core/vm: polish precompile contract code, add tests and benches

 * Update modexp gas calculation to new version
 * Fix modexp modulo 0 special case to return zero
上级 7bbdf3e2
......@@ -29,9 +29,7 @@ import (
"golang.org/x/crypto/ripemd160"
)
var errBadPrecompileInput = errors.New("bad pre compile input")
// Precompiled contract is the basic interface for native Go contracts. The implementation
// PrecompiledContract is the basic interface for native Go contracts. The implementation
// requires a deterministic gas count based on the input size of the Run method of the
// contract.
type PrecompiledContract interface {
......@@ -39,61 +37,61 @@ type PrecompiledContract interface {
Run(input []byte) ([]byte, error) // Run runs the precompiled contract
}
// PrecompiledContracts contains the default set of ethereum contracts
var PrecompiledContracts = map[common.Address]PrecompiledContract{
// PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum
// contracts used in the Frontier and Homestead releases.
var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{
common.BytesToAddress([]byte{1}): &ecrecover{},
common.BytesToAddress([]byte{2}): &sha256hash{},
common.BytesToAddress([]byte{3}): &ripemd160hash{},
common.BytesToAddress([]byte{4}): &dataCopy{},
}
// PrecompiledContractsMetropolis contains the default set of ethereum contracts
// for metropolis hardfork
// PrecompiledContractsMetropolis contains the default set of pre-compiled Ethereum
// contracts used in the Metropolis release.
var PrecompiledContractsMetropolis = map[common.Address]PrecompiledContract{
common.BytesToAddress([]byte{1}): &ecrecover{},
common.BytesToAddress([]byte{2}): &sha256hash{},
common.BytesToAddress([]byte{3}): &ripemd160hash{},
common.BytesToAddress([]byte{4}): &dataCopy{},
common.BytesToAddress([]byte{5}): &bigModexp{},
common.BytesToAddress([]byte{5}): &bigModExp{},
common.BytesToAddress([]byte{6}): &bn256Add{},
common.BytesToAddress([]byte{7}): &bn256ScalarMul{},
common.BytesToAddress([]byte{8}): &pairing{},
common.BytesToAddress([]byte{8}): &bn256Pairing{},
}
// RunPrecompile runs and evaluate the output of a precompiled contract defined in contracts.go
// RunPrecompiledContract runs and evaluates the output of a precompiled contract.
func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) {
gas := p.RequiredGas(input)
if contract.UseGas(gas) {
return p.Run(input)
} else {
return nil, ErrOutOfGas
}
return nil, ErrOutOfGas
}
// ECRECOVER implemented as a native contract
// ECRECOVER implemented as a native contract.
type ecrecover struct{}
func (c *ecrecover) RequiredGas(input []byte) uint64 {
return params.EcrecoverGas
}
func (c *ecrecover) Run(in []byte) ([]byte, error) {
func (c *ecrecover) Run(input []byte) ([]byte, error) {
const ecRecoverInputLength = 128
in = common.RightPadBytes(in, ecRecoverInputLength)
// "in" is (hash, v, r, s), each 32 bytes
input = common.RightPadBytes(input, ecRecoverInputLength)
// "input" is (hash, v, r, s), each 32 bytes
// but for ecrecover we want (r, s, v)
r := new(big.Int).SetBytes(in[64:96])
s := new(big.Int).SetBytes(in[96:128])
v := in[63] - 27
r := new(big.Int).SetBytes(input[64:96])
s := new(big.Int).SetBytes(input[96:128])
v := input[63] - 27
// tighter sig s values in homestead only apply to tx sigs
if !allZero(in[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) {
// tighter sig s values input homestead only apply to tx sigs
if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) {
return nil, nil
}
// v needs to be at the end for libsecp256k1
pubKey, err := crypto.Ecrecover(in[:32], append(in[64:128], v))
pubKey, err := crypto.Ecrecover(input[:32], append(input[64:128], v))
// make sure the public key is a valid one
if err != nil {
return nil, nil
......@@ -103,7 +101,7 @@ func (c *ecrecover) Run(in []byte) ([]byte, error) {
return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil
}
// SHA256 implemented as a native contract
// SHA256 implemented as a native contract.
type sha256hash struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
......@@ -111,14 +109,14 @@ type sha256hash struct{}
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
func (c *sha256hash) RequiredGas(input []byte) uint64 {
return uint64(len(input)+31)/32*params.Sha256WordGas + params.Sha256Gas
return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas
}
func (c *sha256hash) Run(in []byte) ([]byte, error) {
h := sha256.Sum256(in)
func (c *sha256hash) Run(input []byte) ([]byte, error) {
h := sha256.Sum256(input)
return h[:], nil
}
// RIPMED160 implemented as a native contract
// RIPMED160 implemented as a native contract.
