ledger_wallet.go 34.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

// This file contains the implementation for interacting with the Ledger hardware
// wallets. The wire protocol spec can be found in the Ledger Blue GitHub repo:
// https://raw.githubusercontent.com/LedgerHQ/blue-app-eth/master/doc/ethapp.asc

21 22
// +build !ios

23 24 25 26 27 28 29 30 31 32 33 34
package usbwallet

import (
	"encoding/binary"
	"encoding/hex"
	"errors"
	"fmt"
	"io"
	"math/big"
	"sync"
	"time"

35
	ethereum "github.com/ethereum/go-ethereum"
36 37 38 39 40 41 42
	"github.com/ethereum/go-ethereum/accounts"
	"github.com/ethereum/go-ethereum/common"
	"github.com/ethereum/go-ethereum/core/types"
	"github.com/ethereum/go-ethereum/logger"
	"github.com/ethereum/go-ethereum/logger/glog"
	"github.com/ethereum/go-ethereum/rlp"
	"github.com/karalabe/gousb/usb"
43
	"golang.org/x/net/context"
44 45
)

46 47 48 49 50 51
// Maximum time between wallet health checks to detect USB unplugs.
const ledgerHeartbeatCycle = time.Second

// Minimum time to wait between self derivation attempts, even it the user is
// requesting accounts like crazy.
const ledgerSelfDeriveThrottling = time.Second
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

// ledgerOpcode is an enumeration encoding the supported Ledger opcodes.
type ledgerOpcode byte

// ledgerParam1 is an enumeration encoding the supported Ledger parameters for
// specific opcodes. The same parameter values may be reused between opcodes.
type ledgerParam1 byte

// ledgerParam2 is an enumeration encoding the supported Ledger parameters for
// specific opcodes. The same parameter values may be reused between opcodes.
type ledgerParam2 byte

const (
	ledgerOpRetrieveAddress  ledgerOpcode = 0x02 // Returns the public key and Ethereum address for a given BIP 32 path
	ledgerOpSignTransaction  ledgerOpcode = 0x04 // Signs an Ethereum transaction after having the user validate the parameters
	ledgerOpGetConfiguration ledgerOpcode = 0x06 // Returns specific wallet application configuration

	ledgerP1DirectlyFetchAddress    ledgerParam1 = 0x00 // Return address directly from the wallet
	ledgerP1ConfirmFetchAddress     ledgerParam1 = 0x01 // Require a user confirmation before returning the address
	ledgerP1InitTransactionData     ledgerParam1 = 0x00 // First transaction data block for signing
	ledgerP1ContTransactionData     ledgerParam1 = 0x80 // Subsequent transaction data block for signing
	ledgerP2DiscardAddressChainCode ledgerParam2 = 0x00 // Do not return the chain code along with the address
	ledgerP2ReturnAddressChainCode  ledgerParam2 = 0x01 // Require a user confirmation before returning the address
)

77 78 79 80 81
// errReplyInvalidHeader is the error message returned by a Ledfer data exchange
// if the device replies with a mismatching header. This usually means the device
// is in browser mode.
var errReplyInvalidHeader = errors.New("invalid reply header")

82 83
// ledgerWallet represents a live USB Ledger hardware wallet.
type ledgerWallet struct {
84 85 86 87
	context    *usb.Context  // USB context to interface libusb through
	hardwareID deviceID      // USB identifiers to identify this device type
	locationID uint16        // USB bus and address to identify this device instance
	url        *accounts.URL // Textual URL uniquely identifying this wallet
88

89 90 91 92
	device  *usb.Device  // USB device advertising itself as a Ledger wallet
	input   usb.Endpoint // Input endpoint to send data to this device
	output  usb.Endpoint // Output endpoint to receive data from this device
	failure error        // Any failure that would make the device unusable
93

94
	version  [3]byte                                    // Current version of the Ledger Ethereum app (zero if app is offline)
95
	browser  bool                                       // Flag whether the Ledger is in browser mode (reply channel mismatch)
96 97 98
	accounts []accounts.Account                         // List of derive accounts pinned on the Ledger
	paths    map[common.Address]accounts.DerivationPath // Known derivation paths for signing operations

