = block.number
# 0: size
# 1-n: elements
init:
contract.storage[1000] = msg.sender
code:
# Only owner of the heap is allowed to modify it
if contract.storage[1000] != msg.sender:
stop
# push
if msg.data[0] == 0:
sz = contract.storage[0]
contract.storage[sz + 1] = msg.data[1]
k = sz + 1
while k > 1:
bottom = contract.storage[k]
top = contract.storage[k/2]
if bottom < top:
contract.storage[k] = top
contract.storage[k/2] = bottom
k /= 2
else:
k = 0
contract.storage[0] = sz + 1
# pop
elif msg.data[0] == 1:
sz = contract.storage[0]
if !sz:
return(0)
prevtop = contract.storage[1]
contract.storage[1] = contract.storage[sz]
contract.storage[sz] = 0
top = contract.storage[1]
k = 1
while k * 2 < sz:
bottom1 = contract.storage[k * 2]
bottom2 = contract.storage[k * 2 + 1]
if bottom1 < top and (bottom1 < bottom2 or k * 2 + 1 >= sz):
contract.storage[k] = bottom1
contract.storage[k * 2] = top
k = k * 2
elif bottom2 < top and bottom2 < bottom1 and k * 2 + 1 < sz:
contract.storage[k] = bottom2
contract.storage[k * 2 + 1] = top
k = k * 2 + 1
else:
k = sz
contract.storage[0] = sz - 1
return(prevtop)
# top
elif msg.data[0] == 2:
return(contract.storage[1])
# size
elif msg.data[0] == 3:
return(contract.storage[0])
# Creates a decentralized market between any two subcurrencies
# Here, the first subcurrency is the base asset and the second
# subcurrency is the asset priced against the base asset. Hence,
# "buying" refers to trading the first for the second, and
# "selling" refers to trading the second for the first
# storage 0: buy orders
# storage 1: sell orders
# storage 1000: first subcurrency
# storage 1001: last first subcurrency txid
# storage 2000: second subcurrency
# storage 2001: last second subcurrency txid
# storage 3000: current epoch
# storage 4000: price
# storage 4001: volume
init:
# Heap for buy orders
contract.storage[0] = create('heap.se')
# Heap for sell orders
contract.storage[1] = create('heap.se')
code:
# Initialize with [ first_subcurrency, second_subcurrency ]
if !contract.storage[1000]:
contract.storage[1000] = msg.data[0] # First subcurrency
contract.storage[1001] = -1
contract.storage[2000] = msg.data[1] # Second subcurrency
contract.storage[2001] = -1
contract.storage[3000] = block.number / 1000
stop
first_subcurrency = contract.storage[1000]
second_subcurrency = contract.storage[2000]
buy_heap = contract.storage[0]
sell_heap = contract.storage[1]
# This contract operates in "epochs" of 100 blocks
# At the end of each epoch, we process all orders
# simultaneously, independent of order. This algorithm
# prevents front-running, and generates a profit from
# the spread. The profit is permanently kept in the
# market (ie. destroyed), making both subcurrencies
# more valuable
# Epoch transition code
if contract.storage[3000] < block.number / 100:
done = 0
volume = 0
while !done:
# Grab the top buy and sell order from each heap
topbuy = call(buy_heap, 1)
topsell = call(sell_heap, 1)
# An order is recorded in the heap as:
# Buys: (2^48 - 1 - price) * 2^208 + units of first currency * 2^160 + from
# Sells: price * 2^208 + units of second currency * 2^160 + from
buyprice = -(topbuy / 2^208)
buyfcvalue = (topbuy / 2^160) % 2^48
buyer = topbuy % 2^160
sellprice = topsell / 2^208
sellscvalue = (topsell / 2^160) % 2^48
seller = topsell % 2^160
# Heap empty, or no more matching orders
if not topbuy or not topsell or buyprice < sellprice:
done = 1
else:
# Add to volume counter
volume += buyfcvalue
# Calculate how much of the second currency the buyer gets, and
# how much of the first currency the seller gets
sellfcvalue = sellscvalue / buyprice
buyscvalue = buyfcvalue * sellprice
# Send the currency units along
call(second_subcurrency, [buyer, buyscvalue], 2)
call(first_subcurrency, [seller, sellfcvalue], 2)
if volume:
contract.storage[4000] = (buyprice + sellprice) / 2
contract.storage[4001] = volume
contract.storage[3000] = block.number / 100
# Make buy order [0, price]
if msg.data[0] == 0:
# We ask the first subcurrency contract what the last transaction was. The
# way to make a buy order is to send the amount of first currency units that
# you wish to buy with, and then immediately call this contract. For security
# it makes sense to set up a tx which sends both messages in sequence atomically
data = call(first_subcurrency, [], 0, 4)
from = data[0]
to = data[1]
value = data[2]
txid = data[3]
price = msg.data[1]
if txid > contract.storage[1001] and to == contract.address:
contract.storage[1001] = txid
# Adds the order to the heap
call(buy_heap, [0, -price * 2^208 + (value % 2^48) * 2^160 + from], 2)
# Make sell order [1, price]
elif msg.data[0] == 1:
# Same mechanics as buying
data = call(second_subcurrency, [], 0, 4)
from = data[0]
to = data[1]
value = data[2]
txid = data[3]
price = msg.data[1]
if txid > contract.storage[2001] and to == contract.address:
contract.storage[2001] = txid
call(sell_heap, [0, price * 2^208 + (value % 2^48) * 2^160 + from], 2)
# Ask for price
elif msg.data[0] == 2:
return(contract.storage[4000])
# Ask for volume
elif msg.data[0] == 3:
return(contract.storage[1000])
# Ask for first currency
elif msg.data[0] == 4:
return(contract.storage[2000])
# Ask for second currency
elif msg.data[0] == 5:
return(contract.storage[4001])
# Initialization
# Admin can issue and delete at will
init:
contract.storage[0] = msg.sender
code:
# If a message with one item is sent, that's a balance query
if msg.datasize == 1:
addr = msg.data[0]
return(contract.storage[addr])
# If a message with two items [to, value] are sent, that's a transfer request
elif msg.datasize == 2:
from = msg.sender
fromvalue = contract.storage[from]
to = msg.data[0]
value = msg.data[1]
if fromvalue >= value and value > 0 and to > 4:
contract.storage[from] = fromvalue - value
contract.storage[to] += value
contract.storage[2] = from
contract.storage[3] = to
contract.storage[4] = value
contract.storage[5] += 1
return(1)
return(0)
elif msg.datasize == 3 and msg.sender == contract.storage[0]:
# Admin can issue at will by sending a [to, value, 0] message
if msg.data[2] == 0:
contract.storage[msg.data[0]] += msg.data[1]
# Change admin [ newadmin, 0, 1 ]
# Set admin to 0 to disable administration
elif msg.data[2] == 1:
contract.storage[0] = msg.data[0]
# Fetch last transaction
else:
return([contract.storage[2], contract.storage[3], contract.storage[4], contract.storage[5]], 4)
from __future__ import print_function
import pyethereum
t = pyethereum.tester
s = t.state()
# Create currencies
c1 = s.contract('subcurrency.se')
print("First currency: %s" % c1)
c2 = s.contract('subcurrency.se')
print("First currency: %s" % c2)
# Allocate units
s.send(t.k0, c1, 0, [t.a0, 1000, 0])
s.send(t.k0, c1, 0, [t.a1, 1000, 0])
s.send(t.k0, c2, 0, [t.a2, 1000000, 0])
s.send(t.k0, c2, 0, [t.a3, 1000000, 0])
print("Allocated units")
# Market
m = s.contract('market.se')
s.send(t.k0, m, 0, [c1, c2])
# Place orders
s.send(t.k0, c1, 0, [m, 1000])
s.send(t.k0, m, 0, [0, 1200])
s.send(t.k1, c1, 0, [m, 1000])
s.send(t.k1, m, 0, [0, 1400])
s.send(t.k2, c2, 0, [m, 1000000])
s.send(t.k2, m, 0, [1, 800])
s.send(t.k3, c2, 0, [m, 1000000])
s.send(t.k3, m, 0, [1, 600])
print("Orders placed")
# Next epoch and ping
s.mine(100)
print("Mined 100")
s.send(t.k0, m, 0, [])
print("Updating")
# Check
assert s.send(t.k0, c2, 0, [t.a0]) == [800000]
assert s.send(t.k0, c2, 0, [t.a1]) == [600000]
assert s.send(t.k0, c1, 0, [t.a2]) == [833]
assert s.send(t.k0, c1, 0, [t.a3]) == [714]
print("Balance checks passed")
# Database updateable only by the original creator
data creator
def init():
self.creator = msg.sender
def update(k, v):
if msg.sender == self.creator:
self.storage[k] = v
def query(k):
return(self.storage[k])
# So I looked up on Wikipedia what Jacobian form actually is, and noticed that it's
# actually a rather different and more clever construction than the naive version
# that I created. It may possible to achieve a further 20-50% savings by applying
# that version.
extern all: [call]
data JORDANMUL
data JORDANADD
data EXP
def init():
self.JORDANMUL = create('jacobian_mul.se')
self.JORDANADD = create('jacobian_add.se')
self.EXP = create('modexp.se')
def call(h, v, r, s):
N = -432420386565659656852420866394968145599
P = -4294968273
h = mod(h, N)
r = mod(r, P)
s = mod(s, N)
Gx = 55066263022277343669578718895168534326250603453777594175500187360389116729240
Gy = 32670510020758816978083085130507043184471273380659243275938904335757337482424
x = r
xcubed = mulmod(mulmod(x, x, P), x, P)
beta = self.EXP.call(addmod(xcubed, 7, P), div(P + 1, 4), P)
# Static-gascost ghetto conditional
y_is_positive = mod(v, 2) xor mod(beta, 2)
y = beta * y_is_positive + (P - beta) * (1 - y_is_positive)
GZ = self.JORDANMUL.call(Gx, 1, Gy, 1, N - h, outsz=4)
XY = self.JORDANMUL.call(x, 1, y, 1, s, outsz=4)
COMB = self.JORDANADD.call(GZ[0], GZ[1], GZ[2], GZ[3], XY[0], XY[1], XY[2], XY[3], 1, outsz=5)
COMB[4] = self.EXP.call(r, N - 2, N)
Q = self.JORDANMUL.call(data=COMB, datasz=5, outsz=4)
ox = mulmod(Q[0], self.EXP.call(Q[1], P - 2, P), P)
oy = mulmod(Q[2], self.EXP.call(Q[3], P - 2, P), P)
return([ox, oy], 2)
6000607f535961071c80610013593961072f566000605f535961013d8061001359396101505661012b8061000e60003961013956600061023f5360003560001a6000141561012a5760806001602037602051151561002c576060511561002f565b60005b156100695760806080599059016000905260a052600060a051526001602060a05101526000604060a05101526001606060a051015260a051f25b6401000003d160000380608051826003846020516020510909098182600260605109836040516040510909828283098382830984858660026020510983098603866040518509088560405183098686888985604051098a038a85602051090809878689846040510909888960605183098a038a6080518509088960805183096080608059905901600090526101e052866101e051528560206101e05101528260406101e05101528160606101e05101526101e051f250505050505050505050505b5b6000f25b816000f090506000555961040680610168593961056e566000603f535961013d8061001359396101505661012b8061000e60003961013956600061023f5360003560001a6000141561012a5760806001602037602051151561002c576060511561002f565b60005b156100695760806080599059016000905260a052600060a051526001602060a05101526000604060a05101526001606060a051015260a051f25b6401000003d160000380608051826003846020516020510909098182600260605109836040516040510909828283098382830984858660026020510983098603866040518509088560405183098686888985604051098a038a85602051090809878689846040510909888960605183098a038a6080518509088960805183096080608059905901600090526101e052866101e051528560206101e05101528260406101e05101528160606101e05101526101e051f250505050505050505050505b5b6000f25b816000f0905060005561029a8061016860003961040256600061043f5360003560001a60001415610299576101006001602037602051151561002d5760605115610030565b60005b1561007657608059905901600090526101405260a051610140515260c051602061014051015260e051604061014051015261010051606061014051015261014051610120525b60a05115156100885760e0511561008b565b60005b156100d0576080599059016000905261016052602051610160515260405160206101605101526060516040610160510152608051606061016051015261016051610120525b61012051156100e157608061012051f25b6401000003d16000036000818260a0516040510983038360c051602051090814156101b1576000818260e051608051098303836101005160605109081415610175576080608080599059016000905260006101c0601f01536020516101e052604051610200526060516102205260805161024052818160816101c0601f01600060005460195a03f1508090509050f26101b0565b608060805990590160009052610280526000610280515260016020610280510152600060406102805101526001606061028051015261028051f25b5b808160405160c051098283610100516060510984038460805160e05109080981828360c0516020510984038460405160a051090883608051610100510909828283098382830984856020518309860386604051850908856040518309868760a051830988038860c0518509088760c051830988898a60405185098b038b8460205109088909898a836040510989098a8b60605183098c038c6080518509088b60805183096080608059905901600090526103e052866103e051528560206103e05101528260406103e05101528160606103e05101526103e051f2505050505050505050505050505b5b6000f25b816000f090506001556101928061058660003961071856600061013f5360003560001a600014156101915760a0600160203770014551231950b75fc4402da1732fc9bebf60000360a0510660a05260a05115606051156020511502011561007e5760806080599059016000905260c052600060c051526001602060c05101526000604060c05101526001606060c051015260c051f25b610120599059016000905260e052