type ripemd160hash struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
......@@ -126,15 +124,15 @@ type ripemd160hash struct{}
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
func (c *ripemd160hash) RequiredGas(input []byte) uint64 {
return uint64(len(input)+31)/32*params.Ripemd160WordGas + params.Ripemd160Gas
return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas
}
func (c *ripemd160hash) Run(in []byte) ([]byte, error) {
func (c *ripemd160hash) Run(input []byte) ([]byte, error) {
ripemd := ripemd160.New()
ripemd.Write(in)
ripemd.Write(input)
return common.LeftPadBytes(ripemd.Sum(nil), 32), nil
}
// data copy implemented as a native contract
// data copy implemented as a native contract.
type dataCopy struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
......@@ -142,195 +140,232 @@ type dataCopy struct{}
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
func (c *dataCopy) RequiredGas(input []byte) uint64 {
return uint64(len(input)+31)/32*params.IdentityWordGas + params.IdentityGas
return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas
}
func (c *dataCopy) Run(in []byte) ([]byte, error) {
return in, nil
}
// bigModexp implements a native big integer exponential modular operation.
type bigModexp struct{}
// bigModExp implements a native big integer exponential modular operation.
type bigModExp struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
func (c *bigModexp) RequiredGas(input []byte) uint64 {
// TODO reword required gas to have error reporting and convert arithmetic
// to uint64.
if len(input) < 3*32 {
input = append(input, make([]byte, 3*32-len(input))...)
}
func (c *bigModExp) RequiredGas(input []byte) uint64 {
// Pad the input with zeroes to the minimum size to read the field lengths
input = common.RightPadBytes(input, 96)
var (
baseLen = new(big.Int).SetBytes(input[:31])
expLen = math.BigMax(new(big.Int).SetBytes(input[32:64]), big.NewInt(1))
modLen = new(big.Int).SetBytes(input[65:97])
baseLen = new(big.Int).SetBytes(input[:32])
expLen = new(big.Int).SetBytes(input[32:64])
modLen = new(big.Int).SetBytes(input[64:96])
)
x := new(big.Int).Set(math.BigMax(baseLen, modLen))
x.Mul(x, x)
x.Mul(x, expLen)
x.Div(x, new(big.Int).SetUint64(params.QuadCoeffDiv))
input = input[96:]
return x.Uint64()
}
// Retrieve the head 32 bytes of exp for the adjusted exponent length
var expHead *big.Int
if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 {
expHead = new(big.Int)
} else {
offset := int(baseLen.Uint64())
func (c *bigModexp) Run(input []byte) ([]byte, error) {
if len(input) < 3*32 {
input = append(input, make([]byte, 3*32-len(input))...)
input = common.RightPadBytes(input, offset+32)
if expLen.Cmp(big.NewInt(32)) > 0 {
expHead = new(big.Int).SetBytes(input[offset : offset+32])
} else {
expHead = new(big.Int).SetBytes(input[offset : offset+int(expLen.Uint64())])
}
}
// why 32-byte? These values won't fit anyway
// Calculate the adjusted exponent length
var msb int
if bitlen := expHead.BitLen(); bitlen > 0 {
msb = bitlen - 1
}
adjExpLen := new(big.Int)
if expLen.Cmp(big.NewInt(32)) > 0 {
adjExpLen.Sub(expLen, big.NewInt(32))
adjExpLen.Mul(big.NewInt(8), adjExpLen)
}
adjExpLen.Add(adjExpLen, big.NewInt(int64(msb)))
// Calculate the gas cost of the operation
gas := new(big.Int).Set(math.BigMax(modLen, baseLen))
switch {
case gas.Cmp(big.NewInt(64)) <= 0:
gas.Mul(gas, gas)
case gas.Cmp(big.NewInt(1024)) <= 0:
gas = new(big.Int).Add(
new(big.Int).Div(new(big.Int).Mul(gas, gas), big.NewInt(4)),
new(big.Int).Sub(new(big.Int).Mul(big.NewInt(96), gas), big.NewInt(3072)),
)
default:
gas = new(big.Int).Add(
new(big.Int).Div(new(big.Int).Mul(gas, gas), big.NewInt(16)),
new(big.Int).Sub(new(big.Int).Mul(big.NewInt(480), gas), big.NewInt(199680)),
)
}
gas.Mul(gas, math.BigMax(adjExpLen, big.NewInt(1)))
gas.Div(gas, new(big.Int).SetUint64(params.ModExpQuadCoeffDiv))
if gas.BitLen() > 64 {
return math.MaxUint64
}
return gas.Uint64()
}
func (c *bigModExp) Run(input []byte) ([]byte, error) {
// Pad the input with zeroes to the minimum size to read the field lengths
input = common.RightPadBytes(input, 96)
var (
baseLen = new(big.Int).SetBytes(input[:32]).Uint64()
expLen = new(big.Int).SetBytes(input[32:64]).Uint64()
modLen = new(big.Int).SetBytes(input[64:96]).Uint64()
)
input = input[96:]
if uint64(len(input)) < baseLen {
input = append(input, make([]byte, baseLen-uint64(len(input)))...)