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
	deriveNextPath accounts.DerivationPath   // Next derivation path for account auto-discovery
	deriveNextAddr common.Address            // Next derived account address for auto-discovery
	deriveChain    ethereum.ChainStateReader // Blockchain state reader to discover used account with
	deriveReq      chan chan struct{}        // Channel to request a self-derivation on
	deriveQuit     chan chan error           // Channel to terminate the self-deriver with

	healthQuit chan chan error

	// Locking a hardware wallet is a bit special. Since hardware devices are lower
	// performing, any communication with them might take a non negligible amount of
	// time. Worse still, waiting for user confirmation can take arbitrarily long,
	// but exclusive communication must be upheld during. Locking the entire wallet
	// in the mean time however would stall any parts of the system that don't want
	// to communicate, just read some state (e.g. list the accounts).
	//
	// As such, a hardware wallet needs two locks to function correctly. A state
	// lock can be used to protect the wallet's software-side internal state, which
	// must not be held exlusively during hardware communication. A communication
	// lock can be used to achieve exclusive access to the device itself, this one
	// however should allow "skipping" waiting for operations that might want to
	// use the device, but can live without too (e.g. account self-derivation).
	//
	// Since we have two locks, it's important to know how to properly use them:
	//   - Communication requires the `device` to not change, so obtaining the
	//     commsLock should be done after having a stateLock.
	//   - Communication must not disable read access to the wallet state, so it
	//     must only ever hold a *read* lock to stateLock.
	commsLock chan struct{} // Mutex (buf=1) for the USB comms without keeping the state locked
	stateLock sync.RWMutex  // Protects read and write access to the wallet struct fields
128 129
}

130
// URL implements accounts.Wallet, returning the URL of the Ledger device.
131
func (w *ledgerWallet) URL() accounts.URL {
132
	return *w.url // Immutable, no need for a lock
133 134
}

135 136 137
// Status implements accounts.Wallet, always whether the Ledger is opened, closed
// or whether the Ethereum app was not started on it.
func (w *ledgerWallet) Status() string {
138 139
	w.stateLock.RLock() // No device communication, state lock is enough
	defer w.stateLock.RUnlock()
140

141 142 143 144 145 146
	if w.failure != nil {
		return fmt.Sprintf("Failed: %v", w.failure)
	}
	if w.device == nil {
		return "Closed"
	}
147 148 149
	if w.browser {
		return "Ethereum app in browser mode"
	}
150
	if w.offline() {
151
		return "Ethereum app offline"
152
	}
153
	return fmt.Sprintf("Ethereum app v%d.%d.%d online", w.version[0], w.version[1], w.version[2])
154 155
}

156
// offline returns whether the wallet and the Ethereum app is offline or not.
157 158
//
// The method assumes that the state lock is held!
159 160 161 162
func (w *ledgerWallet) offline() bool {
	return w.version == [3]byte{0, 0, 0}
}

163 164
// failed returns if the USB device wrapped by the wallet failed for some reason.
// This is used by the device scanner to report failed wallets as departed.
165 166
//
// The method assumes that the state lock is *not* held!
167
func (w *ledgerWallet) failed() bool {
168 169
	w.stateLock.RLock() // No device communication, state lock is enough
	defer w.stateLock.RUnlock()
170 171 172 173

	return w.failure != nil
}

174
// Open implements accounts.Wallet, attempting to open a USB connection to the
175 176
// Ledger hardware wallet. The Ledger does not require a user passphrase, so that
// parameter is silently discarded.
177
func (w *ledgerWallet) Open(passphrase string) error {
178 179
	w.stateLock.Lock() // State lock is enough since there's no connection yet at this point
	defer w.stateLock.Unlock()
180

181 182 183
	// If the wallet was already opened, don't try to open again
	if w.device != nil {
		return accounts.ErrWalletAlreadyOpen
184
	}
185 186 187 188 189 190 191 192 193
	// Otherwise iterate over all USB devices and find this again (no way to directly do this)
	// Iterate over all attached devices and fetch those seemingly Ledger
	devices, err := w.context.ListDevices(func(desc *usb.Descriptor) bool {
		// Only open this single specific device
		return desc.Vendor == w.hardwareID.Vendor && desc.Product == w.hardwareID.Product &&
			uint16(desc.Bus)<<8+uint16(desc.Address) == w.locationID
	})
	if err != nil {
		return err
194
	}
195 196 197 198 199 200 201 202 203 204 205 206 207
	// Device opened, attach to the input and output endpoints
	device := devices[0]