600060e051526000602060e05101526001604060e05101526000606060e05101526001608060e0510152600060a060e0510152600060c060e0510152600060e060e0510152600061010060e051015260e0517f80000000000000000000000000000000000000000000000000000000000000005b6000811115610187578060a0511615610165576080602083016081601f85016000600054614e20f15060205160a083015260405160c083015260605160e0830152608051610100830152608060208301610101601f85016000600154614e20f161017b565b6080602083016081601f85016000600054614e20f15b50600281049050610100565b608060208301f250505b5b6000f25b816000f0905060005559610406806107475939610b4d566000603f535961013d8061001359396101505661012b8061000e60003961013956600061023f5360003560001a6000141561012a5760806001602037602051151561002c576060511561002f565b60005b156100695760806080599059016000905260a052600060a051526001602060a05101526000604060a05101526001606060a051015260a051f25b6401000003d160000380608051826003846020516020510909098182600260605109836040516040510909828283098382830984858660026020510983098603866040518509088560405183098686888985604051098a038a85602051090809878689846040510909888960605183098a038a6080518509088960805183096080608059905901600090526101e052866101e051528560206101e05101528260406101e05101528160606101e05101526101e051f250505050505050505050505b5b6000f25b816000f0905060005561029a8061016860003961040256600061043f5360003560001a60001415610299576101006001602037602051151561002d5760605115610030565b60005b1561007657608059905901600090526101405260a051610140515260c051602061014051015260e051604061014051015261010051606061014051015261014051610120525b60a05115156100885760e0511561008b565b60005b156100d0576080599059016000905261016052602051610160515260405160206101605101526060516040610160510152608051606061016051015261016051610120525b61012051156100e157608061012051f25b6401000003d16000036000818260a0516040510983038360c051602051090814156101b1576000818260e051608051098303836101005160605109081415610175576080608080599059016000905260006101c0601f01536020516101e052604051610200526060516102205260805161024052818160816101c0601f01600060005460195a03f1508090509050f26101b0565b608060805990590160009052610280526000610280515260016020610280510152600060406102805101526001606061028051015261028051f25b5b808160405160c051098283610100516060510984038460805160e05109080981828360c0516020510984038460405160a051090883608051610100510909828283098382830984856020518309860386604051850908856040518309868760a051830988038860c0518509088760c051830988898a60405185098b038b8460205109088909898a836040510989098a8b60605183098c038c6080518509088b60805183096080608059905901600090526103e052866103e051528560206103e05101528260406103e05101528160606103e05101526103e051f2505050505050505050505050505b5b6000f25b816000f09050600155596100d080610b655939610c35566100be8061000e6000396100cc5660003560001a600014156100bd576060600160203760017f80000000000000000000000000000000000000000000000000000000000000005b60008111156100b157606051816040511615156020510a606051848509099150606051600282046040511615156020510a606051848509099150606051600482046040511615156020510a606051848509099150606051600882046040511615156020510a606051848509099150601081049050610038565b8160c052602060c0f250505b5b6000f25b816000f090506002556103d280610c4d60003961101f56600061095f5360003560001a600014156103d1576080600160203770014551231950b75fc4402da1732fc9bebf60000360a0526401000003d160000360c05260a0516020510660205260c0516060510660605260a051608051066080527f79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f8179860e0527f483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8610100526060516101205260c0516101205160c05161012051610120510909610140526000610180601f015360c051600761014051086101a0526004600160c05101046101c05260c0516101e05260206102006061610180601f01600060025460195a03f1506102005161016052600261016051066002604051061861022052610220516001036101605160c05103026102205161016051020161024052608080599059016000905260006102a0601f015360e0516102c05260016102e052610100516103005260016103205260205160a0510361034052818160a16102a0601f01600060005460195a03f150809050905061026052608080599059016000905260006103c0601f0153610120516103e052600161040052610240516104205260016104405260805161046052818160a16103c0601f01600060005460195a03f15080905090506103805260a080599059016000905260006104e0601f015361026051516105005260206102605101516105205260406102605101516105405260606102605101516105605261038051516105805260206103805101516105a05260406103805101516105c05260606103805101516105e05260016106005281816101216104e0601f01600060015460195a03f15080905090506104a0526000610640601f015360605161066052600260a051036106805260a0516106a05260206106c06061610640601f01600060025460195a03f1506106c05160806104a05101526104a05160208103805160018303608080599059016000905260008353818160a185600060005460195a03f150838552809050905090509050905090506106e05260c05160006107e0601f015360206106e051015161080052600260c051036108205260c05161084052602061086060616107e0601f01600060025460195a03f150610860516106e05151096107c05260c05160006108a0601f015360606106e05101516108c052600260c051036108e05260c05161090052602061092060616108a0601f01600060025460195a03f1506109205160406106e05101510961088052604060405990590160009052610940526107c051610940515261088051602061094051015261094051f25b5b6000f2
extern all: [call]
data DOUBLE
def init():
self.DOUBLE = create('jacobian_double.se')
def call(axn, axd, ayn, ayd, bxn, bxd, byn, byd):
if !axn and !ayn:
o = [bxn, bxd, byn, byd]
if !bxn and !byn:
o = [axn, axd, ayn, ayd]
if o:
return(o, 4)
with P = -4294968273:
if addmod(mulmod(axn, bxd, P), P - mulmod(axd, bxn, P), P) == 0:
if addmod(mulmod(ayn, byd, P), P - mulmod(ayd, byn, P), P) == 0:
return(self.DOUBLE.call(axn, axd, ayn, ayd, outsz=4), 4)
else:
return([0, 1, 0, 1], 4)
with mn = mulmod(addmod(mulmod(byn, ayd, P), P - mulmod(ayn, byd, P), P), mulmod(bxd, axd, P), P):
with md = mulmod(mulmod(byd, ayd, P), addmod(mulmod(bxn, axd, P), P - mulmod(axn, bxd, P), P), P):
with msqn = mulmod(mn, mn, P):
with msqd = mulmod(md, md, P):
with msqman = addmod(mulmod(msqn, axd, P), P - mulmod(msqd, axn, P), P):
with msqmad = mulmod(msqd, axd, P):
with xn = addmod(mulmod(msqman, bxd, P), P - mulmod(msqmad, bxn, P), P):
with xd = mulmod(msqmad, bxd, P):
with mamxn = mulmod(mn, addmod(mulmod(axn, xd, P), P - mulmod(xn, axd, P), P), P):
with mamxd = mulmod(md, mulmod(axd, xd, P), P):
with yn = addmod(mulmod(mamxn, ayd, P), P - mulmod(mamxd, ayn, P), P):
with yd = mulmod(mamxd, ayd, P):
return([xn, xd, yn, yd], 4)
def call(axn, axd, ayn, ayd):
if !axn and !ayn:
return([0, 1, 0, 1], 4)
with P = -4294968273:
# No need to add (A, 1) because A = 0 for bitcoin
with mn = mulmod(mulmod(mulmod(axn, axn, P), 3, P), ayd, P):
with md = mulmod(mulmod(axd, axd, P), mulmod(ayn, 2, P), P):
with msqn = mulmod(mn, mn, P):
with msqd = mulmod(md, md, P):
with xn = addmod(mulmod(msqn, axd, P), P - mulmod(msqd, mulmod(axn, 2, P), P), P):
with xd = mulmod(msqd, axd, P):
with mamxn = mulmod(addmod(mulmod(axn, xd, P), P - mulmod(axd, xn, P), P), mn, P):
with mamxd = mulmod(mulmod(axd, xd, P), md, P):
with yn = addmod(mulmod(mamxn, ayd, P), P - mulmod(mamxd, ayn, P), P):
with yd = mulmod(mamxd, ayd, P):
return([xn, xd, yn, yd], 4)
# Expected gas cost
#
# def expect(n, point_at_infinity=False):
# n = n % (2**256 - 432420386565659656852420866394968145599)
# if point_at_infinity:
# return 79
# if n == 0:
# return 34479
# L = int(1 + math.log(n) / math.log(2))
# H = len([x for x in b.encode(n, 2) if x == '1'])
# return 34221 + 94 * L + 343 * H
data DOUBLE
data ADD
def init():
self.DOUBLE = create('jacobian_double.se')
self.ADD = create('jacobian_add.se')
def call(axn, axd, ayn, ayd, n):
n = mod(n, -432420386565659656852420866394968145599)
if !axn * !ayn + !n: # Constant-gas version of !axn and !ayn or !n
return([0, 1, 0, 1], 4)
with o = [0, 0, 1, 0, 1, 0, 0, 0, 0]:
with b = 2 ^ 255:
while gt(b, 0):
if n & b:
~call(20000, self.DOUBLE, 0, o + 31, 129, o + 32, 128)
o[5] = axn
o[6] = axd
o[7] = ayn
o[8] = ayd
~call(20000, self.ADD, 0, o + 31, 257, o + 32, 128)
else:
~call(20000, self.DOUBLE, 0, o + 31, 129, o + 32, 128)
b = div(b, 2)
return(o + 32, 4)
def call(b, e, m):
with o = 1:
with bit = 2 ^ 255:
while gt(bit, 0):
# A touch of loop unrolling for 20% efficiency gain
o = mulmod(mulmod(o, o, m), b ^ !(!(e & bit)), m)
o = mulmod(mulmod(o, o, m), b ^ !(!(e & div(bit, 2))), m)
o = mulmod(mulmod(o, o, m), b ^ !(!(e & div(bit, 4))), m)
o = mulmod(mulmod(o, o, m), b ^ !(!(e & div(bit, 8))), m)
bit = div(bit, 16)
return(o)
import bitcoin as b
import math
import sys
def signed(o):
return map(lambda x: x - 2**256 if x >= 2**255 else x, o)
def hamming_weight(n):
return len([x for x in b.encode(n, 2) if x == '1'])
def binary_length(n):
return len(b.encode(n, 2))
def jacobian_mul_substitute(A, B, C, D, N):
if A == 0 and C == 0 or (N % b.N) == 0:
return {"gas": 86, "output": [0, 1, 0, 1]}
else:
output = b.jordan_multiply(((A, B), (C, D)), N)
return {
"gas": 35262 + 95 * binary_length(N % b.N) + 355 * hamming_weight(N % b.N),
"output": signed(list(output[0]) + list(output[1]))
}
def jacobian_add_substitute(A, B, C, D, E, F, G, H):
if A == 0 or E == 0:
gas = 149
elif (A * F - B * E) % b.P == 0:
if (C * H - D * G) % b.P == 0:
gas = 442
else:
gas = 177
else:
gas = 301
output = b.jordan_add(((A, B), (C, D)), ((E, F), (G, H)))
return {
"gas": gas,
"output": signed(list(output[0]) + list(output[1]))
}
def modexp_substitute(base, exp, mod):
return {
"gas": 5150,
"output": signed([pow(base, exp, mod) if mod > 0 else 0])
}
def ecrecover_substitute(z, v, r, s):
P, A, B, N, Gx, Gy = b.P, b.A, b.B, b.N, b.Gx, b.Gy
x = r
beta = pow(x*x*x+A*x+B, (P + 1) / 4, P)
BETA_PREMIUM = modexp_substitute(x, (P + 1) / 4, P)["gas"]
y = beta if v % 2 ^ beta % 2 else (P - beta)
Gz = b.jordan_multiply(((Gx, 1), (Gy, 1)), (N - z) % N)
GZ_PREMIUM = jacobian_mul_substitute(Gx, 1, Gy, 1, (N - z) % N)["gas"]
XY = b.jordan_multiply(((x, 1), (y, 1)), s)
XY_PREMIUM = jacobian_mul_substitute(x, 1, y, 1, s % N)["gas"]
Qr = b.jordan_add(Gz, XY)
QR_PREMIUM = jacobian_add_substitute(Gz[0][0], Gz[0][1], Gz[1][0], Gz[1][1],
XY[0][0], XY[0][1], XY[1][0], XY[1][1]
)["gas"]
Q = b.jordan_multiply(Qr, pow(r, N - 2, N))
Q_PREMIUM = jacobian_mul_substitute(Qr[0][0], Qr[0][1], Qr[1][0], Qr[1][1],
pow(r, N - 2, N))["gas"]
R_PREMIUM = modexp_substitute(r, N - 2, N)["gas"]
OX_PREMIUM = modexp_substitute(Q[0][1], P - 2, P)["gas"]
OY_PREMIUM = modexp_substitute(Q[1][1], P - 2, P)["gas"]
Q = b.from_jordan(Q)
return {
"gas": 991 + BETA_PREMIUM + GZ_PREMIUM + XY_PREMIUM + QR_PREMIUM +
Q_PREMIUM + R_PREMIUM + OX_PREMIUM + OY_PREMIUM,
"output": signed(Q)
}
import bitcoin as b
import random
import sys
import math
from pyethereum import tester as t
import substitutes
import time
vals = [random.randrange(2**256) for i in range(12)]
test_points = [list(p[0]) + list(p[1]) for p in
[b.jordan_multiply(((b.Gx, 1), (b.Gy, 1)), r) for r in vals]]
G = [b.Gx, 1, b.Gy, 1]
Z = [0, 1, 0, 1]
def neg_point(p):
return [p[0], b.P - p[1], p[2], b.P - p[3]]
s = t.state()
s.block.gas_limit = 10000000
t.gas_limit = 1000000
c = s.contract('modexp.se')
print "Starting modexp tests"
for i in range(0, len(vals) - 2, 3):
o1 = substitutes.modexp_substitute(vals[i], vals[i+1], vals[i+2])
o2 = s.profile(t.k0, c, 0, funid=0, abi=vals[i:i+3])
#assert o1["gas"] == o2["gas"], (o1, o2)
assert o1["output"] == o2["output"], (o1, o2)
c = s.contract('jacobian_add.se')
print "Starting addition tests"
for i in range(2):
P = test_points[i * 2]
Q = test_points[i * 2 + 1]
NP = neg_point(P)
o1 = substitutes.jacobian_add_substitute(*(P + Q))
o2 = s.profile(t.k0, c, 0, funid=0, abi=P + Q)
#assert o1["gas"] == o2["gas"], (o1, o2)
assert o1["output"] == o2["output"], (o1, o2)
o1 = substitutes.jacobian_add_substitute(*(P + NP))
o2 = s.profile(t.k0, c, 0, funid=0, abi=P + NP)
#assert o1["gas"] == o2["gas"], (o1, o2)
assert o1["output"] == o2["output"], (o1, o2)
o1 = substitutes.jacobian_add_substitute(*(P + P))
o2 = s.profile(t.k0, c, 0, funid=0, abi=P + P)
#assert o1["gas"] == o2["gas"], (o1, o2)
assert o1["output"] == o2["output"], (o1, o2)
o1 = substitutes.jacobian_add_substitute(*(P + Z))
o2 = s.profile(t.k0, c, 0, funid=0, abi=P + Z)
#assert o1["gas"] == o2["gas"], (o1, o2)
assert o1["output"] == o2["output"], (o1, o2)
o1 = substitutes.jacobian_add_substitute(*(Z + P))
o2 = s.profile(t.k0, c, 0, funid=0, abi=Z + P)
#assert o1["gas"] == o2["gas"], (o1, o2)