}
base := new(big.Int).SetBytes(input[:baseLen])
input = input[baseLen:]
if uint64(len(input)) < expLen {
input = append(input, make([]byte, expLen-uint64(len(input)))...)
}
exp := new(big.Int).SetBytes(input[:expLen])
// Pad the input with zeroes to the minimum size to read the field contents
input = common.RightPadBytes(input, int(baseLen+expLen+modLen))
input = input[expLen:]
if uint64(len(input)) < modLen {
input = append(input, make([]byte, modLen-uint64(len(input)))...)
var (
base = new(big.Int).SetBytes(input[:baseLen])
exp = new(big.Int).SetBytes(input[baseLen : baseLen+expLen])
mod = new(big.Int).SetBytes(input[baseLen+expLen : baseLen+expLen+modLen])
)
if mod.BitLen() == 0 {
// Modulo 0 is undefined, return zero
return common.LeftPadBytes([]byte{}, int(modLen)), nil
}
mod := new(big.Int).SetBytes(input[:modLen])
return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), len(input[:modLen])), nil
return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil
}
type bn256Add struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
func (c *bn256Add) RequiredGas(input []byte) uint64 {
return 0 // TODO
}
var (
// errNotOnCurve is returned if a point being unmarshalled as a bn256 elliptic
// curve point is not on the curve.
errNotOnCurve = errors.New("point not on elliptic curve")
func (c *bn256Add) Run(in []byte) ([]byte, error) {
in = common.RightPadBytes(in, 128)
// errInvalidCurvePoint is returned if a point being unmarshalled as a bn256
// elliptic curve point is invalid.
errInvalidCurvePoint = errors.New("invalid elliptic curve point")
)
x, onCurve := new(bn256.G1).Unmarshal(in[:64])
// newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point,
// returning it, or an error if the point is invalid.
func newCurvePoint(blob []byte) (*bn256.G1, error) {
p, onCurve := new(bn256.G1).Unmarshal(blob)
if !onCurve {
return nil, errNotOnCurve
}
gx, gy, _, _ := x.CurvePoints()
gx, gy, _, _ := p.CurvePoints()
if gx.Cmp(bn256.P) >= 0 || gy.Cmp(bn256.P) >= 0 {
return nil, errInvalidCurvePoint
}
return p, nil
}
y, onCurve := new(bn256.G1).Unmarshal(in[64:128])
// newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point,
// returning it, or an error if the point is invalid.
func newTwistPoint(blob []byte) (*bn256.G2, error) {
p, onCurve := new(bn256.G2).Unmarshal(blob)
if !onCurve {
return nil, errNotOnCurve
}
gx, gy, _, _ = y.CurvePoints()
if gx.Cmp(bn256.P) >= 0 || gy.Cmp(bn256.P) >= 0 {
x2, y2, _, _ := p.CurvePoints()
if x2.Real().Cmp(bn256.P) >= 0 || x2.Imag().Cmp(bn256.P) >= 0 ||
y2.Real().Cmp(bn256.P) >= 0 || y2.Imag().Cmp(bn256.P) >= 0 {
return nil, errInvalidCurvePoint
}
x.Add(x, y)
return x.Marshal(), nil
return p, nil
}
type bn256ScalarMul struct{}
// bn256Add implements a native elliptic curve point addition.
type bn256Add struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
func (c *bn256ScalarMul) RequiredGas(input []byte) uint64 {
return 0 // TODO
func (c *bn256Add) RequiredGas(input []byte) uint64 {
return params.Bn256AddGas
}
func (c *bn256ScalarMul) Run(in []byte) ([]byte, error) {
in = common.RightPadBytes(in, 96)
func (c *bn256Add) Run(input []byte) ([]byte, error) {
// Ensure we have enough data to operate on
input = common.RightPadBytes(input, 128)
g1, onCurve := new(bn256.G1).Unmarshal(in[:64])
if !onCurve {
return nil, errNotOnCurve
x, err := newCurvePoint(input[:64])
if err != nil {
return nil, err
}
x, y, _, _ := g1.CurvePoints()
if x.Cmp(bn256.P) >= 0 || y.Cmp(bn256.P) >= 0 {
return nil, errInvalidCurvePoint
y, err := newCurvePoint(input[64:128])
if err != nil {
return nil, err
}
g1.ScalarMult(g1, new(big.Int).SetBytes(in[64:96]))
return g1.Marshal(), nil
x.Add(x, y)
return x.Marshal(), nil
}
// pairing implements a pairing pre-compile for the bn256 curve
type pairing struct{}
// bn256ScalarMul implements a native elliptic curve scalar multiplication.