	var invalid string
	switch {
	case len(device.Descriptor.Configs) == 0:
		invalid = "no endpoint config available"
	case len(device.Descriptor.Configs[0].Interfaces) == 0:
		invalid = "no endpoint interface available"
	case len(device.Descriptor.Configs[0].Interfaces[0].Setups) == 0:
		invalid = "no endpoint setup available"
	case len(device.Descriptor.Configs[0].Interfaces[0].Setups[0].Endpoints) < 2:
		invalid = "not enough IO endpoints available"
208
	}
209 210 211
	if invalid != "" {
		device.Close()
		return fmt.Errorf("ledger wallet [%s] invalid: %s", w.url, invalid)
212
	}
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
	// Open the input and output endpoints to the device
	input, err := device.OpenEndpoint(
		device.Descriptor.Configs[0].Config,
		device.Descriptor.Configs[0].Interfaces[0].Number,
		device.Descriptor.Configs[0].Interfaces[0].Setups[0].Number,
		device.Descriptor.Configs[0].Interfaces[0].Setups[0].Endpoints[1].Address,
	)
	if err != nil {
		device.Close()
		return fmt.Errorf("ledger wallet [%s] input open failed: %v", w.url, err)
	}
	output, err := device.OpenEndpoint(
		device.Descriptor.Configs[0].Config,
		device.Descriptor.Configs[0].Interfaces[0].Number,
		device.Descriptor.Configs[0].Interfaces[0].Setups[0].Number,
		device.Descriptor.Configs[0].Interfaces[0].Setups[0].Endpoints[0].Address,
	)
	if err != nil {
		device.Close()
		return fmt.Errorf("ledger wallet [%s] output open failed: %v", w.url, err)
	}
	// Wallet seems to be successfully opened, guess if the Ethereum app is running
	w.device, w.input, w.output = device, input, output
236 237
	w.commsLock = make(chan struct{}, 1)
	w.commsLock <- struct{}{} // Enable lock
238

239
	w.paths = make(map[common.Address]accounts.DerivationPath)
240 241 242 243 244

	w.deriveReq = make(chan chan struct{})
	w.deriveQuit = make(chan chan error)
	w.healthQuit = make(chan chan error)

245 246
	defer func() {
		go w.heartbeat()
247
		go w.selfDerive()
248 249
	}()

250
	if _, err = w.ledgerDerive(accounts.DefaultBaseDerivationPath); err != nil {
251 252 253 254
		// Ethereum app is not running or in browser mode, nothing more to do, return
		if err == errReplyInvalidHeader {
			w.browser = true
		}
255 256 257
		return nil
	}
	// Try to resolve the Ethereum app's version, will fail prior to v1.0.2
258
	if w.version, err = w.ledgerVersion(); err != nil {
259 260 261
		w.version = [3]byte{1, 0, 0} // Assume worst case, can't verify if v1.0.0 or v1.0.1
	}
	return nil
262 263
}

264 265 266 267 268
// heartbeat is a health check loop for the Ledger wallets to periodically verify
// whether they are still present or if they malfunctioned. It is needed because:
//  - libusb on Windows doesn't support hotplug, so we can't detect USB unplugs
//  - communication timeout on the Ledger requires a device power cycle to fix
func (w *ledgerWallet) heartbeat() {
269 270 271
	glog.V(logger.Debug).Infof("%s health-check started", w.url.String())
	defer glog.V(logger.Debug).Infof("%s health-check stopped", w.url.String())

272 273 274
	// Execute heartbeat checks until termination or error
	var (
		errc chan error
275
		err  error
276
	)
277
	for errc == nil && err == nil {
278 279
		// Wait until termination is requested or the heartbeat cycle arrives
		select {
280
		case errc = <-w.healthQuit:
281 282
			// Termination requested
			continue
283
		case <-time.After(ledgerHeartbeatCycle):
284 285 286
			// Heartbeat time
		}
		// Execute a tiny data exchange to see responsiveness
287 288 289 290 291 292 293 294 295 296 297 298 299
		w.stateLock.RLock()
		if w.device == nil {
			// Terminated while waiting for the lock
			w.stateLock.RUnlock()
			continue
		}
		<-w.commsLock // Don't lock state while resolving version
		_, err = w.ledgerVersion()
		w.commsLock <- struct{}{}
		w.stateLock.RUnlock()

		if err == usb.ERROR_IO || err == usb.ERROR_NO_DEVICE {
			w.stateLock.Lock() // Lock state to tear the wallet down
300
			w.failure = err
301
			w.close()
302
			w.stateLock.Unlock()
303
		}
304 305
		// Ignore uninteresting errors
		err = nil
306 307
	}
	// In case of error, wait for termination
308 309 310
	if err != nil {
		glog.V(logger.Debug).Infof("%s health-check failed: %v", w.url.String(), err)
		errc = <-w.healthQuit
311
	}
312
	errc <- err
313 314
}

315 316
// Close implements accounts.Wallet, closing the USB connection to the Ledger.
func (w *ledgerWallet) Close() error {
317 318 319 320
	// Ensure the wallet was opened
	w.stateLock.RLock()
	hQuit, dQuit := w.healthQuit, w.deriveQuit
	w.stateLock.RUnlock()
321

322 323 324 325 326 327 328 329 330 331 332 333 334 335
	// Terminate the health checks
	var herr error
	if hQuit != nil {
		errc := make(chan error)
		hQuit <- errc
		herr = <-errc // Save for later, we *must* close the USB
	}
	// Terminate the self-derivations
	var derr error
	if dQuit != nil {
		errc := make(chan error)
		dQuit <- errc
		derr = <-errc // Save for later, we *must* close the USB
	}
336
	// Terminate the device connection
337 338 339 340 341 342
	w.stateLock.Lock()
	defer w.stateLock.Unlock()

	w.healthQuit = nil
	w.deriveQuit = nil
	w.deriveReq = nil
343

344
	if err := w.close(); err != nil {
345 346
		return err
	}
347 348 349 350
	if herr != nil {
		return herr
	}
	return derr
351 352
}