assert o1["output"] == o2["output"], (o1, o2)
c = s.contract('jacobian_mul.se')
print "Starting multiplication tests"
mul_tests = [
Z + [0],
Z + [vals[0]],
test_points[0] + [0],
test_points[1] + [b.N],
test_points[2] + [1],
test_points[2] + [2],
test_points[2] + [3],
test_points[2] + [4],
test_points[3] + [5],
test_points[3] + [6],
test_points[4] + [7],
test_points[4] + [2**254],
test_points[4] + [vals[1]],
test_points[4] + [vals[2]],
test_points[4] + [vals[3]],
test_points[5] + [2**256 - 1],
]
for i, test in enumerate(mul_tests):
print 'trying mul_test %i' % i, test
o1 = substitutes.jacobian_mul_substitute(*test)
o2 = s.profile(t.k0, c, 0, funid=0, abi=test)
# assert o1["gas"] == o2["gas"], (o1, o2, test)
assert o1["output"] == o2["output"], (o1, o2, test)
c = s.contract('ecrecover.se')
print "Starting ecrecover tests"
for i in range(5):
print 'trying ecrecover_test', vals[i*2], vals[i*2+1]
k = vals[i*2]
h = vals[i*2+1]
V, R, S = b.ecdsa_raw_sign(b.encode(h, 256, 32), k)
aa = time.time()
o1 = substitutes.ecrecover_substitute(h, V, R, S)
print 'sub', time.time() - aa
a = time.time()
o2 = s.profile(t.k0, c, 0, funid=0, abi=[h, V, R, S])
print time.time() - a
# assert o1["gas"] == o2["gas"], (o1, o2, h, V, R, S)
assert o1["output"] == o2["output"], (o1, o2, h, V, R, S)
# Explicit tests
data = [[
0xf007a9c78a4b2213220adaaf50c89a49d533fbefe09d52bbf9b0da55b0b90b60,
0x1b,
0x5228fc9e2fabfe470c32f459f4dc17ef6a0a81026e57e4d61abc3bc268fc92b5,
0x697d4221cd7bc5943b482173de95d3114b9f54c5f37cc7f02c6910c6dd8bd107
]]
for datum in data:
o1 = substitutes.ecrecover_substitute(*datum)
o2 = s.profile(t.k0, c, 0, funid=0, abi=datum)
#assert o1["gas"] == o2["gas"], (o1, o2, datum)
assert o1["output"] == o2["output"], (o1, o2, datum)
if msg.data[0] == 0:
new_id = contract.storage[-1]
# store [from, to, value, maxvalue, timeout] in contract storage
contract.storage[new_id] = msg.sender
contract.storage[new_id + 1] = msg.data[1]
contract.storage[new_id + 2] = 0
contract.storage[new_id + 3] = msg.value
contract.storage[new_id + 4] = 2^254
# increment next id
contract.storage[-1] = new_id + 10
# return id of this channel
return(new_id)
# Increase payment on channel: [1, id, value, v, r, s]
elif msg.data[0] == 1:
# Ecrecover native extension; will be a different address in testnet and live
ecrecover = 0x46a8d0b21b1336d83b06829f568d7450df36883f
# Message data parameters
id = msg.data[1] % 2^160
value = msg.data[2]
# Determine sender from signature
h = sha3([id, value], 2)
sender = call(ecrecover, [h, msg.data[3], msg.data[4], msg.data[5]], 4)
# Check sender matches and new value is greater than old
if sender == contract.storage[id]:
if value > contract.storage[id + 2] and value <= contract.storage[id + 3]:
# Update channel, increasing value and setting timeout
contract.storage[id + 2] = value
contract.storage[id + 4] = block.number + 1000
# Cash out channel: [2, id]
elif msg.data[0] == 2:
id = msg.data[1] % 2^160
# Check if timeout has run out
if block.number >= contract.storage[id + 3]:
# Send funds
send(contract.storage[id + 1], contract.storage[id + 2])
# Send refund
send(contract.storage[id], contract.storage[id + 3] - contract.storage[id + 2])
# Clear storage
contract.storage[id] = 0
contract.storage[id + 1] = 0
contract.storage[id + 2] = 0
contract.storage[id + 3] = 0
contract.storage[id + 4] = 0
# An implementation of a contract for storing a key/value binding
init:
# Set owner
contract.storage[0] = msg.sender
code:
# Check ownership
if msg.sender == contract.storage[0]:
# Get: returns (found, val)
if msg.data[0] == 0:
s = sha3(msg.data[1])
return([contract.storage[s], contract.storage[s+1]], 2)
# Set: sets map[k] = v
elif msg.data[0] == 1:
s = sha3(msg.data[1])
contract.storage[s] = 1
contract.storage[s + 1] = msg.data[2]
# Suicide
elif msg.data[2] == 1:
suicide(0)
init:
contract.storage[0] = msg.sender
code:
if msg.sender != contract.storage[0]:
stop
i = 0
while i < ~calldatasize():
to = ~calldataload(i)
value = ~calldataload(i+20) / 256^12
datasize = ~calldataload(i+32) / 256^30
data = alloc(datasize)
~calldatacopy(data, i+34, datasize)
~call(tx.gas - 25, to, value, data, datasize, 0, 0)
i += 34 + datasize
# Exists in state:
# (i) last committed block
# (ii) chain of uncommitted blocks (linear only)
# (iii) transactions, each tx with an associated block number
#
# Uncommitted block =
# [ numtxs, numkvs, tx1 (N words), tx2 (N words) ..., [k1, v1], [k2, v2], [k3, v3] ... ]
#
# Block checking process
#
# Suppose last committed state is m
# Last uncommitted state is n
# Contested block is b
#
# 1. Temporarily apply all state transitions from
# m to b
# 2. Run code, get list of changes
# 3. Check is list of changes matches deltas
# * if yes, do nothing
# * if no, set last uncommitted state to pre-b
#
# Storage variables:
#
# Last committed block: 0
# Last uncommitted block: 1
# Contract holding code: 2
# Uncommitted map: 3
# Transaction length (parameter): 4
# Block b: 2^160 + b * 2^40:
# + 1: submission blknum
# + 2: submitter
# + 3: data in uncommitted block format above
# Last committed storage:
# sha3(k): index k
# Initialize: [0, c, txlength], set address of the code-holding contract and the transaction
# length
if not contract.storage[2]:
contract.storage[2] = msg.data[1]
contract.storage[4] = msg.data[2]
stop
# Sequentially commit all uncommitted blocks that are more than 1000 mainchain-blocks old
last_committed_block = contract.storage[0]
last_uncommitted_block = contract.storage[1]
lcb_storage_index = 2^160 + last_committed_block * 2^40
while contract.storage[lcb_storage_index + 1] < block.number - 1000 and last_committed_block < last_uncommitted_block:
kvpairs = contract.storage[lcb_storage_index]
i = 0
while i < kvpairs:
k = contract.storage[lcb_storage_index + 3 + i * 2]
v = contract.storage[lcb_storage_index + 4 + i * 2]
contract.storage[sha3(k)] = v
i += 1
last_committed_block += 1
lcb_storage_index += 2^40
contract.storage[0] = last_committed_block
# Propose block: [ 0, block number, data in block format above ... ]
if msg.data[0] == 0:
blknumber = msg.data[1]
# Block number must be correct
if blknumber != contract.storage[1]:
stop
# Deposit requirement
if msg.value < 10^19:
stop
# Store the proposal in storage as
# [ 0, main-chain block number, sender, block data...]
start_index = 2^160 + blknumber * 2^40
numkvs = (msg.datasize - 2) / 2
contract.storage[start_index + 1] = block.number
1ontract.storage[start_index + 2] = msg.sender
i = 0
while i < msg.datasize - 2:
contract.storage[start_index + 3 + i] = msg.data[2 + i]
i += 1
contract.storage[1] = blknumber + 1
# Challenge block: [ 1, b ]
elif msg.data[0] == 1:
blknumber = msg.data[1]
txwidth = contract.storage[4]
last_uncommitted_block = contract.storage[1]
last_committed_block = contract.storage[0]
# Cannot challenge nonexistent or committed blocks
if blknumber <= last_uncommitted_block or blknumber > last_committed_block:
stop
# Create a contract to serve as a map that maintains keys and values
# temporarily
tempstore = create('map.se')
contract.storage[3] = tempstore
# Unquestioningly apply the state transitions from the last committed block
# up to b
b = last_committed_block
cur_storage_index = 2^160 + last_committed_block * 2^40
while b < blknumber:
numtxs = contract.storage[cur_storage_index + 3]
numkvs = contract.storage[cur_storage_index + 4]
kv0index = cur_storage_index + 5 + numtxs * txwidth
i = 0
while i < numkvs:
k = contract.storage[kv0index + i * 2]
v = contract.storage[kx0index + i * 2 + 1]
call(tempstore, [1, k, v], 3)
i += 1
b += 1
cur_storage_index += 2^40
# Run the actual code, and see what state transitions it outputs
# The way that the code is expected to work is to:
#
# (1) take as input the list of transactions (the contract should
# use msg.datasize to determine how many txs there are, and it should
# be aware of the value of txwidth)
# (2) call this contract with [2, k] to read current state data
# (3) call this contract with [3, k, v] to write current state data
# (4) return as output a list of all state transitions that it made
# in the form [kvcount, k1, v1, k2, v2 ... ]
#
# The reason for separating (2) from (3) is that sometimes the state
# transition may end up changing a given key many times, and we don't
# need to inefficiently store that in storage
numkvs = contract.storage[cur_storage_index + 3]
numtxs = contract.storage[cur_storage_index + 4]
# Populate input array
inpwidth = numtxs * txwidth
inp = array(inpwidth)
i = 0
while i < inpwidth:
inp[i] = contract.storage[cur_storage_index + 5 + i]
i += 1
out = call(contract.storage[2], inp, inpwidth, numkvs * 2 + 1)
# Check that the number of state transitions is the same
if out[0] != kvcount:
send(msg.sender, 10^19)
contract.storage[0] = last_committed_block
stop
kv0index = cur_storage_index + 5 + numtxs * txwidth
i = 0
while i < kvcount:
# Check that each individual state transition matches
k = contract.storage[kv0index + i * 2 + 1]
v = contract.storage[kv0index + i * 2 + 2]
if k != out[i * 2 + 1] or v != out[i * 2 + 2]:
send(msg.sender, 10^19)
contract.storage[0] = last_committed_block
stop
i += 1
# Suicide tempstore
call(tempstore, 2)
# Read data [2, k]
elif msg.data[0] == 2:
tempstore = contract.storage[3]
o = call(tempstore, [0, msg.data[1]], 2, 2)
if o[0]:
return(o[1])
else:
return contract.storage[sha3(msg.data[1])]
# Write data [3, k, v]
elif msg.data[0] == 3:
tempstore = contract.storage[3]
call(tempstore, [1, msg.data[1], msg.data[2]], 3, 2)
type f: [a, b, c, d, e]
macro f($a) + f($b):
f(add($a, $b))
macro f($a) - f($b):
f(sub($a, $b))
macro f($a) * f($b):
f(mul($a, $b) / 10000)
macro f($a) / f($b):
f(sdiv($a * 10000, $b))
macro f($a) % f($b):
f(smod($a, $b))
macro f($v) = f($w):
$v = $w
macro unfify(f($a)):
$a / 10000
macro fify($a):
f($a * 10000)
a = fify(5)
b = fify(2)
c = a / b
e = c + (a / b)
return(unfify(e))
macro smin($a, $b):
with $1 = $a:
with $2 = $b:
if(slt($1, $2), $1, $2)
macro smax($a, $b):
with $1 = $a:
with $2 = $b:
if(slt($1, $2), $2, $1)
def omul(x, y):
o = expose(mklong(x) * mklong(y))
return(slice(o, 1), o[0]+1)
def oadd(x, y):
o = expose(mklong(x) + mklong(y))
return(slice(o, 1), o[0]+1)
def osub(x, y):
o = expose(mklong(x) - mklong(y))
return(slice(o, 1), o[0]+1)
def odiv(x, y):
o = expose(mklong(x) / mklong(y))
return(slice(o, 1), o[0]+1)
def comb(a:a, b:a, sign):
sz = smax(a[0], b[0])
msz = smin(a[0], b[0])
c = array(sz + 2)
c[0] = sz
i = 0
carry = 0
while i < msz:
m = a[i + 1] + sign * b[i + 1] + carry
c[i + 1] = mod(m + 2^127, 2^128) - 2^127
carry = (div(m + 2^127, 2^128) + 2^127) % 2^128 - 2^127
i += 1
u = if(a[0] > msz, a, b)
s = if(a[0] > msz, 1, sign)
while i < sz:
m = s * u[i + 1] + carry
c[i + 1] = mod(m + 2^127, 2^128) - 2^127
carry = (div(m + 2^127, 2^128) + 2^127) % 2^128 - 2^127
i += 1
if carry:
c[0] += 1
c[sz + 1] = carry
return(c, c[0]+1)
def mul(a:a, b:a):
c = array(a[0] + b[0] + 2)
c[0] = a[0] + b[0]
i = 0
while i < a[0]:
j = 0
carry = 0
while j < b[0]:
m = c[i + j + 1] + a[i + 1] * b[j + 1] + carry
c[i + j + 1] = mod(m + 2^127, 2^128) - 2^127
carry = (div(m + 2^127, 2^128) + 2^127) % 2^128 - 2^127
j += 1
if carry:
c[0] = a[0] + b[0] + 1
c[i + j + 1] += carry
i += 1
return(c, c[0]+1)
macro long($a) + long($b):
long(self.comb($a:$a[0]+1, $b:$b[0]+1, 1, outsz=$a[0]+$b[0]+2))
macro long($a) - long($b):
long(self.comb($a:$a[0]+1, $b:$b[0]+1, -1, outsz=$a[0]+$b[0]+2))
macro long($a) * long($b):
long(self.mul($a:$a[0]+1, $b:$b[0]+1, outsz=$a[0]+$b[0]+2))
macro long($a) / long($b):
long(self.div($a:$a[0]+1, $b:$b[0]+1, outsz=$a[0]+$b[0]+2))
macro mulexpand(long($a), $k, $m):
long:
with $c = array($a[0]+k+2):
$c[0] = $a[0]+$k
with i = 0:
while i < $a[0]:
v = $a[i+1] * $m + $c[i+$k+1]
$c[i+$k+1] = mod(v + 2^127, 2^128) - 2^127
$c[i+$k+2] = div(v + 2^127, 2^128)
i += 1
$c
def div(a:a, b:a):
asz = a[0]
bsz = b[0]
while b[bsz] == 0 and bsz > 0:
bsz -= 1
c = array(asz+2)
c[0] = asz+1
while 1:
while a[asz] == 0 and asz > 0:
asz -= 1
if asz < bsz:
return(c, c[0]+1)
sub = expose(mulexpand(long(b), asz - bsz, a[asz] / b[bsz]))
c[asz - bsz+1] = a[asz] / b[bsz]
a = expose(long(a) - long(sub))
a[asz-1] += 2^128 * a[asz]
a[asz] = 0
macro mklong($i):
long([2, mod($i + 2^127, 2^128) - 2^127, div($i + 2^127, 2^128)])
macro expose(long($i)):