type bn256ScalarMul struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
func (c *pairing) RequiredGas(input []byte) uint64 {
//return 0 // TODO
k := (len(input) + 191) / pairSize
return uint64(60000*k + 40000)
func (c *bn256ScalarMul) RequiredGas(input []byte) uint64 {
return params.Bn256ScalarMulGas
}
const pairSize = 192
func (c *bn256ScalarMul) Run(input []byte) ([]byte, error) {
// Ensure we have enough data to operate on
input = common.RightPadBytes(input, 96)
p, err := newCurvePoint(input[:64])
if err != nil {
return nil, err
}
p.ScalarMult(p, new(big.Int).SetBytes(input[64:96]))
return p.Marshal(), nil
}
var (
true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
fals32Byte = make([]byte, 32)
errNotOnCurve = errors.New("point not on elliptic curve")
errInvalidCurvePoint = errors.New("invalid elliptic curve point")
// true32Byte is returned if the bn256 pairing check succeeds.
true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
// false32Byte is returned if the bn256 pairing check fails.
false32Byte = make([]byte, 32)
// errBadPairingInput is returned if the bn256 pairing input is invalid.
errBadPairingInput = errors.New("bad elliptic curve pairing size")
)
func (c *pairing) Run(in []byte) ([]byte, error) {
if len(in) == 0 {
return true32Byte, nil
}
// bn256Pairing implements a pairing pre-compile for the bn256 curve
type bn256Pairing struct{}
if len(in)%pairSize > 0 {
return nil, errBadPrecompileInput
}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256Pairing) RequiredGas(input []byte) uint64 {
return params.Bn256PairingBaseGas + uint64(len(input)/192)*params.Bn256PairingPerPointGas
}
func (c *bn256Pairing) Run(input []byte) ([]byte, error) {
// Handle some corner cases cheaply
if len(input)%192 > 0 {
return nil, errBadPairingInput
}
// Convert the input into a set of coordinates
var (
g1s []*bn256.G1
g2s []*bn256.G2
cs []*bn256.G1
ts []*bn256.G2
)
for i := 0; i < len(in); i += pairSize {
g1, onCurve := new(bn256.G1).Unmarshal(in[i : i+64])
if !onCurve {
return nil, errNotOnCurve
}
x, y, _, _ := g1.CurvePoints()
if x.Cmp(bn256.P) >= 0 || y.Cmp(bn256.P) >= 0 {
return nil, errInvalidCurvePoint
for i := 0; i < len(input); i += 192 {
c, err := newCurvePoint(input[i : i+64])
if err != nil {
return nil, err
}
g2, onCurve := new(bn256.G2).Unmarshal(in[i+64 : i+192])
if !onCurve {
return nil, errNotOnCurve
}
x2, y2, _, _ := g2.CurvePoints()
if x2.Real().Cmp(bn256.P) >= 0 || x2.Imag().Cmp(bn256.P) >= 0 ||
y2.Real().Cmp(bn256.P) >= 0 || y2.Imag().Cmp(bn256.P) >= 0 {
return nil, errInvalidCurvePoint
t, err := newTwistPoint(input[i+64 : i+192])
if err != nil {
return nil, err
}
g1s = append(g1s, g1)
g2s = append(g2s, g2)
cs = append(cs, c)
ts = append(ts, t)
}
isOne := bn256.PairingCheck(g1s, g2s)
if isOne {
// Execute the pairing checks and return the results
ok := bn256.PairingCheck(cs, ts)
if ok {
return true32Byte, nil
}
return fals32Byte, nil
return false32Byte, nil
}
package vm
import (
"bytes"
"math"
"testing"
"github.com/ethereum/go-ethereum/common"
)
const input = ""
// Tests the sample inputs from the ModExp EIP 198.