353
// close is the internal wallet closer that terminates the USB connection and
354 355 356
// resets all the fields to their defaults.
//
// Note, close assumes the state lock is held!
357 358 359 360 361 362 363 364 365
func (w *ledgerWallet) close() error {
	// Allow duplicate closes, especially for health-check failures
	if w.device == nil {
		return nil
	}
	// Close the device, clear everything, then return
	err := w.device.Close()

	w.device, w.input, w.output = nil, nil, nil
366 367
	w.browser, w.version = false, [3]byte{}
	w.accounts, w.paths = nil, nil
368 369 370 371

	return err
}

372
// Accounts implements accounts.Wallet, returning the list of accounts pinned to
373
// the Ledger hardware wallet. If self-derivation was enabled, the account list
374
// is periodically expanded based on current chain state.
375
func (w *ledgerWallet) Accounts() []accounts.Account {
376 377 378 379 380 381 382 383
	// Attempt self-derivation if it's running
	reqc := make(chan struct{}, 1)
	select {
	case w.deriveReq <- reqc:
		// Self-derivation request accepted, wait for it
		<-reqc
	default:
		// Self-derivation offline, throttled or busy, skip
384
	}
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
	// Return whatever account list we ended up with
	w.stateLock.RLock()
	defer w.stateLock.RUnlock()

	cpy := make([]accounts.Account, len(w.accounts))
	copy(cpy, w.accounts)
	return cpy
}

// selfDerive is an account derivation loop that upon request attempts to find
// new non-zero accounts.
func (w *ledgerWallet) selfDerive() {
	glog.V(logger.Debug).Infof("%s self-derivation started", w.url.String())
	defer glog.V(logger.Debug).Infof("%s self-derivation stopped", w.url.String())

	// Execute self-derivations until termination or error
	var (
		reqc chan struct{}
		errc chan error
		err  error
	)
	for errc == nil && err == nil {
		// Wait until either derivation or termination is requested
		select {
		case errc = <-w.deriveQuit:
			// Termination requested
			continue
		case reqc = <-w.deriveReq:
			// Account discovery requested
414
		}
415 416 417 418 419 420
		// Derivation needs a chain and device access, skip if either unavailable
		w.stateLock.RLock()
		if w.device == nil || w.deriveChain == nil || w.offline() {
			w.stateLock.RUnlock()
			reqc <- struct{}{}
			continue
421
		}
422 423 424 425 426 427
		select {
		case <-w.commsLock:
		default:
			w.stateLock.RUnlock()
			reqc <- struct{}{}
			continue
428
		}
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
		// Device lock obtained, derive the next batch of accounts
		var (
			accs  []accounts.Account
			paths []accounts.DerivationPath

			nextAddr = w.deriveNextAddr
			nextPath = w.deriveNextPath

			context = context.Background()
		)
		for empty := false; !empty; {
			// Retrieve the next derived Ethereum account
			if nextAddr == (common.Address{}) {
				if nextAddr, err = w.ledgerDerive(nextPath); err != nil {
					glog.V(logger.Warn).Infof("%s self-derivation failed: %v", w.url.String(), err)
					break
				}
			}
			// Check the account's status against the current chain state
			var (
				balance *big.Int
				nonce   uint64
			)
			balance, err = w.deriveChain.BalanceAt(context, nextAddr, nil)
			if err != nil {
				glog.V(logger.Warn).Infof("%s self-derivation balance retrieval failed: %v", w.url.String(), err)
				break
			}
			nonce, err = w.deriveChain.NonceAt(context, nextAddr, nil)
			if err != nil {
				glog.V(logger.Warn).Infof("%s self-derivation nonce retrieval failed: %v", w.url.String(), err)
				break
			}
			// If the next account is empty, stop self-derivation, but add it nonetheless
			if balance.BitLen() == 0 && nonce == 0 {
				empty = true
			}
			// We've just self-derived a new account, start tracking it locally
			path := make(accounts.DerivationPath, len(nextPath))
			copy(path[:], nextPath[:])
			paths = append(paths, path)

			account := accounts.Account{
				Address: nextAddr,
				URL:     accounts.URL{Scheme: w.url.Scheme, Path: fmt.Sprintf("%s/%s", w.url.Path, path)},
			}
			accs = append(accs, account)
476