$i
# mutuala - subcurrency
# We want to issue a currency that reduces in value as you store it through negative interest.
# That negative interest would be stored in a commons account. It's like the p2p version of a
# capital tax
# the same things goes for transactions - you pay as you use the currency. However, the more
# you pay, the more you get to say about what the tax is used for
# each participant can propose a recipient for a payout to be made out of the commons account,
# others can vote on it by awarding it tax_credits.
# TODO should proposal have expiration timestamp?, after which the tax_credits are refunded
# TODO multiple proposals can take more credits that available in the Commons, how to handle this
# TODO how to handle lost accounts, after which no longer possible to get 2/3 majority
shared:
COMMONS = 42
ADMIN = 666
CAPITAL_TAX_PER_DAY = 7305 # 5% per year
PAYMENT_TAX = 20 # 5%
ACCOUNT_LIST_OFFSET = 2^160
ACCOUNT_MAP_OFFSET = 2^161
PROPOSAL_LIST_OFFSET = 2^162
PROPOSAL_MAP_OFFSET = 2^163
init:
contract.storage[ADMIN] = msg.sender
contract.storage[ACCOUNT_LIST_OFFSET - 1] = 1
contract.storage[ACCOUNT_LIST_OFFSET] = msg.sender
contract.storage[ACCOUNT_MAP_OFFSET + msg.sender] = 10^12
contract.storage[ACCOUNT_MAP_OFFSET + msg.sender + 1] = block.timestamp
# contract.storage[COMMONS] = balance commons
# contract.storage[ACCOUNT_LIST_OFFSET - 1] = number of accounts
# contract.storage[ACCOUNT_LIST_OFFSET + n] = account n
# contract.storage[PROPOSAL_LIST_OFFSET - 1] contains the number of proposals
# contract.storage[PROPOSAL_LIST_OFFSET + n] = proposal n
# per account:
# contract.storage[ACCOUNT_MAP_OFFSET + account] = balance
# contract.storage[ACCOUNT_MAP_OFFSET + account+1] = timestamp_last_transaction
# contract.storage[ACCOUNT_MAP_OFFSET + account+2] = tax_credits
# per proposal:
# contract.storage[PROPOSAL_MAP_OFFSET + proposal_id] = recipient
# contract.storage[PROPOSAL_MAP_OFFSET + proposal_id+1] = amount
# contract.storage[PROPOSAL_MAP_OFFSET + proposal_id+2] = total vote credits
code:
if msg.data[0] == "suicide" and msg.sender == contract.storage[ADMIN]:
suicide(msg.sender)
elif msg.data[0] == "balance":
addr = msg.data[1]
return(contract.storage[ACCOUNT_MAP_OFFSET + addr])
elif msg.data[0] == "pay":
from = msg.sender
fromvalue = contract.storage[ACCOUNT_MAP_OFFSET + from]
to = msg.data[1]
if to == 0 or to >= 2^160:
return([0, "invalid address"], 2)
value = msg.data[2]
tax = value / PAYMENT_TAX
if fromvalue >= value + tax:
contract.storage[ACCOUNT_MAP_OFFSET + from] = fromvalue - (value + tax)
contract.storage[ACCOUNT_MAP_OFFSET + to] += value
# tax
contract.storage[COMMONS] += tax
contract.storage[ACCOUNT_MAP_OFFSET + from + 2] += tax
# check timestamp field to see if target account exists
if contract.storage[ACCOUNT_MAP_OFFSET + to + 1] == 0:
# register new account
nr_accounts = contract.storage[ACCOUNT_LIST_OFFSET - 1]
contract.storage[ACCOUNT_LIST_OFFSET + nr_accounts] = to
contract.storage[ACCOUNT_LIST_OFFSET - 1] += 1
contract.storage[ACCOUNT_MAP_OFFSET + to + 1] = block.timestamp
return(1)
else:
return([0, "insufficient balance"], 2)
elif msg.data[0] == "hash":
proposal_id = sha3(msg.data[1])
return(proposal_id)
elif msg.data[0] == "propose":
from = msg.sender
# check if sender has an account and has tax credits
if contract.storage[ACCOUNT_MAP_OFFSET + from + 2] == 0:
return([0, "sender has no tax credits"], 2)
proposal_id = sha3(msg.data[1])
# check if proposal doesn't already exist
if contract.storage[PROPOSAL_MAP_OFFSET + proposal_id]:
return([0, "proposal already exists"])
to = msg.data[2]
# check if recipient is a valid address and has an account (with timestamp)
if to == 0 or to >= 2^160:
return([0, "invalid address"], 2)
if contract.storage[ACCOUNT_MAP_OFFSET + to + 1] == 0:
return([0, "invalid to account"], 2)
value = msg.data[3]
# check if there is enough money in the commons account
if value > contract.storage[COMMONS]:
return([0, "not enough credits in commons"], 2)
# record proposal in list
nr_proposals = contract.storage[PROPOSAL_LIST_OFFSET - 1]
contract.storage[PROPOSAL_LIST_OFFSET + nr_proposals] = proposal_id
contract.storage[PROPOSAL_LIST_OFFSET - 1] += 1
# record proposal in map
contract.storage[PROPOSAL_MAP_OFFSET + proposal_id] = to
contract.storage[PROPOSAL_MAP_OFFSET + proposal_id + 1] = value
return(proposal_id)
elif msg.data[0] == "vote":
from = msg.sender
proposal_id = sha3(msg.data[1])
value = msg.data[2]
# check if sender has an account and has tax credits
if value < contract.storage[ACCOUNT_MAP_OFFSET + from + 2]:
return([0, "sender doesn't have enough tax credits"], 2)
# check if proposal exist
if contract.storage[PROPOSAL_MAP_OFFSET + proposal_id] == 0:
return([0, "proposal doesn't exist"], 2)
# increase votes
contract.storage[PROPOSAL_MAP_OFFSET + proposal_id + 2] += value
# withdraw tax credits
contract.storage[ACCOUNT_MAP_OFFSET + from + 2] -= value
# did we reach 2/3 threshold?
if contract.storage[PROPOSAL_MAP_OFFSET + proposal_id + 2] >= contract.storage[COMMONS] * 2 / 3:
# got majority
to = contract.storage[PROPOSAL_MAP_OFFSET + proposal_id]
amount = contract.storage[PROPOSAL_MAP_OFFSET + proposal_id + 1]
# adjust balances
contract.storage[ACCOUNT_MAP_OFFSET + to] += amount
contract.storage[COMMONS] -= amount
# reset proposal
contract.storage[PROPOSAL_MAP_OFFSET + proposal_id] = 0
contract.storage[PROPOSAL_MAP_OFFSET + proposal_id + 1] = 0
contract.storage[PROPOSAL_MAP_OFFSET + proposal_id + 2] = 0
return(1)
return(proposal_id)
elif msg.data[0] == "tick":
nr_accounts = contract.storage[ACCOUNT_LIST_OFFSET - 1]
account_idx = 0
tax_paid = 0
# process all accounts and see if they have to pay their daily capital tax
while account_idx < nr_accounts:
cur_account = contract.storage[ACCOUNT_LIST_OFFSET + account_idx]
last_timestamp = contract.storage[ACCOUNT_MAP_OFFSET + cur_account + 1]
time_diff = block.timestamp - last_timestamp
if time_diff >= 86400:
tax_days = time_diff / 86400
balance = contract.storage[ACCOUNT_MAP_OFFSET + cur_account]
tax = tax_days * (balance / CAPITAL_TAX_PER_DAY)
if tax > 0:
# charge capital tax, but give tax credits in return
contract.storage[ACCOUNT_MAP_OFFSET + cur_account] -= tax
contract.storage[ACCOUNT_MAP_OFFSET + cur_account + 1] += tax_days * 86400
contract.storage[ACCOUNT_MAP_OFFSET + cur_account + 2] += tax
contract.storage[COMMONS] += tax
tax_paid += 1
account_idx += 1
return(tax_paid) # how many accounts did we charge tax on
else:
return([0, "unknown command"], 2)
def register(k, v):
if !self.storage[k]: # Is the key not yet taken?
# Then take it!
self.storage[k] = v
return(1)
else:
return(0) // Otherwise do nothing
macro padd($x, psuc($y)):
psuc(padd($x, $y))
macro padd($x, z()):
$x
macro dec(psuc($x)):
dec($x) + 1
macro dec(z()):
0
macro pmul($x, z()):
z()
macro pmul($x, psuc($y)):
padd(pmul($x, $y), $x)
macro pexp($x, z()):
one()
macro pexp($x, psuc($y)):
pmul($x, pexp($x, $y))
macro fac(z()):
one()
macro fac(psuc($x)):
pmul(psuc($x), fac($x))
macro one():
psuc(z())
macro two():
psuc(psuc(z()))
macro three():
psuc(psuc(psuc(z())))
macro five():
padd(three(), two())
return([dec(pmul(three(), pmul(three(), three()))), dec(fac(five()))], 2)
def kall():
argcount = ~calldatasize() / 32
if argcount == 1:
return(~calldataload(1))
args = array(argcount)
~calldatacopy(args, 1, argcount * 32)
low = array(argcount)
lsz = 0
high = array(argcount)
hsz = 0
i = 1
while i < argcount:
if args[i] < args[0]:
low[lsz] = args[i]
lsz += 1
else:
high[hsz] = args[i]
hsz += 1
i += 1
low = self.kall(data=low, datasz=lsz, outsz=lsz)
high = self.kall(data=high, datasz=hsz, outsz=hsz)
o = array(argcount)
i = 0
while i < lsz:
o[i] = low[i]
i += 1
o[lsz] = args[0]
j = 0
while j < hsz:
o[lsz + 1 + j] = high[j]
j += 1
return(o, argcount)
# Quicksort pairs
# eg. input of the form [ 30, 1, 90, 2, 70, 3, 50, 4]
# outputs [ 30, 1, 50, 4, 70, 3, 90, 2 ]
#
# Note: this can be used as a generalized sorting algorithm:
# map every object to [ key, ref ] where `ref` is the index
# in memory to all of the properties and `key` is the key to
# sort by
def kall():
argcount = ~calldatasize() / 64
if argcount == 1:
return([~calldataload(1), ~calldataload(33)], 2)
args = array(argcount * 2)
~calldatacopy(args, 1, argcount * 64)
low = array(argcount * 2)
lsz = 0
high = array(argcount * 2)
hsz = 0
i = 2
while i < argcount * 2:
if args[i] < args[0]:
low[lsz] = args[i]
low[lsz + 1] = args[i + 1]
lsz += 2
else:
high[hsz] = args[i]
high[hsz + 1] = args[i + 1]
hsz += 2
i = i + 2
low = self.kall(data=low, datasz=lsz, outsz=lsz)
high = self.kall(data=high, datasz=hsz, outsz=hsz)
o = array(argcount * 2)
i = 0
while i < lsz:
o[i] = low[i]
i += 1
o[lsz] = args[0]
o[lsz + 1] = args[1]
j = 0
while j < hsz:
o[lsz + 2 + j] = high[j]
j += 1
return(o, argcount * 2)
# SchellingCoin implementation
#
# Epoch length: 100 blocks
# Target savings depletion rate: 0.1% per epoch
data epoch
data hashes_submitted
data output
data quicksort_pairs
data accounts[2^160]
data submissions[2^80](hash, deposit, address, value)
extern any: [call]
def init():
self.epoch = block.number / 100
self.quicksort_pairs = create('quicksort_pairs.se')
def any():
if block.number / 100 > epoch:
# Sort all values submitted
N = self.hashes_submitted
o = array(N * 2)
i = 0
j = 0
while i < N:
v = self.submissions[i].value
if v:
o[j] = v
o[j + 1] = i
j += 2
i += 1
values = self.quicksort_pairs.call(data=o, datasz=j, outsz=j)
# Calculate total deposit, refund non-submitters and
# cleanup
deposits = array(j / 2)
addresses = array(j / 2)
i = 0
total_deposit = 0
while i < j / 2:
base_index = HASHES + values[i * 2 + 1] * 3
deposits[i] = self.submissions[i].deposit
addresses[i] = self.submissions[i].address
if self.submissions[values[i * 2 + 1]].value:
total_deposit += deposits[i]
else:
send(addresses[i], deposits[i] * 999 / 1000)
i += 1
inverse_profit_ratio = total_deposit / (contract.balance / 1000) + 1
# Reward everyone
i = 0
running_deposit_sum = 0
halfway_passed = 0
while i < j / 2:
new_deposit_sum = running_deposit_sum + deposits[i]
if new_deposit_sum > total_deposit / 4 and running_deposit_sum < total_deposit * 3 / 4:
send(addresses[i], deposits[i] + deposits[i] / inverse_profit_ratio * 2)
else:
send(addresses[i], deposits[i] - deposits[i] / inverse_profit_ratio)
if not halfway_passed and new_deposit_sum > total_deposit / 2:
self.output = self.submissions[i].value
halfway_passed = 1
self.submissions[i].value = 0
running_deposit_sum = new_deposit_sum
i += 1
self.epoch = block.number / 100
self.hashes_submitted = 0
def submit_hash(h):
if block.number % 100 < 50:
cur = self.hashes_submitted
pos = HASHES + cur * 3
self.submissions[cur].hash = h
self.submissions[cur].deposit = msg.value
self.submissions[cur].address = msg.sender
self.hashes_submitted = cur + 1
return(cur)
def submit_value(index, v):
if sha3([msg.sender, v], 2) == self.submissions[index].hash:
self.submissions[index].value = v
return(1)
def request_balance():
return(contract.balance)
def request_output():
return(self.output)