func TestPrecompiledModExp(t *testing.T) {
bigModExp := &bigModExp{}
func TestPairing(t *testing.T) {
pairing := &pairing{}
for i, tt := range []struct {
input string
gas uint64
output string
}{
{"00000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000002003fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2efffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f", 2611, "0000000000000000000000000000000000000000000000000000000000000001"},
{"000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000020fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2efffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f", 2611, "0000000000000000000000000000000000000000000000000000000000000000"},
{"00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000020fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd", math.MaxUint64, ""},
{"00000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000002003ffff800000000000000000000000000000000000000000000000000000000000000007", 153, "3b01b01ac41f2d6e917c6d6a221ce793802469026d9ab7578fa2e79e4da6aaab"},
{"00000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000002003ffff80", 153, "3b01b01ac41f2d6e917c6d6a221ce793802469026d9ab7578fa2e79e4da6aaab"},
} {
gas := bigModExp.RequiredGas(common.FromHex(tt.input))
if gas != tt.gas {
t.Errorf("test %d: required gas mismatch: have %v, want %v", i, gas, tt.gas)
continue
}
if gas == math.MaxUint64 {
continue // Out of gas
}
out, err := bigModExp.Run(common.FromHex(tt.input))
if err != nil {
t.Errorf("test %d: contract execution failed: %v", i, err)
continue
}
if !bytes.Equal(out, common.FromHex(tt.output)) {
t.Errorf("test %d: contract output mismatch: have %x, want %v", i, out, tt.output)
}
}
}
// Tests the sample inputs from the elliptic curve addition EIP 213.
func TestPrecompiledBn256Add(t *testing.T) {
bn256Add := &bn256Add{}
for i, tt := range []struct {
input string
failure error
output string
}{
{"0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", nil, "00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"},
{"", nil, "00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"},
{"1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111", errNotOnCurve, ""},
} {
out, err := bn256Add.Run(common.FromHex(tt.input))
if err != tt.failure {
t.Errorf("test %d: contract execution failure mismatch: have %v, want %v", i, err, tt.failure)
continue
}
if !bytes.Equal(out, common.FromHex(tt.output)) {
t.Errorf("test %d: contract output mismatch: have %x, want %v", i, out, tt.output)
}
}
}
// Tests the sample inputs from the elliptic curve scalar multiplication EIP 213.
func TestPrecompiledBn256ScalarMul(t *testing.T) {
bn256ScalarMul := &bn256ScalarMul{}
for i, tt := range []struct {
input string
failure error
output string
}{
{"000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000", nil, "00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"},
{"", nil, "00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"},
{"111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110f00000000000000000000000000000000000000000000000000000000000000", errNotOnCurve, ""},
} {
out, err := bn256ScalarMul.Run(common.FromHex(tt.input))
if err != tt.failure {
t.Errorf("test %d: contract execution failure mismatch: have %v, want %v", i, err, tt.failure)
continue
}
if !bytes.Equal(out, common.FromHex(tt.output)) {
t.Errorf("test %d: contract output mismatch: have %x, want %v", i, out, tt.output)
}
}
}
for i, test := range []struct {
// Tests the sample inputs from the elliptic curve pairing check EIP 197.
func TestPrecompiledBn256Pairing(t *testing.T) {
bn256Pairing := &bn256Pairing{}
for i, tt := range []struct {
input string
valid int
}{
......@@ -22,14 +105,12 @@ func TestPairing(t *testing.T) {