477 478
			// Display a log message to the user for new (or previously empty accounts)
			if _, known := w.paths[nextAddr]; !known || (!empty && nextAddr == w.deriveNextAddr) {
479
				glog.V(logger.Info).Infof("%s discovered %s (balance %22v, nonce %4d) at %s", w.url.String(), nextAddr.Hex(), balance, nonce, path)
480 481 482 483 484 485
			}
			// Fetch the next potential account
			if !empty {
				nextAddr = common.Address{}
				nextPath[len(nextPath)-1]++
			}
486
		}
487 488 489 490 491 492 493 494 495 496 497
		// Self derivation complete, release device lock
		w.commsLock <- struct{}{}
		w.stateLock.RUnlock()

		// Insert any accounts successfully derived
		w.stateLock.Lock()
		for i := 0; i < len(accs); i++ {
			if _, ok := w.paths[accs[i].Address]; !ok {
				w.accounts = append(w.accounts, accs[i])
				w.paths[accs[i].Address] = paths[i]
			}
498
		}
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
		// Shift the self-derivation forward
		// TODO(karalabe): don't overwrite changes from wallet.SelfDerive
		w.deriveNextAddr = nextAddr
		w.deriveNextPath = nextPath
		w.stateLock.Unlock()

		// Notify the user of termination and loop after a bit of time (to avoid trashing)
		reqc <- struct{}{}
		if err == nil {
			select {
			case errc = <-w.deriveQuit:
				// Termination requested, abort
			case <-time.After(ledgerSelfDeriveThrottling):
				// Waited enough, willing to self-derive again
			}
514 515
		}
	}
516 517 518 519 520 521
	// In case of error, wait for termination
	if err != nil {
		glog.V(logger.Debug).Infof("%s self-derivation failed: %s", w.url.String(), err)
		errc = <-w.deriveQuit
	}
	errc <- err
522 523
}

524 525 526 527
// Contains implements accounts.Wallet, returning whether a particular account is
// or is not pinned into this Ledger instance. Although we could attempt to resolve
// unpinned accounts, that would be an non-negligible hardware operation.
func (w *ledgerWallet) Contains(account accounts.Account) bool {
528 529
	w.stateLock.RLock()
	defer w.stateLock.RUnlock()
530

531 532
	_, exists := w.paths[account.Address]
	return exists
533 534
}

535 536 537
// Derive implements accounts.Wallet, deriving a new account at the specific
// derivation path. If pin is set to true, the account will be added to the list
// of tracked accounts.
538
func (w *ledgerWallet) Derive(path accounts.DerivationPath, pin bool) (accounts.Account, error) {
539 540
	// Try to derive the actual account and update its URL if successful
	w.stateLock.RLock() // Avoid device disappearing during derivation
541

542
	if w.device == nil || w.offline() {
543
		w.stateLock.RUnlock()
544
		return accounts.Account{}, accounts.ErrWalletClosed
545
	}
546 547 548 549 550 551 552
	<-w.commsLock // Avoid concurrent hardware access
	address, err := w.ledgerDerive(path)
	w.commsLock <- struct{}{}

	w.stateLock.RUnlock()

	// If an error occurred or no pinning was requested, return
553 554 555 556 557
	if err != nil {
		return accounts.Account{}, err
	}
	account := accounts.Account{
		Address: address,
558
		URL:     accounts.URL{Scheme: w.url.Scheme, Path: fmt.Sprintf("%s/%s", w.url.Path, path)},
559
	}
560 561 562 563 564 565 566 567 568 569
	if !pin {
		return account, nil
	}
	// Pinning needs to modify the state
	w.stateLock.Lock()
	defer w.stateLock.Unlock()

	if _, ok := w.paths[address]; !ok {
		w.accounts = append(w.accounts, account)
		w.paths[address] = path
570 571 572
	}
	return account, nil
}
573

574 575 576 577 578
// SelfDerive implements accounts.Wallet, trying to discover accounts that the
// user used previously (based on the chain state), but ones that he/she did not
// explicitly pin to the wallet manually. To avoid chain head monitoring, self
// derivation only runs during account listing (and even then throttled).
func (w *ledgerWallet) SelfDerive(base accounts.DerivationPath, chain ethereum.ChainStateReader) {
579 580
	w.stateLock.Lock()
	defer w.stateLock.Unlock()
581

582 583
	w.deriveNextPath = make(accounts.DerivationPath, len(base))
	copy(w.deriveNextPath[:], base[:])
584

585 586
	w.deriveNextAddr = common.Address{}
	w.deriveChain = chain
587 588
}

589 590 591 592 593 594 595 596 597 598 599 600 601 602
// SignHash implements accounts.Wallet, however signing arbitrary data is not
// supported for Ledger wallets, so this method will always return an error.
func (w *ledgerWallet) SignHash(acc accounts.Account, hash []byte) ([]byte, error) {
	return nil, accounts.ErrNotSupported
}