# Hedged zero-supply dollar implementation
# Uses SchellingCoin as price-determining backend
#
# Stored variables:
#
# 0: Schelling coin contract
# 1: Last epoch
# 2: Genesis block of contract
# 3: USD exposure
# 4: ETH exposure
# 5: Cached price
# 6: Last interest rate
# 2^160 + k: interest rate accumulator at k epochs
# 2^161 + ADDR * 3: eth-balance of a particular address
# 2^161 + ADDR * 3 + 1: usd-balance of a particular address
# 2^161 + ADDR * 3 + 1: last accessed epoch of a particular address
#
# Transaction types:
#
# [1, to, val]: send ETH
# [2, to, val]: send USD
# [3, wei_amount]: convert ETH to USD
# [4, usd_amount]: converts USD to ETH
# [5]: deposit
# [6, amount]: withdraw
# [7]: my balance query
# [7, acct]: balance query for any acct
# [8]: global state query
# [9]: liquidation test any account
#
# The purpose of the contract is to serve as a sort of cryptographic
# bank account where users can store both ETH and USD. ETH must be
# stored in zero or positive quantities, but USD balances can be
# positive or negative. If the USD balance is negative, the invariant
# usdbal * 10 >= ethbal * 9 must be satisfied; if any account falls
# below this value, then that account's balances are zeroed. Note
# that there is a 2% bounty to ping the app if an account does go
# below zero; one weakness is that if no one does ping then it is
# quite possible for accounts to go negative-net-worth, then zero
# themselves out, draining the reserves of the "bank" and potentially
# bankrupting it. A 0.1% fee on ETH <-> USD trade is charged to
# minimize this risk. Additionally, the bank itself will inevitably
# end up with positive or negative USD exposure; to mitigate this,
# it automatically updates interest rates on USD to keep exposure
# near zero.
data schelling_coin
data last_epoch
data starting_block
data usd_exposure
data eth_exposure
data price
data last_interest_rate
data interest_rate_accum[2^50]
data accounts[2^160](eth, usd, last_epoch)
extern sc: [submit_hash, submit_value, request_balance, request_output]
def init():
self.schelling_coin = create('schellingcoin.se')
self.price = self.schelling_coin.request_output()
self.interest_rate_accum[0] = 10^18
self.starting_block = block.number
def any():
sender = msg.sender
epoch = (block.number - self.starting_block) / 100
last_epoch = self.last_epoch
usdprice = self.price
# Update contract epochs
if epoch > last_epoch:
delta = epoch - last_epoch
last_interest_rate = self.last_interest_rate
usd_exposure - self.usd_exposure
last_accum = self.interest_rate_accum[last_epoch]
if usd_exposure < 0:
self.last_interest_rate = last_interest_rate - 10000 * delta
elif usd_exposure > 0:
self.last_interest_rate = last_interest_rate + 10000 * delta
self.interest_rate_accum[epoch] = last_accum + last_accum * last_interest_rate * delta / 10^9
# Proceeds go to support the SchellingCoin feeding it price data, ultimately providing the depositors
# of the SchellingCoin an interest rate
bal = max(self.balance - self.eth_exposure, 0) / 10000
usdprice = self.schelling_coin.request_output()
self.price = usdprice
self.last_epoch = epoch
ethbal = self.accounts[msg.sender].eth
usdbal = self.accounts[msg.sender].usd
# Apply interest rates to sender and liquidation-test self
if msg.sender != self:
self.ping(self)
def send_eth(to, value):
if value > 0 and value <= ethbal and usdbal * usdprice * 2 + (ethbal - value) >= 0:
self.accounts[msg.sender].eth = ethbal - value
self.ping(to)
self.accounts[to].eth += value
return(1)
def send_usd(to, value):
if value > 0 and value <= usdbal and (usdbal - value) * usdprice * 2 + ethbal >= 0:
self.accounts[msg.sender].usd = usdbal - value
self.ping(to)
self.accounts[to].usd += value
return(1)
def convert_to_eth(usdvalue):
ethplus = usdvalue * usdprice * 999 / 1000
if usdvalue > 0 and (usdbal - usdvalue) * usdprice * 2 + (ethbal + ethplus) >= 0:
self.accounts[msg.sender].eth = ethbal + ethplus
self.accounts[msg.sender].usd = usdbal - usdvalue
self.eth_exposure += ethplus
self.usd_exposure -= usdvalue
return([ethbal + ethplus, usdbal - usdvalue], 2)
def convert_to_usd(ethvalue):
usdplus = ethvalue / usdprice * 999 / 1000
if ethvalue > 0 and (usdbal + usdplus) * usdprice * 2 + (ethbal - ethvalue) >= 0:
self.accounts[msg.sender].eth = ethbal - ethvalue
self.accounts[msg.sender].usd = usdbal + usdplus
self.eth_exposure -= ethvalue
self.usd_exposure += usdplus
return([ethbal - ethvalue, usdbal + usdplus], 2)
def deposit():
self.accounts[msg.sender].eth = ethbal + msg.value
self.eth_exposure += msg.value
return(ethbal + msg.value)
def withdraw(value):
if value > 0 and value <= ethbal and usdbal * usdprice * 2 + (ethbal - value) >= 0:
self.accounts[msg.sender].eth -= value
self.eth_exposure -= value
return(ethbal - value)
def balance(acct):
self.ping(acct)
return([self.accounts[acct].eth, self.accounts[acct].usd], 2)
def global_state_query(acct):
interest = self.last_interest_rate
usd_exposure = self.usd_exposure
eth_exposure = self.eth_exposure
eth_balance = self.balance
return([epoch, usdprice, interest, usd_exposure, eth_exposure, eth_balance], 6)
def ping(acct):
account_last_epoch = self.accounts[acct].last_epoch
if account_last_epoch != epoch:
cur_usd_balance = self.accounts[acct].usd
new_usd_balance = cur_usd_balance * self.interest_rate_accum[epoch] / self.interest_rate_accum[account_last_epoch]
self.accounts[acct].usd = new_usd_balance
self.accounts[acct].last_epoch = epoch
self.usd_exposure += new_usd_balance - cur_usd_balance
ethbal = self.accounts[acct].eth
if new_usd_balance * usdval * 10 + ethbal * 9 < 0:
self.accounts[acct].eth = 0
self.accounts[acct].usd = 0
self.accounts[msg.sender].eth += ethbal / 50
self.eth_exposure += -ethbal + ethbal / 50
self.usd_exposure += new_usd_balance
return(1)
return(0)
def init():
self.storage[msg.sender] = 1000000
def balance_query(k):
return(self.storage[addr])
def send(to, value):
fromvalue = self.storage[msg.sender]
if fromvalue >= value:
self.storage[from] = fromvalue - value
self.storage[to] += value
#include <stdio.h>
#include <iostream>
#include <vector>
#include "funcs.h"
#include "bignum.h"
#include "util.h"
#include "parser.h"
#include "lllparser.h"
#include "compiler.h"
#include "rewriter.h"
#include "tokenize.h"
Node compileToLLL(std::string input) {
return rewrite(parseSerpent(input));
}
Node compileChunkToLLL(std::string input) {
return rewriteChunk(parseSerpent(input));
}
std::string compile(std::string input) {
return compileLLL(compileToLLL(input));
}
std::vector<Node> prettyCompile(std::string input) {
return prettyCompileLLL(compileToLLL(input));
}
std::string compileChunk(std::string input) {
return compileLLL(compileChunkToLLL(input));
}
std::vector<Node> prettyCompileChunk(std::string input) {
return prettyCompileLLL(compileChunkToLLL(input));
}
#include <stdio.h>
#include <iostream>
#include <vector>
#include "bignum.h"
#include "util.h"
#include "parser.h"
#include "lllparser.h"
#include "compiler.h"
#include "rewriter.h"
#include "tokenize.h"
// Function listing:
//
// parseSerpent (serpent -> AST) std::string -> Node
// parseLLL (LLL -> AST) std::string -> Node
// rewrite (apply rewrite rules) Node -> Node
// compileToLLL (serpent -> LLL) std::string -> Node
// compileLLL (LLL -> EVMhex) Node -> std::string
// prettyCompileLLL (LLL -> EVMasm) Node -> std::vector<Node>
// prettyCompile (serpent -> EVMasm) std::string -> std::vector>Node>
// compile (serpent -> EVMhex) std::string -> std::string
// get_file_contents (filename -> file) std::string -> std::string
// exists (does file exist?) std::string -> bool
Node compileToLLL(std::string input);
Node compileChunkToLLL(std::string input);
std::string compile(std::string input);
std::vector<Node> prettyCompile(std::string input);
std::string compileChunk(std::string input);
std::vector<Node> prettyCompileChunk(std::string input);
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
#include "lllparser.h"
#include "bignum.h"
#include "optimize.h"
#include "rewriteutils.h"
#include "preprocess.h"
#include "functions.h"
std::string getSignature(std::vector<Node> args) {
std::string o;
for (unsigned i = 0; i < args.size(); i++) {
if (args[i].val == ":" && args[i].args[1].val == "s")
o += "s";
else if (args[i].val == ":" && args[i].args[1].val == "a")
o += "a";
else
o += "i";
}
return o;
}
// Convert a list of arguments into a node containing a
// < datastart, datasz > pair
Node packArguments(std::vector<Node> args, std::string sig,
int funId, Metadata m) {
// Plain old 32 byte arguments
std::vector<Node> nargs;
// Variable-sized arguments
std::vector<Node> vargs;
// Variable sizes
std::vector<Node> sizes;
// Is a variable an array?
std::vector<bool> isArray;
// Fill up above three argument lists
int argCount = 0;
for (unsigned i = 0; i < args.size(); i++) {
Metadata m = args[i].metadata;
if (args[i].val == "=") {
// do nothing
}
else {
// Determine the correct argument type
char argType;
if (sig.size() > 0) {
if (argCount >= (signed)sig.size())
err("Too many args", m);
argType = sig[argCount];
}
else argType = 'i';
// Integer (also usable for short strings)
if (argType == 'i') {
if (args[i].val == ":")
err("Function asks for int, provided string or array", m);
nargs.push_back(args[i]);
}
// Long string
else if (argType == 's') {
if (args[i].val != ":")
err("Must specify string length", m);
vargs.push_back(args[i].args[0]);
sizes.push_back(args[i].args[1]);
isArray.push_back(false);
}
// Array
else if (argType == 'a') {
if (args[i].val != ":")
err("Must specify array length", m);
vargs.push_back(args[i].args[0]);
sizes.push_back(args[i].args[1]);
isArray.push_back(true);
}
else err("Invalid arg type in signature", m);
argCount++;
}
}
int static_arg_size = 1 + (vargs.size() + nargs.size()) * 32;
// Start off by saving the size variables and calculating the total
msn kwargs;
kwargs["funid"] = tkn(utd(funId), m);
std::string pattern =
"(with _sztot "+utd(static_arg_size)+" "
" (with _sizes (alloc "+utd(sizes.size() * 32)+") "
" (seq ";
for (unsigned i = 0; i < sizes.size(); i++) {
std::string sizeIncrement =
isArray[i] ? "(mul 32 _x)" : "_x";
pattern +=
"(with _x $sz"+utd(i)+"(seq "
" (mstore (add _sizes "+utd(i * 32)+") _x) "
" (set _sztot (add _sztot "+sizeIncrement+" )))) ";
kwargs["sz"+utd(i)] = sizes[i];
}
// Allocate memory, and set first data byte
pattern +=
"(with _datastart (alloc (add _sztot 32)) (seq "
" (mstore8 _datastart $funid) ";
// Copy over size variables
for (unsigned i = 0; i < sizes.size(); i++) {
int v = 1 + i * 32;
pattern +=
" (mstore "
" (add _datastart "+utd(v)+") "
" (mload (add _sizes "+utd(v-1)+"))) ";
}
// Store normal arguments
for (unsigned i = 0; i < nargs.size(); i++) {
int v = 1 + (i + sizes.size()) * 32;
pattern +=
" (mstore (add _datastart "+utd(v)+") $"+utd(i)+") ";
kwargs[utd(i)] = nargs[i];
}
// Loop through variable-sized arguments, store them
pattern +=
" (with _pos (add _datastart "+utd(static_arg_size)+") (seq";
for (unsigned i = 0; i < vargs.size(); i++) {
std::string copySize =
isArray[i] ? "(mul 32 (mload (add _sizes "+utd(i * 32)+")))"
: "(mload (add _sizes "+utd(i * 32)+"))";
pattern +=
" (unsafe_mcopy _pos $vl"+utd(i)+" "+copySize+") "
" (set _pos (add _pos "+copySize+")) ";
kwargs["vl"+utd(i)] = vargs[i];
}
// Return a 2-item array containing the start and size
pattern += " (array_lit _datastart _sztot))))))))";
std::string prefix = "_temp_"+mkUniqueToken();
// Fill in pattern, return triple
return subst(parseLLL(pattern), kwargs, prefix, m);
}
// Create a node for argument unpacking
Node unpackArguments(std::vector<Node> vars, Metadata m) {
std::vector<std::string> varNames;
std::vector<std::string> longVarNames;
std::vector<bool> longVarIsArray;
// Fill in variable and long variable names, as well as which
// long variables are arrays and which are strings
for (unsigned i = 0; i < vars.size(); i++) {
if (vars[i].val == ":") {
if (vars[i].args.size() != 2)
err("Malformed def!", m);