{"20a754d2071d4d53903e3b31a7e98ad6882d58aec240ef981fdf0a9d22c5926a29c853fcea789887315916bbeb89ca37edb355b4f980c9a12a94f30deeed30211213d2149b006137fcfb23036606f848d638d576a120ca981b5b1a5f9300b3ee2276cf730cf493cd95d64677bbb75fc42db72513a4c1e387b476d056f80aa75f21ee6226d31426322afcda621464d0611d226783262e21bb3bc86b537e986237096df1f82dff337dd5972e32a8ad43e28a78a96a823ef1cd4debe12b6552ea5f1abb4a25eb9379ae96c84fff9f0540abcfc0a0d11aeda02d4f37e4baf74cb0c11073b3ff2cdbb38755f8691ea59e9606696b3ff278acfc098fa8226470d03869217cee0a9ad79a4493b5253e2e4e3a39fc2df38419f230d341f60cb064a0ac290a3d76f140db8418ba512272381446eb73958670f00cf46f1d9e64cba057b53c26f64a8ec70387a13e41430ed3ee4a7db2059cc5fc13c067194bcc0cb49a98552fd72bd9edb657346127da132e5b82ab908f5816c826acb499e22f2412d1a2d70f25929bcb43d5a57391564615c9e70a992b10eafa4db109709649cf48c50dd2198a1f162a73261f112401aa2db79c7dab1533c9935c77290a6ce3b191f2318d198e9393920d483a7260bfb731fb5d25f1aa493335a9e71297e485b7aef312c21800deef121f1e76426a00665e5c4479674322d4f75edadd46debd5cd992f6ed090689d0585ff075ec9e99ad690c3395bc4b313370b38ef355acdadcd122975b12c85ea5db8c6deb4aab71808dcb408fe3d1e7690c43d37b4ce6cc0166fa7daa", 1},
{"1c76476f4def4bb94541d57ebba1193381ffa7aa76ada664dd31c16024c43f593034dd2920f673e204fee2811c678745fc819b55d3e9d294e45c9b03a76aef41209dd15ebff5d46c4bd888e51a93cf99a7329636c63514396b4a452003a35bf704bf11ca01483bfa8b34b43561848d28905960114c8ac04049af4b6315a416782bb8324af6cfc93537a2ad1a445cfd0ca2a71acd7ac41fadbf933c2a51be344d120a2a4cf30c1bf9845f20c6fe39e07ea2cce61f0c9bb048165fe5e4de877550111e129f1cf1097710d41c4ac70fcdfa5ba2023c6ff1cbeac322de49d1b6df7c103188585e2364128fe25c70558f1560f4f9350baf3959e603cc91486e110936198e9393920d483a7260bfb731fb5d25f1aa493335a9e71297e485b7aef312c21800deef121f1e76426a00665e5c4479674322d4f75edadd46debd5cd992f6ed090689d0585ff075ec9e99ad690c3395bc4b313370b38ef355acdadcd122975b12c85ea5db8c6deb4aab71808dcb408fe3d1e7690c43d37b4ce6cc0166fa7daa", 0},
} {
r, err := pairing.Run(common.FromHex(test.input))
out, err := bn256Pairing.Run(common.FromHex(tt.input))
if err != nil {
t.Error(i, ":", err)
t.Errorf("test %d: contrac execution failed: %v", i, err)
}
if int(r[31]) != test.valid {
t.Error(i, "expected", test.valid, "but was", r[31])
if int(out[31]) != tt.valid {
t.Errorf("test %d: contract output mismatch: have %v, want %v", i, out[31], tt.valid)
}
}
}
......@@ -36,16 +36,14 @@ type (
// run runs the given contract and takes care of running precompiles with a fallback to the byte code interpreter.
func run(evm *EVM, snapshot int, contract *Contract, input []byte) ([]byte, error) {
if contract.CodeAddr != nil {
precompiledContracts := PrecompiledContracts
precompiles := PrecompiledContractsHomestead
if evm.ChainConfig().IsMetropolis(evm.BlockNumber) {
precompiledContracts = PrecompiledContractsMetropolis
precompiles = PrecompiledContractsMetropolis
}
if p := precompiledContracts[*contract.CodeAddr]; p != nil {
if p := precompiles[*contract.CodeAddr]; p != nil {
return RunPrecompiledContract(p, input, contract)
}
}
return evm.interpreter.Run(snapshot, contract, input)
}
......@@ -147,10 +145,13 @@ func (evm *EVM) Call(caller ContractRef, addr common.Address, input []byte, gas
snapshot = evm.StateDB.Snapshot()
)
if !evm.StateDB.Exist(addr) {
if PrecompiledContracts[addr] == nil && evm.ChainConfig().IsEIP158(evm.BlockNumber) && value.Sign() == 0 {
precompiles := PrecompiledContractsHomestead
if evm.ChainConfig().IsMetropolis(evm.BlockNumber) {
precompiles = PrecompiledContractsMetropolis
}
if precompiles[addr] == nil && evm.ChainConfig().IsEIP158(evm.BlockNumber) && value.Sign() == 0 {
return nil, gas, nil
}
evm.StateDB.CreateAccount(addr)
}
evm.Transfer(evm.StateDB, caller.Address(), to.Address(), value)
......