// SignTx implements accounts.Wallet. It sends the transaction over to the Ledger
// wallet to request a confirmation from the user. It returns either the signed
// transaction or a failure if the user denied the transaction.
//
// Note, if the version of the Ethereum application running on the Ledger wallet is
// too old to sign EIP-155 transactions, but such is requested nonetheless, an error
// will be returned opposed to silently signing in Homestead mode.
func (w *ledgerWallet) SignTx(account accounts.Account, tx *types.Transaction, chainID *big.Int) (*types.Transaction, error) {
603 604
	w.stateLock.RLock() // Comms have own mutex, this is for the state fields
	defer w.stateLock.RUnlock()
605

606 607 608 609
	// If the wallet is closed, or the Ethereum app doesn't run, abort
	if w.device == nil || w.offline() {
		return nil, accounts.ErrWalletClosed
	}
610 611 612 613 614 615 616
	// Make sure the requested account is contained within
	path, ok := w.paths[account.Address]
	if !ok {
		return nil, accounts.ErrUnknownAccount
	}
	// Ensure the wallet is capable of signing the given transaction
	if chainID != nil && w.version[0] <= 1 && w.version[1] <= 0 && w.version[2] <= 2 {
617
		return nil, fmt.Errorf("Ledger v%d.%d.%d doesn't support signing this transaction, please update to v1.0.3 at least", w.version[0], w.version[1], w.version[2])
618
	}
619 620 621 622 623
	// All infos gathered and metadata checks out, request signing
	<-w.commsLock
	defer func() { w.commsLock <- struct{}{} }()

	return w.ledgerSign(path, account.Address, tx, chainID)
624 625 626 627 628 629 630 631 632 633 634 635 636 637
}

// SignHashWithPassphrase implements accounts.Wallet, however signing arbitrary
// data is not supported for Ledger wallets, so this method will always return
// an error.
func (w *ledgerWallet) SignHashWithPassphrase(account accounts.Account, passphrase string, hash []byte) ([]byte, error) {
	return nil, accounts.ErrNotSupported
}

// SignTxWithPassphrase implements accounts.Wallet, attempting to sign the given
// transaction with the given account using passphrase as extra authentication.
// Since the Ledger does not support extra passphrases, it is silently ignored.
func (w *ledgerWallet) SignTxWithPassphrase(account accounts.Account, passphrase string, tx *types.Transaction, chainID *big.Int) (*types.Transaction, error) {
	return w.SignTx(account, tx, chainID)
638 639
}

640 641
// ledgerVersion retrieves the current version of the Ethereum wallet app running
// on the Ledger wallet.
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
//
// The version retrieval protocol is defined as follows:
//
//   CLA | INS | P1 | P2 | Lc | Le
//   ----+-----+----+----+----+---
//    E0 | 06  | 00 | 00 | 00 | 04
//
// With no input data, and the output data being:
//
//   Description                                        | Length
//   ---------------------------------------------------+--------
//   Flags 01: arbitrary data signature enabled by user | 1 byte
//   Application major version                          | 1 byte
//   Application minor version                          | 1 byte
//   Application patch version                          | 1 byte
657
func (w *ledgerWallet) ledgerVersion() ([3]byte, error) {
658
	// Send the request and wait for the response
659
	reply, err := w.ledgerExchange(ledgerOpGetConfiguration, 0, 0, nil)
660
	if err != nil {
661
		return [3]byte{}, err
662 663
	}
	if len(reply) != 4 {
664
		return [3]byte{}, errors.New("reply not of correct size")
665 666
	}
	// Cache the version for future reference
667 668 669
	var version [3]byte
	copy(version[:], reply[1:])
	return version, nil
670 671
}

672
// ledgerDerive retrieves the currently active Ethereum address from a Ledger
673
// wallet at the specified derivation path.
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
//
// The address derivation protocol is defined as follows:
//
//   CLA | INS | P1 | P2 | Lc  | Le
//   ----+-----+----+----+-----+---
//    E0 | 02  | 00 return address
//               01 display address and confirm before returning
//                  | 00: do not return the chain code
//                  | 01: return the chain code
//                       | var | 00
//
// Where the input data is:
//
//   Description                                      | Length
//   -------------------------------------------------+--------
//   Number of BIP 32 derivations to perform (max 10) | 1 byte
//   First derivation index (big endian)              | 4 bytes
//   ...                                              | 4 bytes
//   Last derivation index (big endian)               | 4 bytes
//
// And the output data is:
//
//   Description             | Length
//   ------------------------+-------------------
//   Public Key length       | 1 byte
//   Uncompressed Public Key | arbitrary
//   Ethereum address length | 1 byte
//   Ethereum address        | 40 bytes hex ascii
//   Chain code if requested | 32 bytes
703
func (w *ledgerWallet) ledgerDerive(derivationPath []uint32) (common.Address, error) {
704
	// Flatten the derivation path into the Ledger request
705 706 707
	path := make([]byte, 1+4*len(derivationPath))
	path[0] = byte(len(derivationPath))
	for i, component := range derivationPath {
708 709 710
		binary.BigEndian.PutUint32(path[1+4*i:], component)
	}
	// Send the request and wait for the response
711
	reply, err := w.ledgerExchange(ledgerOpRetrieveAddress, ledgerP1DirectlyFetchAddress, ledgerP2DiscardAddressChainCode, path)
712
	if err != nil {
713
		return common.Address{}, err
714 715 716
	}
	// Discard the public key, we don't need that for now
	if len(reply) < 1 || len(reply) < 1+int(reply[0]) {
717
		return common.Address{}, errors.New("reply lacks public key entry")
718 719 720 721 722
	}
	reply = reply[1+int(reply[0]):]