longVarNames.push_back(vars[i].args[0].val);
std::string tag = vars[i].args[1].val;
if (tag == "s")
longVarIsArray.push_back(false);
else if (tag == "a")
longVarIsArray.push_back(true);
else
err("Function value can only be string or array", m);
}
else {
varNames.push_back(vars[i].val);
}
}
std::vector<Node> sub;
if (!varNames.size() && !longVarNames.size()) {
// do nothing if we have no arguments
}
else {
std::vector<Node> varNodes;
for (unsigned i = 0; i < longVarNames.size(); i++)
varNodes.push_back(token(longVarNames[i], m));
for (unsigned i = 0; i < varNames.size(); i++)
varNodes.push_back(token(varNames[i], m));
// Copy over variable lengths and short variables
for (unsigned i = 0; i < varNodes.size(); i++) {
int pos = 1 + i * 32;
std::string prefix = (i < longVarNames.size()) ? "_len_" : "";
sub.push_back(asn("untyped", asn("set",
token(prefix+varNodes[i].val, m),
asn("calldataload", tkn(utd(pos), m), m),
m)));
}
// Copy over long variables
if (longVarNames.size() > 0) {
std::vector<Node> sub2;
int pos = varNodes.size() * 32 + 1;
Node tot = tkn("_tot", m);
for (unsigned i = 0; i < longVarNames.size(); i++) {
Node var = tkn(longVarNames[i], m);
Node varlen = longVarIsArray[i]
? asn("mul", tkn("32", m), tkn("_len_"+longVarNames[i], m))
: tkn("_len_"+longVarNames[i], m);
sub2.push_back(asn("untyped",
asn("set", var, asn("alloc", varlen))));
sub2.push_back(asn("calldatacopy", var, tot, varlen));
sub2.push_back(asn("set", tot, asn("add", tot, varlen)));
}
std::string prefix = "_temp_"+mkUniqueToken();
sub.push_back(subst(
astnode("with", tot, tkn(utd(pos), m), asn("seq", sub2)),
msn(),
prefix,
m));
}
}
return asn("seq", sub, m);
}
#ifndef ETHSERP_FUNCTIONS
#define ETHSERP_FUNCTIONS
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
#include "lllparser.h"
#include "bignum.h"
#include "optimize.h"
#include "rewriteutils.h"
#include "preprocess.h"
class argPack {
public:
argPack(Node a, Node b, Node c) {
pre = a;
datastart = b;
datasz = c;
}
Node pre;
Node datastart;
Node datasz;
};
// Get a signature from a function
std::string getSignature(std::vector<Node> args);
// Convert a list of arguments into a <pre, mstart, msize> node
// triple, given the signature of a function
Node packArguments(std::vector<Node> args, std::string sig,
int funId, Metadata m);
// Create a node for argument unpacking
Node unpackArguments(std::vector<Node> vars, Metadata m);
#endif
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
#include "lllparser.h"
#include "tokenize.h"
struct _parseOutput {
Node node;
int newpos;
};
// Helper, returns subtree and position of start of next node
_parseOutput _parse(std::vector<Node> inp, int pos) {
Metadata met = inp[pos].metadata;
_parseOutput o;
// Bracket: keep grabbing tokens until we get to the
// corresponding closing bracket
if (inp[pos].val == "(" || inp[pos].val == "[") {
std::string fun, rbrack;
std::vector<Node> args;
pos += 1;
if (inp[pos].val == "[") {
fun = "access";
rbrack = "]";
}
else rbrack = ")";
// First argument is the function
while (inp[pos].val != ")") {
_parseOutput po = _parse(inp, pos);
if (fun.length() == 0 && po.node.type == 1) {
std::cerr << "Error: first arg must be function\n";
fun = po.node.val;
}
else if (fun.length() == 0) {
fun = po.node.val;
}
else {
args.push_back(po.node);
}
pos = po.newpos;
}
o.newpos = pos + 1;
o.node = astnode(fun, args, met);
}
// Normal token, return it and advance to next token
else {
o.newpos = pos + 1;
o.node = token(inp[pos].val, met);
}
return o;
}
// stream of tokens -> lisp parse tree
Node parseLLLTokenStream(std::vector<Node> inp) {
_parseOutput o = _parse(inp, 0);
return o.node;
}
// Parses LLL
Node parseLLL(std::string s, bool allowFileRead) {
std::string input = s;
std::string file = "main";
if (exists(s) && allowFileRead) {
file = s;
input = get_file_contents(s);
}
return parseLLLTokenStream(tokenize(s, Metadata(file, 0, 0), true));
}
#ifndef ETHSERP_LLLPARSER
#define ETHSERP_LLLPARSER
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
// LLL text -> parse tree
Node parseLLL(std::string s, bool allowFileRead=false);
#endif
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "opcodes.h"
#include "util.h"
#include "bignum.h"
Mapping mapping[] = {
Mapping("STOP", 0x00, 0, 0),
Mapping("ADD", 0x01, 2, 1),
Mapping("MUL", 0x02, 2, 1),
Mapping("SUB", 0x03, 2, 1),
Mapping("DIV", 0x04, 2, 1),
Mapping("SDIV", 0x05, 2, 1),
Mapping("MOD", 0x06, 2, 1),
Mapping("SMOD", 0x07, 2, 1),
Mapping("ADDMOD", 0x08, 3, 1),
Mapping("MULMOD", 0x09, 3, 1),
Mapping("EXP", 0x0a, 2, 1),
Mapping("SIGNEXTEND", 0x0b, 2, 1),
Mapping("LT", 0x10, 2, 1),
Mapping("GT", 0x11, 2, 1),
Mapping("SLT", 0x12, 2, 1),
Mapping("SGT", 0x13, 2, 1),
Mapping("EQ", 0x14, 2, 1),
Mapping("ISZERO", 0x15, 1, 1),
Mapping("AND", 0x16, 2, 1),
Mapping("OR", 0x17, 2, 1),
Mapping("XOR", 0x18, 2, 1),
Mapping("NOT", 0x19, 1, 1),
Mapping("BYTE", 0x1a, 2, 1),
Mapping("SHA3", 0x20, 2, 1),
Mapping("ADDRESS", 0x30, 0, 1),
Mapping("BALANCE", 0x31, 1, 1),
Mapping("ORIGIN", 0x32, 0, 1),
Mapping("CALLER", 0x33, 0, 1),
Mapping("CALLVALUE", 0x34, 0, 1),
Mapping("CALLDATALOAD", 0x35, 1, 1),
Mapping("CALLDATASIZE", 0x36, 0, 1),
Mapping("CALLDATACOPY", 0x37, 3, 0),
Mapping("CODESIZE", 0x38, 0, 1),
Mapping("CODECOPY", 0x39, 3, 0),
Mapping("GASPRICE", 0x3a, 0, 1),
Mapping("EXTCODESIZE", 0x3b, 1, 1),
Mapping("EXTCODECOPY", 0x3c, 4, 0),
Mapping("PREVHASH", 0x40, 0, 1),
Mapping("COINBASE", 0x41, 0, 1),
Mapping("TIMESTAMP", 0x42, 0, 1),
Mapping("NUMBER", 0x43, 0, 1),
Mapping("DIFFICULTY", 0x44, 0, 1),
Mapping("GASLIMIT", 0x45, 0, 1),
Mapping("POP", 0x50, 1, 0),
Mapping("MLOAD", 0x51, 1, 1),
Mapping("MSTORE", 0x52, 2, 0),
Mapping("MSTORE8", 0x53, 2, 0),
Mapping("SLOAD", 0x54, 1, 1),
Mapping("SSTORE", 0x55, 2, 0),
Mapping("JUMP", 0x56, 1, 0),
Mapping("JUMPI", 0x57, 2, 0),
Mapping("PC", 0x58, 0, 1),
Mapping("MSIZE", 0x59, 0, 1),
Mapping("GAS", 0x5a, 0, 1),
Mapping("JUMPDEST", 0x5b, 0, 0),
Mapping("LOG0", 0xa0, 2, 0),
Mapping("LOG1", 0xa1, 3, 0),
Mapping("LOG2", 0xa2, 4, 0),
Mapping("LOG3", 0xa3, 5, 0),
Mapping("LOG4", 0xa4, 6, 0),
Mapping("CREATE", 0xf0, 3, 1),
Mapping("CALL", 0xf1, 7, 1),
Mapping("CALLCODE", 0xf2, 7, 1),
Mapping("RETURN", 0xf3, 2, 0),
Mapping("SUICIDE", 0xff, 1, 0),
Mapping("---END---", 0x00, 0, 0),
};
std::map<std::string, std::vector<int> > opcodes;
std::map<int, std::string> reverseOpcodes;
// Fetches everything EXCEPT PUSH1..32
std::pair<std::string, std::vector<int> > _opdata(std::string ops, int opi) {
if (!opcodes.size()) {
int i = 0;
while (mapping[i].op != "---END---") {
Mapping mi = mapping[i];
opcodes[mi.op] = triple(mi.opcode, mi.in, mi.out);
i++;
}
for (i = 1; i <= 16; i++) {
opcodes["DUP"+unsignedToDecimal(i)] = triple(0x7f + i, i, i+1);
opcodes["SWAP"+unsignedToDecimal(i)] = triple(0x8f + i, i+1, i+1);
}
for (std::map<std::string, std::vector<int> >::iterator it=opcodes.begin();
it != opcodes.end();
it++) {
reverseOpcodes[(*it).second[0]] = (*it).first;
}
}
ops = upperCase(ops);
std::string op;
std::vector<int> opdata;
op = reverseOpcodes.count(opi) ? reverseOpcodes[opi] : "";
opdata = opcodes.count(ops) ? opcodes[ops] : triple(-1, -1, -1);
return std::pair<std::string, std::vector<int> >(op, opdata);
}
int opcode(std::string op) {
return _opdata(op, -1).second[0];
}
int opinputs(std::string op) {
return _opdata(op, -1).second[1];
}
int opoutputs(std::string op) {
return _opdata(op, -1).second[2];
}
std::string op(int opcode) {
return _opdata("", opcode).first;
}
std::string lllSpecials[][3] = {
{ "ref", "1", "1" },
{ "get", "1", "1" },
{ "set", "2", "2" },
{ "with", "3", "3" },
{ "comment", "0", "2147483647" },
{ "ops", "0", "2147483647" },
{ "lll", "2", "2" },
{ "seq", "0", "2147483647" },
{ "if", "3", "3" },
{ "unless", "2", "2" },
{ "until", "2", "2" },
{ "alloc", "1", "1" },
{ "---END---", "0", "0" },
};
std::map<std::string, std::pair<int, int> > lllMap;
// Is a function name one of the valid functions above?
bool isValidLLLFunc(std::string f, int argc) {
if (lllMap.size() == 0) {
for (int i = 0; ; i++) {
if (lllSpecials[i][0] == "---END---") break;
lllMap[lllSpecials[i][0]] = std::pair<int, int>(
dtu(lllSpecials[i][1]), dtu(lllSpecials[i][2]));
}
}
return lllMap.count(f)
&& argc >= lllMap[f].first
&& argc <= lllMap[f].second;
}
#ifndef ETHSERP_OPCODES
#define ETHSERP_OPCODES
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
class Mapping {
public:
Mapping(std::string Op, int Opcode, int In, int Out) {
op = Op;
opcode = Opcode;
in = In;
out = Out;
}
std::string op;
int opcode;
int in;
int out;
};
extern Mapping mapping[];
extern std::map<std::string, std::vector<int> > opcodes;
extern std::map<int, std::string> reverseOpcodes;
std::pair<std::string, std::vector<int> > _opdata(std::string ops, int opi);
int opcode(std::string op);
int opinputs(std::string op);
int opoutputs(std::string op);
std::string op(int opcode);
extern std::string lllSpecials[][3];
extern std::map<std::string, std::pair<int, int> > lllMap;
bool isValidLLLFunc(std::string f, int argc);
#endif
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
#include "lllparser.h"
#include "bignum.h"
// Compile-time arithmetic calculations
Node optimize(Node inp) {
if (inp.type == TOKEN) {
Node o = tryNumberize(inp);
if (decimalGt(o.val, tt256, true))
err("Value too large (exceeds 32 bytes or 2^256)", inp.metadata);
return o;
}
for (unsigned i = 0; i < inp.args.size(); i++) {
inp.args[i] = optimize(inp.args[i]);
}
// Arithmetic-specific transform
if (inp.val == "+") inp.val = "add";
if (inp.val == "*") inp.val = "mul";
if (inp.val == "-") inp.val = "sub";
if (inp.val == "/") inp.val = "sdiv";
if (inp.val == "^") inp.val = "exp";
if (inp.val == "**") inp.val = "exp";
if (inp.val == "%") inp.val = "smod";
// Degenerate cases for add and mul
if (inp.args.size() == 2) {
if (inp.val == "add" && inp.args[0].type == TOKEN &&
inp.args[0].val == "0") {
Node x = inp.args[1];
inp = x;
}
if (inp.val == "add" && inp.args[1].type == TOKEN &&
inp.args[1].val == "0") {
Node x = inp.args[0];
inp = x;
}
if (inp.val == "mul" && inp.args[0].type == TOKEN &&
inp.args[0].val == "1") {
Node x = inp.args[1];
inp = x;
}
if (inp.val == "mul" && inp.args[1].type == TOKEN &&
inp.args[1].val == "1") {
Node x = inp.args[0];
inp = x;
}
}
// Arithmetic computation
if (inp.args.size() == 2
&& inp.args[0].type == TOKEN
&& inp.args[1].type == TOKEN) {
std::string o;
if (inp.val == "add") {
o = decimalMod(decimalAdd(inp.args[0].val, inp.args[1].val), tt256);
}
else if (inp.val == "sub") {
if (decimalGt(inp.args[0].val, inp.args[1].val, true))
o = decimalSub(inp.args[0].val, inp.args[1].val);
}
else if (inp.val == "mul") {
o = decimalMod(decimalMul(inp.args[0].val, inp.args[1].val), tt256);
}
else if (inp.val == "div" && inp.args[1].val != "0") {
o = decimalDiv(inp.args[0].val, inp.args[1].val);
}
else if (inp.val == "sdiv" && inp.args[1].val != "0"
&& decimalGt(tt255, inp.args[0].val)
&& decimalGt(tt255, inp.args[1].val)) {
o = decimalDiv(inp.args[0].val, inp.args[1].val);
}
else if (inp.val == "mod" && inp.args[1].val != "0") {
o = decimalMod(inp.args[0].val, inp.args[1].val);
}
else if (inp.val == "smod" && inp.args[1].val != "0"
&& decimalGt(tt255, inp.args[0].val)
&& decimalGt(tt255, inp.args[1].val)) {
o = decimalMod(inp.args[0].val, inp.args[1].val);
}
else if (inp.val == "exp") {
o = decimalModExp(inp.args[0].val, inp.args[1].val, tt256);
}
if (o.length()) return token(o, inp.metadata);
}
return inp;
}
// Is a node degenerate (ie. trivial to calculate) ?
bool isDegenerate(Node n) {
return optimize(n).type == TOKEN;
}
// Is a node purely arithmetic?
bool isPureArithmetic(Node n) {
return isNumberLike(optimize(n));
}
#ifndef ETHSERP_OPTIMIZER
#define ETHSERP_OPTIMIZER
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
// Compile-time arithmetic calculations
Node optimize(Node inp);
// Is a node degenerate (ie. trivial to calculate) ?
bool isDegenerate(Node n);
// Is a node purely arithmetic?