......@@ -69,7 +69,7 @@ func precompiledBenchmark(addr, input, expected string, gas uint64, bench *testi
contract := NewContract(AccountRef(common.HexToAddress("1337")),
nil, new(big.Int), gas)
p := PrecompiledContracts[common.HexToAddress(addr)]
p := PrecompiledContractsMetropolis[common.HexToAddress(addr)]
in := common.Hex2Bytes(input)
var (
res []byte
......@@ -94,7 +94,7 @@ func precompiledBenchmark(addr, input, expected string, gas uint64, bench *testi
}
}
func BenchmarkPrecompiledEcdsa(bench *testing.B) {
func BenchmarkPrecompiledECDSA(bench *testing.B) {
var (
addr = "01"
inp = "38d18acb67d25c8bb9942764b62f18e17054f66a817bd4295423adf9ed98873e000000000000000000000000000000000000000000000000000000000000001b38d18acb67d25c8bb9942764b62f18e17054f66a817bd4295423adf9ed98873e789d1dd423d25f0772d2748d60f7e4b81bb14d086eba8e8e8efb6dcff8a4ae02"
......@@ -103,6 +103,7 @@ func BenchmarkPrecompiledEcdsa(bench *testing.B) {
)
precompiledBenchmark(addr, inp, exp, gas, bench)
}
func BenchmarkPrecompiledSha256(bench *testing.B) {
var (
addr = "02"
......@@ -112,6 +113,7 @@ func BenchmarkPrecompiledSha256(bench *testing.B) {
)
precompiledBenchmark(addr, inp, exp, gas, bench)
}
func BenchmarkPrecompiledRipeMD(bench *testing.B) {
var (
addr = "03"
......@@ -121,6 +123,7 @@ func BenchmarkPrecompiledRipeMD(bench *testing.B) {
)
precompiledBenchmark(addr, inp, exp, gas, bench)
}
func BenchmarkPrecompiledIdentity(bench *testing.B) {
var (
addr = "04"
......@@ -130,131 +133,171 @@ func BenchmarkPrecompiledIdentity(bench *testing.B) {
)
precompiledBenchmark(addr, inp, exp, gas, bench)
}
func BenchmarkPrecompiledModExp(bench *testing.B) {
var (
addr = "05"
inp = "00000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000002003fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2efffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f"
exp = "0000000000000000000000000000000000000000000000000000000000000001"
gas = uint64(4000000)
)
precompiledBenchmark(addr, inp, exp, gas, bench)
}
func BenchmarkPrecompiledBn256Add(bench *testing.B) {
var (
addr = "06"
inp = "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"
exp = "00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"
gas = uint64(4000000)
)
precompiledBenchmark(addr, inp, exp, gas, bench)
}
func BenchmarkPrecompiledBn256ScalarMul(bench *testing.B) {
var (
addr = "07"
inp = "000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"
exp = "00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"
gas = uint64(4000000)
)
precompiledBenchmark(addr, inp, exp, gas, bench)
}
func BenchmarkPrecompiledBn256Pairing(bench *testing.B) {
var (
addr = "08"
inp = "1c76476f4def4bb94541d57ebba1193381ffa7aa76ada664dd31c16024c43f593034dd2920f673e204fee2811c678745fc819b55d3e9d294e45c9b03a76aef41209dd15ebff5d46c4bd888e51a93cf99a7329636c63514396b4a452003a35bf704bf11ca01483bfa8b34b43561848d28905960114c8ac04049af4b6315a416782bb8324af6cfc93537a2ad1a445cfd0ca2a71acd7ac41fadbf933c2a51be344d120a2a4cf30c1bf9845f20c6fe39e07ea2cce61f0c9bb048165fe5e4de877550111e129f1cf1097710d41c4ac70fcdfa5ba2023c6ff1cbeac322de49d1b6df7c2032c61a830e3c17286de9462bf242fca2883585b93870a73853face6a6bf411198e9393920d483a7260bfb731fb5d25f1aa493335a9e71297e485b7aef312c21800deef121f1e76426a00665e5c4479674322d4f75edadd46debd5cd992f6ed090689d0585ff075ec9e99ad690c3395bc4b313370b38ef355acdadcd122975b12c85ea5db8c6deb4aab71808dcb408fe3d1e7690c43d37b4ce6cc0166fa7daa"
exp = "0000000000000000000000000000000000000000000000000000000000000001"
gas = uint64(4000000)
)
precompiledBenchmark(addr, inp, exp, gas, bench)
}
func BenchmarkOpAdd(b *testing.B) {
x := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
y := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
opBenchmark(b, opAdd, x, y)
}
func BenchmarkOpSub(b *testing.B) {
x := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
y := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
opBenchmark(b, opSub, x, y)
}
func BenchmarkOpMul(b *testing.B) {
x := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
y := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
opBenchmark(b, opMul, x, y)
}
func BenchmarkOpDiv(b *testing.B) {
x := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
y := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
opBenchmark(b, opDiv, x, y)
}
func BenchmarkOpSdiv(b *testing.B) {
x := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
y := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
opBenchmark(b, opSdiv, x, y)
}
func BenchmarkOpMod(b *testing.B) {
x := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
y := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
opBenchmark(b, opMod, x, y)
}
func BenchmarkOpSmod(b *testing.B) {
x := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
y := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
opBenchmark(b, opSmod, x, y)
}
func BenchmarkOpExp(b *testing.B) {
x := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
y := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
opBenchmark(b, opExp, x, y)
}
func BenchmarkOpSignExtend(b *testing.B) {
x := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
y := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
opBenchmark(b, opSignExtend, x, y)
}
func BenchmarkOpLt(b *testing.B) {
x := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
y := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
opBenchmark(b, opLt, x, y)
}
func BenchmarkOpGt(b *testing.B) {
x := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
y := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
opBenchmark(b, opGt, x, y)
}
func BenchmarkOpSlt(b *testing.B) {
x := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
y := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
opBenchmark(b, opSlt, x, y)
}
func BenchmarkOpSgt(b *testing.B) {
x := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
y := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
opBenchmark(b, opSgt, x, y)
}
func BenchmarkOpEq(b *testing.B) {
x := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
y := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
opBenchmark(b, opEq, x, y)
}
func BenchmarkOpAnd(b *testing.B) {
x := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
y := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
opBenchmark(b, opAnd, x, y)
}
func BenchmarkOpOr(b *testing.B) {
x := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
y := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
opBenchmark(b, opOr, x, y)
}
func BenchmarkOpXor(b *testing.B) {
x := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
y := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
opBenchmark(b, opXor, x, y)
}
func BenchmarkOpByte(b *testing.B) {
x := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
y := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
opBenchmark(b, opByte, x, y)
}
func BenchmarkOpAddmod(b *testing.B) {
......@@ -263,15 +306,14 @@ func BenchmarkOpAddmod(b *testing.B) {
z := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
opBenchmark(b, opAddmod, x, y, z)
}
func BenchmarkOpMulmod(b *testing.B) {
x := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
y := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
z := "ABCDEF090807060504030201ffffffffffffffffffffffffffffffffffffffff"
opBenchmark(b, opMulmod, x, y, z)
}
//func BenchmarkOpSha3(b *testing.B) {
......
......@@ -31,23 +31,16 @@ const (
SstoreSetGas uint64 = 20000 // Once per SLOAD operation.
LogDataGas uint64 = 8 // Per byte in a LOG* operation's data.
CallStipend uint64 = 2300 // Free gas given at beginning of call.
EcrecoverGas uint64 = 3000 //
Sha256WordGas uint64 = 12 //
Sha3Gas uint64 = 30 // Once per SHA3 operation.
Sha256Gas uint64 = 60 //
IdentityWordGas uint64 = 3 //
Sha3WordGas uint64 = 6 // Once per word of the SHA3 operation's data.
SstoreResetGas uint64 = 5000 // Once per SSTORE operation if the zeroness changes from zero.
SstoreClearGas uint64 = 5000 // Once per SSTORE operation if the zeroness doesn't change.
SstoreRefundGas uint64 = 15000 // Once per SSTORE operation if the zeroness changes to zero.
JumpdestGas uint64 = 1 // Refunded gas, once per SSTORE operation if the zeroness changes to zero.
IdentityGas uint64 = 15 //
EpochDuration uint64 = 30000 // Duration between proof-of-work epochs.
CallGas uint64 = 40 // Once per CALL operation & message call transaction.
CreateDataGas uint64 = 200 //
Ripemd160Gas uint64 = 600 //
Ripemd160WordGas uint64 = 120 //
CallCreateDepth uint64 = 1024 // Maximum depth of call/create stack.
ExpGas uint64 = 10 // Once per EXP instruction
LogGas uint64 = 375 // Per LOG* operation.
......@@ -60,7 +53,22 @@ const (
MemoryGas uint64 = 3 // Times the address of the (highest referenced byte in memory + 1). NOTE: referencing happens on read, write and in instructions such as RETURN and CALL.
TxDataNonZeroGas uint64 = 68 // Per byte of data attached to a transaction that is not equal to zero. NOTE: Not payable on data of calls between transactions.
MaxCodeSize = 24576
MaxCodeSize = 24576 // Maximum bytecode to permit for a contract
// Precompiled contract gas prices
EcrecoverGas uint64 = 3000 // Elliptic curve sender recovery gas price
Sha256BaseGas uint64 = 60 // Base price for a SHA256 operation
Sha256PerWordGas uint64 = 12 // Per-word price for a SHA256 operation
Ripemd160BaseGas uint64 = 600 // Base price for a RIPEMD160 operation
Ripemd160PerWordGas uint64 = 120 // Per-word price for a RIPEMD160 operation
IdentityBaseGas uint64 = 15 // Base price for a data copy operation
IdentityPerWordGas uint64 = 3 // Per-work price for a data copy operation
ModExpQuadCoeffDiv uint64 = 100 // Divisor for the quadratic particle of the big int modular exponentiation
Bn256AddGas uint64 = 500 // Gas needed for an elliptic curve addition
Bn256ScalarMulGas uint64 = 2000 // Gas needed for an elliptic curve scalar multiplication
Bn256PairingBaseGas uint64 = 100000 // Base price for an elliptic curve pairing check
Bn256PairingPerPointGas uint64 = 80000 // Per-point price for an elliptic curve pairing check
)
var (
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册