	// Extract the Ethereum hex address string
	if len(reply) < 1 || len(reply) < 1+int(reply[0]) {
723
		return common.Address{}, errors.New("reply lacks address entry")
724 725 726 727
	}
	hexstr := reply[1 : 1+int(reply[0])]

	// Decode the hex sting into an Ethereum address and return
728 729 730
	var address common.Address
	hex.Decode(address[:], hexstr)
	return address, nil
731 732
}

733 734
// ledgerSign sends the transaction to the Ledger wallet, and waits for the user
// to confirm or deny the transaction.
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
//
// The transaction signing protocol is defined as follows:
//
//   CLA | INS | P1 | P2 | Lc  | Le
//   ----+-----+----+----+-----+---
//    E0 | 04  | 00: first transaction data block
//               80: subsequent transaction data block
//                  | 00 | variable | variable
//
// Where the input for the first transaction block (first 255 bytes) is:
//
//   Description                                      | Length
//   -------------------------------------------------+----------
//   Number of BIP 32 derivations to perform (max 10) | 1 byte
//   First derivation index (big endian)              | 4 bytes
//   ...                                              | 4 bytes
//   Last derivation index (big endian)               | 4 bytes
//   RLP transaction chunk                            | arbitrary
//
// And the input for subsequent transaction blocks (first 255 bytes) are:
//
//   Description           | Length
//   ----------------------+----------
//   RLP transaction chunk | arbitrary
//
// And the output data is:
//
//   Description | Length
//   ------------+---------
//   signature V | 1 byte
//   signature R | 32 bytes
//   signature S | 32 bytes
767
func (w *ledgerWallet) ledgerSign(derivationPath []uint32, address common.Address, tx *types.Transaction, chainID *big.Int) (*types.Transaction, error) {
768
	// We need to modify the timeouts to account for user feedback
769 770
	defer func(old time.Duration) { w.device.ReadTimeout = old }(w.device.ReadTimeout)
	w.device.ReadTimeout = time.Minute
771 772

	// Flatten the derivation path into the Ledger request
773 774 775
	path := make([]byte, 1+4*len(derivationPath))
	path[0] = byte(len(derivationPath))
	for i, component := range derivationPath {
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
		binary.BigEndian.PutUint32(path[1+4*i:], component)
	}
	// Create the transaction RLP based on whether legacy or EIP155 signing was requeste
	var (
		txrlp []byte
		err   error
	)
	if chainID == nil {
		if txrlp, err = rlp.EncodeToBytes([]interface{}{tx.Nonce(), tx.GasPrice(), tx.Gas(), tx.To(), tx.Value(), tx.Data()}); err != nil {
			return nil, err
		}
	} else {
		if txrlp, err = rlp.EncodeToBytes([]interface{}{tx.Nonce(), tx.GasPrice(), tx.Gas(), tx.To(), tx.Value(), tx.Data(), chainID, big.NewInt(0), big.NewInt(0)}); err != nil {
			return nil, err
		}
	}
	payload := append(path, txrlp...)

	// Send the request and wait for the response
	var (
		op    = ledgerP1InitTransactionData
		reply []byte
	)
	for len(payload) > 0 {
		// Calculate the size of the next data chunk
		chunk := 255
		if chunk > len(payload) {
			chunk = len(payload)
		}
		// Send the chunk over, ensuring it's processed correctly
806
		reply, err = w.ledgerExchange(ledgerOpSignTransaction, op, 0, payload[:chunk])
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
		if err != nil {
			return nil, err
		}
		// Shift the payload and ensure subsequent chunks are marked as such
		payload = payload[chunk:]
		op = ledgerP1ContTransactionData
	}
	// Extract the Ethereum signature and do a sanity validation
	if len(reply) != 65 {
		return nil, errors.New("reply lacks signature")
	}
	signature := append(reply[1:], reply[0])