bool isPureArithmetic(Node n);
#endif
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
#include "parser.h"
#include "tokenize.h"
// Extended BEDMAS precedence order
int precedence(Node tok) {
std::string v = tok.val;
if (v == ".") return -1;
else if (v == "!" || v == "not") return 1;
else if (v=="^" || v == "**") return 2;
else if (v=="*" || v=="/" || v=="%") return 3;
else if (v=="+" || v=="-") return 4;
else if (v=="<" || v==">" || v=="<=" || v==">=") return 5;
else if (v=="&" || v=="|" || v=="xor" || v=="==" || v == "!=") return 6;
else if (v=="&&" || v=="and") return 7;
else if (v=="||" || v=="or") return 8;
else if (v=="=") return 10;
else if (v=="+=" || v=="-=" || v=="*=" || v=="/=" || v=="%=") return 10;
else if (v==":" || v == "::") return 11;
else return 0;
}
// Token classification for shunting-yard purposes
int toktype(Node tok) {
if (tok.type == ASTNODE) return COMPOUND;
std::string v = tok.val;
if (v == "(" || v == "[" || v == "{") return LPAREN;
else if (v == ")" || v == "]" || v == "}") return RPAREN;
else if (v == ",") return COMMA;
else if (v == "!" || v == "~" || v == "not") return UNARY_OP;
else if (precedence(tok) > 0) return BINARY_OP;
else if (precedence(tok) < 0) return TOKEN_SPLITTER;
if (tok.val[0] != '"' && tok.val[0] != '\'') {
for (unsigned i = 0; i < tok.val.length(); i++) {
if (chartype(tok.val[i]) == SYMB) {
err("Invalid symbol: "+tok.val, tok.metadata);
}
}
}
return ALPHANUM;
}
// Converts to reverse polish notation
std::vector<Node> shuntingYard(std::vector<Node> tokens) {
std::vector<Node> iq;
for (int i = tokens.size() - 1; i >= 0; i--) {
iq.push_back(tokens[i]);
}
std::vector<Node> oq;
std::vector<Node> stack;
Node prev, tok;
int prevtyp = 0, toktyp = 0;
while (iq.size()) {
prev = tok;
prevtyp = toktyp;
tok = iq.back();
toktyp = toktype(tok);
iq.pop_back();
// Alphanumerics go straight to output queue
if (toktyp == ALPHANUM) {
oq.push_back(tok);
}
// Left parens go on stack and output queue
else if (toktyp == LPAREN) {
while (stack.size() && toktype(stack.back()) == TOKEN_SPLITTER) {
oq.push_back(stack.back());
stack.pop_back();
}
if (prevtyp != ALPHANUM && prevtyp != RPAREN) {
oq.push_back(token("id", tok.metadata));
}
stack.push_back(tok);
oq.push_back(tok);
}
// If rparen, keep moving from stack to output queue until lparen
else if (toktyp == RPAREN) {
while (stack.size() && toktype(stack.back()) != LPAREN) {
oq.push_back(stack.back());
stack.pop_back();
}
if (stack.size()) {
stack.pop_back();
}
oq.push_back(tok);
}
else if (toktyp == UNARY_OP) {
stack.push_back(tok);
}
// If token splitter, just push it to the stack
else if (toktyp == TOKEN_SPLITTER) {
while (stack.size() && toktype(stack.back()) == TOKEN_SPLITTER) {
oq.push_back(stack.back());
stack.pop_back();
}
stack.push_back(tok);
}
// If binary op, keep popping from stack while higher bedmas precedence
else if (toktyp == BINARY_OP) {
if (tok.val == "-" && prevtyp != ALPHANUM && prevtyp != RPAREN) {
stack.push_back(tok);
oq.push_back(token("0", tok.metadata));
}
else {
int prec = precedence(tok);
while (stack.size()
&& (toktype(stack.back()) == BINARY_OP
|| toktype(stack.back()) == UNARY_OP
|| toktype(stack.back()) == TOKEN_SPLITTER)
&& precedence(stack.back()) <= prec) {
oq.push_back(stack.back());
stack.pop_back();
}
stack.push_back(tok);
}
}
// Comma means finish evaluating the argument
else if (toktyp == COMMA) {
while (stack.size() && toktype(stack.back()) != LPAREN) {
oq.push_back(stack.back());
stack.pop_back();
}
}
}
while (stack.size()) {
oq.push_back(stack.back());
stack.pop_back();
}
return oq;
}
// Converts reverse polish notation into tree
Node treefy(std::vector<Node> stream) {
std::vector<Node> iq;
for (int i = stream.size() -1; i >= 0; i--) {
iq.push_back(stream[i]);
}
std::vector<Node> oq;
while (iq.size()) {
Node tok = iq.back();
iq.pop_back();
int typ = toktype(tok);
// If unary, take node off end of oq and wrap it with the operator
// If binary, do the same with two nodes
if (typ == UNARY_OP || typ == BINARY_OP || typ == TOKEN_SPLITTER) {
std::vector<Node> args;
int rounds = (typ == UNARY_OP) ? 1 : 2;
for (int i = 0; i < rounds; i++) {
if (oq.size() == 0) {
err("Line malformed, not enough args for "+tok.val,
tok.metadata);
}
args.push_back(oq.back());
oq.pop_back();
}
std::vector<Node> args2;
while (args.size()) {
args2.push_back(args.back());
args.pop_back();
}
oq.push_back(astnode(tok.val, args2, tok.metadata));
}
// If rparen, keep grabbing until we get to an lparen
else if (typ == RPAREN) {
std::vector<Node> args;
while (1) {
if (toktype(oq.back()) == LPAREN) break;
args.push_back(oq.back());
oq.pop_back();
if (!oq.size()) err("Bracket without matching", tok.metadata);
}
oq.pop_back();
args.push_back(oq.back());
oq.pop_back();
// We represent a[b] as (access a b)
if (tok.val == "]")
args.push_back(token("access", tok.metadata));
if (args.back().type == ASTNODE)
args.push_back(token("fun", tok.metadata));
std::string fun = args.back().val;
args.pop_back();
// We represent [1,2,3] as (array_lit 1 2 3)
if (fun == "access" && args.size() && args.back().val == "id") {
fun = "array_lit";
args.pop_back();
}
std::vector<Node> args2;
while (args.size()) {
args2.push_back(args.back());
args.pop_back();
}
// When evaluating 2 + (3 * 5), the shunting yard algo turns that
// into 2 ( id 3 5 * ) +, effectively putting "id" as a dummy
// function where the algo was expecting a function to call the
// thing inside the brackets. This reverses that step
if (fun == "id" && args2.size() == 1) {
oq.push_back(args2[0]);
}
else {
oq.push_back(astnode(fun, args2, tok.metadata));
}
}
else oq.push_back(tok);
// This is messy, but has to be done. Import/inset other files here
std::string v = oq.back().val;
if ((v == "inset" || v == "import" || v == "create")
&& oq.back().args.size() == 1
&& oq.back().args[0].type == TOKEN) {
int lastSlashPos = tok.metadata.file.rfind("/");
std::string root;
if (lastSlashPos >= 0)
root = tok.metadata.file.substr(0, lastSlashPos) + "/";
else
root = "";
std::string filename = oq.back().args[0].val;
filename = filename.substr(1, filename.length() - 2);
if (!exists(root + filename))
err("File does not exist: "+root + filename, tok.metadata);
oq.back().args.pop_back();
oq.back().args.push_back(parseSerpent(root + filename));
}
//Useful for debugging
//for (int i = 0; i < oq.size(); i++) {
// std::cerr << printSimple(oq[i]) << " ";
//}
//std::cerr << " <-\n";
}
// Output must have one argument
if (oq.size() == 0) {
err("Output blank", Metadata());
}
else if (oq.size() > 1) {
return asn("multi", oq, oq[0].metadata);
}
return oq[0];
}
// Parses one line of serpent
Node parseSerpentTokenStream(std::vector<Node> s) {
return treefy(shuntingYard(s));
}
// Count spaces at beginning of line
int spaceCount(std::string s) {
unsigned pos = 0;
while (pos < s.length() && (s[pos] == ' ' || s[pos] == '\t'))
pos++;
return pos;
}
// Is this a command that takes an argument on the same line?
bool bodied(std::string tok) {
return tok == "if" || tok == "elif" || tok == "while"
|| tok == "with" || tok == "def" || tok == "extern"
|| tok == "data" || tok == "assert" || tok == "return"
|| tok == "fun" || tok == "scope" || tok == "macro"
|| tok == "type";
}
// Are the two commands meant to continue each other?
bool bodiedContinued(std::string prev, std::string tok) {
return (prev == "if" && tok == "elif")
|| (prev == "elif" && tok == "else")
|| (prev == "elif" && tok == "elif")
|| (prev == "if" && tok == "else");
}
// Is a line of code empty?
bool isLineEmpty(std::string line) {
std::vector<Node> tokens = tokenize(line);
if (!tokens.size() || tokens[0].val == "#" || tokens[0].val == "//")
return true;
return false;
}
// Parse lines of serpent (helper function)
Node parseLines(std::vector<std::string> lines, Metadata metadata, int sp) {
std::vector<Node> o;
int origLine = metadata.ln;
unsigned i = 0;
while (i < lines.size()) {
metadata.ln = origLine + i;
std::string main = lines[i];
if (isLineEmpty(main)) {
i += 1;
continue;
}
int spaces = spaceCount(main);
if (spaces != sp) {
err("Indent mismatch", metadata);
}
// Tokenize current line
std::vector<Node> tokens = tokenize(main.substr(sp), metadata);
// Remove comments
std::vector<Node> tokens2;
for (unsigned j = 0; j < tokens.size(); j++) {
if (tokens[j].val == "#" || tokens[j].val == "//") break;
tokens2.push_back(tokens[j]);
}
bool expectingChildBlock = false;
if (tokens2.size() > 0 && tokens2.back().val == ":") {
tokens2.pop_back();
expectingChildBlock = true;
}
// Parse current line
Node out = parseSerpentTokenStream(tokens2);
// Parse child block
int childIndent = 999999;
std::vector<std::string> childBlock;
while (1) {
i++;
if (i >= lines.size())
break;
bool ile = isLineEmpty(lines[i]);
if (!ile) {
int spaces = spaceCount(lines[i]);
if (spaces <= sp) break;
childBlock.push_back(lines[i]);
if (spaces < childIndent) childIndent = spaces;
}
else childBlock.push_back("");
}
// Child block empty?
bool cbe = true;
for (unsigned i = 0; i < childBlock.size(); i++) {
if (childBlock[i].length() > 0) { cbe = false; break; }
}
// Add child block to AST
if (expectingChildBlock) {
if (cbe)
err("Expected indented child block!", out.metadata);
out.type = ASTNODE;
metadata.ln += 1;
out.args.push_back(parseLines(childBlock, metadata, childIndent));
metadata.ln -= 1;
}
else if (!cbe)
err("Did not expect indented child block!", out.metadata);
else if (out.args.size() && out.args[out.args.size() - 1].val == ":") {
Node n = out.args[out.args.size() - 1];
out.args.pop_back();
out.args.push_back(n.args[0]);
out.args.push_back(n.args[1]);
}
// Bring back if / elif into AST
if (bodied(tokens[0].val)) {
if (out.val != "multi") {
// token not being used in bodied form
}
else if (out.args[0].val == "id")
out = astnode(tokens[0].val, out.args[1].args, out.metadata);
else if (out.args[0].type == TOKEN) {
std::vector<Node> out2;
for (unsigned i = 1; i < out.args.size(); i++)
out2.push_back(out.args[i]);
out = astnode(tokens[0].val, out2, out.metadata);
}
else
out = astnode("fun", out.args, out.metadata);
}
// Multi not supported
if (out.val == "multi")
err("Multiple expressions or unclosed bracket", out.metadata);
// Convert top-level colon expressions into non-colon expressions;
// makes if statements and the like equivalent indented or not
//if (out.val == ":" && out.args[0].type == TOKEN)
// out = asn(out.args[0].val, out.args[1], out.metadata);
//if (bodied(tokens[0].val) && out.args[0].val == ":")
// out = asn(tokens[0].val, out.args[0].args);
if (o.size() == 0 || o.back().type == TOKEN) {
o.push_back(out);
continue;
}
// This is a little complicated. Basically, the idea here is to build
// constructions like [if [< x 5] [a] [elif [< x 10] [b] [else [c]]]]
std::vector<Node> u;
u.push_back(o.back());
if (bodiedContinued(o.back().val, out.val)) {
while (1) {
if (!bodiedContinued(u.back().val, out.val)) {
u.pop_back();
break;
}
if (!u.back().args.size()
|| !bodiedContinued(u.back().val, u.back().args.back().val)) {
break;
}
u.push_back(u.back().args.back());
}
u.back().args.push_back(out);
while (u.size() > 1) {
Node v = u.back();
u.pop_back();
u.back().args.pop_back();
u.back().args.push_back(v);
}
o.pop_back();
o.push_back(u[0]);
}
else o.push_back(out);
}
if (o.size() == 1)
return o[0];
else if (o.size())
return astnode("seq", o, o[0].metadata);
else
return astnode("seq", o, Metadata());
}
// Parses serpent code
Node parseSerpent(std::string s) {
std::string input = s;
std::string file = "main";
if (exists(s)) {
file = s;
input = get_file_contents(s);
}
return parseLines(splitLines(input), Metadata(file, 0, 0), 0);
}
using namespace std;
#ifndef ETHSERP_PARSER
#define ETHSERP_PARSER
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
// Serpent text -> parse tree
Node parseSerpent(std::string s);
#endif
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
#include "lllparser.h"
#include "bignum.h"
#include "rewriteutils.h"
#include "optimize.h"
#include "preprocess.h"
#include "functions.h"
#include "opcodes.h"
// Convert a function of the form (def (f x y z) (do stuff)) into
// (if (first byte of ABI is correct) (seq (setup x y z) (do stuff)))
Node convFunction(Node node, int functionCount) {
std::string prefix = "_temp"+mkUniqueToken()+"_";
Metadata m = node.metadata;
if (node.args.size() != 2)
err("Malformed def!", m);
// Collect the list of variable names and variable byte counts
Node unpack = unpackArguments(node.args[0].args, m);
// And the actual code
Node body = node.args[1];
// Main LLL-based function body
return astnode("if",
astnode("eq",
astnode("get", token("__funid", m), m),
token(unsignedToDecimal(functionCount), m),
m),
astnode("seq", unpack, body, m));
}
// Populate an svObj with the arguments needed to determine
// the storage position of a node
svObj getStorageVars(svObj pre, Node node, std::string prefix,
int index) {
Metadata m = node.metadata;
if (!pre.globalOffset.size()) pre.globalOffset = "0";
std::vector<Node> h;
std::vector<std::string> coefficients;
// Array accesses or atoms
if (node.val == "access" || node.type == TOKEN) {
std::string tot = "1";
h = listfyStorageAccess(node);
coefficients.push_back("1");
for (unsigned i = h.size() - 1; i >= 1; i--) {
// Array sizes must be constant or at least arithmetically
// evaluable at compile time
if (!isPureArithmetic(h[i]))
err("Array size must be fixed value", m);
// Create a list of the coefficient associated with each
// array index
coefficients.push_back(decimalMul(coefficients.back(), h[i].val));
}
}
// Tuples
else {
int startc;
// Handle the (fun <fun_astnode> args...) case
if (node.val == "fun") {
startc = 1;
h = listfyStorageAccess(node.args[0]);
}
// Handle the (<fun_name> args...) case, which
// the serpent parser produces when the function
// is a simple name and not a complex astnode
else {
startc = 0;
h = listfyStorageAccess(token(node.val, m));
}
svObj sub = pre;
sub.globalOffset = "0";
// Evaluate tuple elements recursively
for (unsigned i = startc; i < node.args.size(); i++) {
sub = getStorageVars(sub,
node.args[i],
prefix+h[0].val.substr(2)+".",
i-startc);
}
coefficients.push_back(sub.globalOffset);
for (unsigned i = h.size() - 1; i >= 1; i--) {
// Array sizes must be constant or at least arithmetically
// evaluable at compile time
if (!isPureArithmetic(h[i]))
err("Array size must be fixed value", m);
// Create a list of the coefficient associated with each
// array index
coefficients.push_back(decimalMul(coefficients.back(), h[i].val));
}
pre.offsets = sub.offsets;
pre.coefficients = sub.coefficients;
pre.nonfinal = sub.nonfinal;
pre.nonfinal[prefix+h[0].val.substr(2)] = true;
}
pre.coefficients[prefix+h[0].val.substr(2)] = coefficients;
pre.offsets[prefix+h[0].val.substr(2)] = pre.globalOffset;
pre.indices[prefix+h[0].val.substr(2)] = index;
if (decimalGt(tt176, coefficients.back()))
pre.globalOffset = decimalAdd(pre.globalOffset, coefficients.back());
return pre;
}
// Preprocess input containing functions
//
// localExterns is a map of the form, eg,
//
// { x: { foo: 0, bar: 1, baz: 2 }, y: { qux: 0, foo: 1 } ... }
//
// localExternSigs is a map of the form, eg,
//
// { x : { foo: iii, bar: iis, baz: ia }, y: { qux: i, foo: as } ... }
//
// Signifying that x.foo = 0, x.baz = 2, y.foo = 1, etc
// and that x.foo has three integers as arguments, x.bar has two
// integers and a variable-length string, and baz has an integer
// and an array
//
// globalExterns is a one-level map, eg from above
//
// { foo: 1, bar: 1, baz: 2, qux: 0 }
//
// globalExternSigs is a one-level map, eg from above
//
// { foo: as, bar: iis, baz: ia, qux: i}
//
// Note that globalExterns and globalExternSigs may be ambiguous
// Also, a null signature implies an infinite tail of integers
preprocessResult preprocessInit(Node inp) {
Metadata m = inp.metadata;
if (inp.val != "seq")
inp = astnode("seq", inp, m);
std::vector<Node> empty = std::vector<Node>();
Node init = astnode("seq", empty, m);
Node shared = astnode("seq", empty, m);
std::vector<Node> any;
std::vector<Node> functions;
preprocessAux out = preprocessAux();
out.localExterns["self"] = std::map<std::string, int>();
int functionCount = 0;
int storageDataCount = 0;
for (unsigned i = 0; i < inp.args.size(); i++) {
Node obj = inp.args[i];
// Functions
if (obj.val == "def") {
if (obj.args.size() == 0)
err("Empty def", m);
std::string funName = obj.args[0].val;
// Init, shared and any are special functions
if (funName == "init" || funName == "shared" || funName == "any") {
if (obj.args[0].args.size())
err(funName+" cannot have arguments", m);
}
if (funName == "init") init = obj.args[1];
else if (funName == "shared") shared = obj.args[1];
else if (funName == "any") any.push_back(obj.args[1]);
else {
// Other functions
functions.push_back(convFunction(obj, functionCount));
out.localExterns["self"][obj.args[0].val] = functionCount;
out.localExternSigs["self"][obj.args[0].val]
= getSignature(obj.args[0].args);
functionCount++;
}
}
// Extern declarations
else if (obj.val == "extern") {
std::string externName = obj.args[0].val;
Node al = obj.args[1];
if (!out.localExterns.count(externName))
out.localExterns[externName] = std::map<std::string, int>();
for (unsigned i = 0; i < al.args.size(); i++) {
if (al.args[i].val == ":") {
std::string v = al.args[i].args[0].val;
std::string sig = al.args[i].args[1].val;
out.globalExterns[v] = i;
out.globalExternSigs[v] = sig;
out.localExterns[externName][v] = i;
out.localExternSigs[externName][v] = sig;
}
else {
std::string v = al.args[i].val;
out.globalExterns[v] = i;
out.globalExternSigs[v] = "";
out.localExterns[externName][v] = i;
out.localExternSigs[externName][v] = "";
}
}
}
// Custom macros
else if (obj.val == "macro") {
// Rules for valid macros:
//
// There are only four categories of valid macros:
//
// 1. a macro where the outer function is something
// which is NOT an existing valid function/extern/datum
// 2. a macro of the form set(c(x), d) where c must NOT
// be an existing valid function/extern/datum
// 3. something of the form access(c(x)), where c must NOT
// be an existing valid function/extern/datum
// 4. something of the form set(access(c(x)), d) where c must
// NOT be an existing valid function/extern/datum
bool valid = false;
Node pattern = obj.args[0];
Node substitution = obj.args[1];
if (opcode(pattern.val) < 0 && !isValidFunctionName(pattern.val))
valid = true;
if (pattern.val == "set" &&
opcode(pattern.args[0].val) < 0 &&
!isValidFunctionName(pattern.args[0].val))
valid = true;
if (pattern.val == "access" &&
opcode(pattern.args[0].val) < 0 &&
!isValidFunctionName(pattern.args[0].val))
if (pattern.val == "set" &&
pattern.args[0].val == "access" &&
opcode(pattern.args[0].args[0].val) < 0 &&
!isValidFunctionName(pattern.args[0].args[0].val))
valid = true;
if (valid) {
out.customMacros.push_back(rewriteRule(pattern, substitution));
}
}
// Variable types
else if (obj.val == "type") {
std::string typeName = obj.args[0].val;
std::vector<Node> vars = obj.args[1].args;
for (unsigned i = 0; i < vars.size(); i++)
out.types[vars[i].val] = typeName;
}
// Storage variables/structures
else if (obj.val == "data") {
out.storageVars = getStorageVars(out.storageVars,
obj.args[0],
"",
storageDataCount);
storageDataCount += 1;
}
else any.push_back(obj);
}
std::vector<Node> main;
if (shared.args.size()) main.push_back(shared);
if (init.args.size()) main.push_back(init);
std::vector<Node> code;
if (shared.args.size()) code.push_back(shared);
for (unsigned i = 0; i < any.size(); i++)
code.push_back(any[i]);
for (unsigned i = 0; i < functions.size(); i++)
code.push_back(functions[i]);
Node codeNode;
if (functions.size() > 0) {
codeNode = astnode("with",
token("__funid", m),
astnode("byte",
token("0", m),
astnode("calldataload", token("0", m), m),
m),
astnode("seq", code, m),
m);
}
else codeNode = astnode("seq", code, m);
main.push_back(astnode("~return",
token("0", m),
astnode("lll",
codeNode,
token("0", m),
m),
m));
Node result;
if (main.size() == 1) result = main[0];
else result = astnode("seq", main, inp.metadata);
return preprocessResult(result, out);
}
preprocessResult processTypes (preprocessResult pr) {
preprocessAux aux = pr.second;
Node node = pr.first;
if (node.type == TOKEN && aux.types.count(node.val)) {
node = asn(aux.types[node.val], node, node.metadata);
}
else if (node.val == "untyped")
return preprocessResult(node.args[0], aux);
else {
for (unsigned i = 0; i < node.args.size(); i++) {
node.args[i] =
processTypes(preprocessResult(node.args[i], aux)).first;
}
}
return preprocessResult(node, aux);
}
preprocessResult preprocess(Node n) {
return processTypes(preprocessInit(n));
}
#ifndef ETHSERP_PREPROCESSOR
#define ETHSERP_PREPROCESSOR
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
// Storage variable index storing object
struct svObj {
std::map<std::string, std::string> offsets;
std::map<std::string, int> indices;
std::map<std::string, std::vector<std::string> > coefficients;
std::map<std::string, bool> nonfinal;
std::string globalOffset;
};
class rewriteRule {
public:
rewriteRule(Node p, Node s) {
pattern = p;
substitution = s;
}
Node pattern;
Node substitution;
};
// Preprocessing result storing object
class preprocessAux {
public:
preprocessAux() {
globalExterns = std::map<std::string, int>();
localExterns = std::map<std::string, std::map<std::string, int> >();
localExterns["self"] = std::map<std::string, int>();
}
std::map<std::string, int> globalExterns;
std::map<std::string, std::string> globalExternSigs;
std::map<std::string, std::map<std::string, int> > localExterns;
std::map<std::string, std::map<std::string, std::string> > localExternSigs;
std::vector<rewriteRule> customMacros;
std::map<std::string, std::string> types;
svObj storageVars;
};
#define preprocessResult std::pair<Node, preprocessAux>
// Populate an svObj with the arguments needed to determine
// the storage position of a node
svObj getStorageVars(svObj pre, Node node, std::string prefix="",
int index=0);
// Preprocess a function (see cpp for details)
preprocessResult preprocess(Node inp);
#endif
#include <Python.h>
#include "structmember.h"
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include "funcs.h"
#define PYMETHOD(name, FROM, method, TO) \
static PyObject * name(PyObject *, PyObject *args) { \
try { \
FROM(med) \
return TO(method(med)); \
} \
catch (std::string e) { \
PyErr_SetString(PyExc_Exception, e.c_str()); \
return NULL; \
} \
}
#define FROMSTR(v) \
const char *command; \
int len; \
if (!PyArg_ParseTuple(args, "s#", &command, &len)) \
return NULL; \
std::string v = std::string(command, len); \
#define FROMNODE(v) \
PyObject *node; \
if (!PyArg_ParseTuple(args, "O", &node)) \
return NULL; \
Node v = cppifyNode(node);
#define FROMLIST(v) \
PyObject *node; \
if (!PyArg_ParseTuple(args, "O", &node)) \
return NULL; \
std::vector<Node> v = cppifyNodeList(node);
// Convert metadata into python wrapper form [file, ln, ch]
PyObject* pyifyMetadata(Metadata m) {
PyObject* a = PyList_New(0);
PyList_Append(a, Py_BuildValue("s#", m.file.c_str(), m.file.length()));
PyList_Append(a, Py_BuildValue("i", m.ln));
PyList_Append(a, Py_BuildValue("i", m.ch));
return a;
}
// Convert node into python wrapper form
// [token=0/astnode=1, val, metadata, args]
PyObject* pyifyNode(Node n) {
PyObject* a = PyList_New(0);
PyList_Append(a, Py_BuildValue("i", n.type == ASTNODE));
PyList_Append(a, Py_BuildValue("s#", n.val.c_str(), n.val.length()));
PyList_Append(a, pyifyMetadata(n.metadata));
for (unsigned i = 0; i < n.args.size(); i++)
PyList_Append(a, pyifyNode(n.args[i]));
return a;
}
// Convert string into python wrapper form
PyObject* pyifyString(std::string s) {
return Py_BuildValue("s#", s.c_str(), s.length());
}
// Convert list of nodes into python wrapper form
PyObject* pyifyNodeList(std::vector<Node> n) {
PyObject* a = PyList_New(0);
for (unsigned i = 0; i < n.size(); i++)
PyList_Append(a, pyifyNode(n[i]));
return a;
}
// Convert pyobject int into normal form
int cppifyInt(PyObject* o) {
int out;
if (!PyArg_Parse(o, "i", &out))
err("Argument should be integer", Metadata());
return out;
}
// Convert pyobject string into normal form
std::string cppifyString(PyObject* o) {
const char *command;
if (!PyArg_Parse(o, "s", &command))
err("Argument should be string", Metadata());
return std::string(command);
}
// Convert metadata from python wrapper form
Metadata cppifyMetadata(PyObject* o) {
std::string file = cppifyString(PyList_GetItem(o, 0));
int ln = cppifyInt(PyList_GetItem(o, 1));
int ch = cppifyInt(PyList_GetItem(o, 2));
return Metadata(file, ln, ch);
}
// Convert node from python wrapper form
Node cppifyNode(PyObject* o) {
Node n;
int isAstNode = cppifyInt(PyList_GetItem(o, 0));
n.type = isAstNode ? ASTNODE : TOKEN;
n.val = cppifyString(PyList_GetItem(o, 1));
n.metadata = cppifyMetadata(PyList_GetItem(o, 2));
std::vector<Node> args;
for (int i = 3; i < PyList_Size(o); i++) {
args.push_back(cppifyNode(PyList_GetItem(o, i)));
}
n.args = args;
return n;
}
//Convert list of nodes into normal form
std::vector<Node> cppifyNodeList(PyObject* o) {
std::vector<Node> out;
for (int i = 0; i < PyList_Size(o); i++) {
out.push_back(cppifyNode(PyList_GetItem(o,i)));
}
return out;
}
PYMETHOD(ps_compile, FROMSTR, compile, pyifyString)
PYMETHOD(ps_compile_chunk, FROMSTR, compileChunk, pyifyString)
PYMETHOD(ps_compile_to_lll, FROMSTR, compileToLLL, pyifyNode)
PYMETHOD(ps_compile_chunk_to_lll, FROMSTR, compileChunkToLLL, pyifyNode)
PYMETHOD(ps_compile_lll, FROMNODE, compileLLL, pyifyString)
PYMETHOD(ps_parse, FROMSTR, parseSerpent, pyifyNode)
PYMETHOD(ps_rewrite, FROMNODE, rewrite, pyifyNode)
PYMETHOD(ps_rewrite_chunk, FROMNODE, rewriteChunk, pyifyNode)
PYMETHOD(ps_pretty_compile, FROMSTR, prettyCompile, pyifyNodeList)
PYMETHOD(ps_pretty_compile_chunk, FROMSTR, prettyCompileChunk, pyifyNodeList)
PYMETHOD(ps_pretty_compile_lll, FROMNODE, prettyCompileLLL, pyifyNodeList)
PYMETHOD(ps_serialize, FROMLIST, serialize, pyifyString)
PYMETHOD(ps_deserialize, FROMSTR, deserialize, pyifyNodeList)
PYMETHOD(ps_parse_lll, FROMSTR, parseLLL, pyifyNode)
static PyMethodDef PyextMethods[] = {
{"compile", ps_compile, METH_VARARGS,
"Compile code."},
{"compile_chunk", ps_compile_chunk, METH_VARARGS,
"Compile code chunk (no wrappers)."},
{"compile_to_lll", ps_compile_to_lll, METH_VARARGS,
"Compile code to LLL."},
{"compile_chunk_to_lll", ps_compile_chunk_to_lll, METH_VARARGS,
"Compile code chunk to LLL (no wrappers)."},
{"compile_lll", ps_compile_lll, METH_VARARGS,
"Compile LLL to EVM."},
{"parse", ps_parse, METH_VARARGS,
"Parse serpent"},
{"rewrite", ps_rewrite, METH_VARARGS,
"Rewrite parsed serpent to LLL"},
{"rewrite_chunk", ps_rewrite_chunk, METH_VARARGS,
"Rewrite parsed serpent to LLL (no wrappers)"},
{"pretty_compile", ps_pretty_compile, METH_VARARGS,
"Compile to EVM opcodes"},
{"pretty_compile_chunk", ps_pretty_compile_chunk, METH_VARARGS,
"Compile chunk to EVM opcodes (no wrappers)"},
{"pretty_compile_lll", ps_pretty_compile_lll, METH_VARARGS,
"Compile LLL to EVM opcodes"},
{"serialize", ps_serialize, METH_VARARGS,
"Convert EVM opcodes to bin"},
{"deserialize", ps_deserialize, METH_VARARGS,
"Convert EVM bin to opcodes"},
{"parse_lll", ps_parse_lll, METH_VARARGS,
"Parse LLL"},
{NULL, NULL, 0, NULL} /* Sentinel */
};
PyMODINIT_FUNC initserpent_pyext(void)
{
Py_InitModule( "serpent_pyext", PyextMethods );
}
#ifndef ETHSERP_REWRITER
#define ETHSERP_REWRITER
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
// Applies rewrite rules
Node rewrite(Node inp);
// Applies rewrite rules adding without wrapper
Node rewriteChunk(Node inp);
#endif
#ifndef ETHSERP_TOKENIZE
#define ETHSERP_TOKENIZE
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
int chartype(char c);
std::vector<Node> tokenize(std::string inp,
Metadata meta=Metadata(),
bool lispMode=false);
#endif
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册