	// Create the correct signer and signature transform based on the chain ID
	var signer types.Signer
	if chainID == nil {
		signer = new(types.HomesteadSigner)
	} else {
		signer = types.NewEIP155Signer(chainID)
		signature[64] = (signature[64]-34)/2 - byte(chainID.Uint64())
	}
	// Inject the final signature into the transaction and sanity check the sender
	signed, err := tx.WithSignature(signer, signature)
	if err != nil {
		return nil, err
	}
	sender, err := types.Sender(signer, signed)
	if err != nil {
		return nil, err
	}
837 838
	if sender != address {
		return nil, fmt.Errorf("signer mismatch: expected %s, got %s", address.Hex(), sender.Hex())
839 840 841 842
	}
	return signed, nil
}

843 844
// ledgerExchange performs a data exchange with the Ledger wallet, sending it a
// message and retrieving the response.
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
//
// The common transport header is defined as follows:
//
//  Description                           | Length
//  --------------------------------------+----------
//  Communication channel ID (big endian) | 2 bytes
//  Command tag                           | 1 byte
//  Packet sequence index (big endian)    | 2 bytes
//  Payload                               | arbitrary
//
// The Communication channel ID allows commands multiplexing over the same
// physical link. It is not used for the time being, and should be set to 0101
// to avoid compatibility issues with implementations ignoring a leading 00 byte.
//
// The Command tag describes the message content. Use TAG_APDU (0x05) for standard
// APDU payloads, or TAG_PING (0x02) for a simple link test.
//
// The Packet sequence index describes the current sequence for fragmented payloads.
// The first fragment index is 0x00.
//
// APDU Command payloads are encoded as follows:
//
//  Description              | Length
//  -----------------------------------
//  APDU length (big endian) | 2 bytes
//  APDU CLA                 | 1 byte
//  APDU INS                 | 1 byte
//  APDU P1                  | 1 byte
//  APDU P2                  | 1 byte
//  APDU length              | 1 byte
//  Optional APDU data       | arbitrary
876
func (w *ledgerWallet) ledgerExchange(opcode ledgerOpcode, p1 ledgerParam1, p2 ledgerParam2, data []byte) ([]byte, error) {
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
	// Construct the message payload, possibly split into multiple chunks
	var chunks [][]byte
	for left := data; len(left) > 0 || len(chunks) == 0; {
		// Create the chunk header
		var chunk []byte

		if len(chunks) == 0 {
			// The first chunk encodes the length and all the opcodes
			chunk = []byte{0x00, 0x00, 0xe0, byte(opcode), byte(p1), byte(p2), byte(len(data))}
			binary.BigEndian.PutUint16(chunk, uint16(5+len(data)))
		}
		// Append the data blob to the end of the chunk
		space := 64 - len(chunk) - 5 // 5 == header size
		if len(left) > space {
			chunks, left = append(chunks, append(chunk, left[:space]...)), left[space:]
			continue
		}
		chunks, left = append(chunks, append(chunk, left...)), nil
	}
	// Stream all the chunks to the device
	for i, chunk := range chunks {
		// Construct the new message to stream
		header := []byte{0x01, 0x01, 0x05, 0x00, 0x00} // Channel ID and command tag appended
		binary.BigEndian.PutUint16(header[3:], uint16(i))

		msg := append(header, chunk...)

		// Send over to the device
905
		if glog.V(logger.Detail) {
906
			glog.Infof("-> %03d.%03d: %x", w.device.Bus, w.device.Address, msg)
907
		}
908
		if _, err := w.input.Write(msg); err != nil {
909 910 911 912 913 914 915 916
			return nil, err
		}
	}
	// Stream the reply back from the wallet in 64 byte chunks
	var reply []byte
	for {
		// Read the next chunk from the Ledger wallet
		chunk := make([]byte, 64)
917
		if _, err := io.ReadFull(w.output, chunk); err != nil {
918 919
			return nil, err
		}
920
		if glog.V(logger.Detail) {
921
			glog.Infof("<- %03d.%03d: %x", w.device.Bus, w.device.Address, chunk)
922 923 924
		}
		// Make sure the transport header matches
		if chunk[0] != 0x01 || chunk[1] != 0x01 || chunk[2] != 0x05 {
925
			return nil, errReplyInvalidHeader
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
		}
		// If it's the first chunk, retrieve the total message length
		if chunk[3] == 0x00 && chunk[4] == 0x00 {
			reply = make([]byte, 0, int(binary.BigEndian.Uint16(chunk[5:7])))
			chunk = chunk[7:]
		} else {
			chunk = chunk[5:]
		}
		// Append to the reply and stop when filled up
		if left := cap(reply) - len(reply); left > len(chunk) {
			reply = append(reply, chunk...)
		} else {
			reply = append(reply, chunk[:left]...)
			break
		}
	}
	return reply[:len(reply)-2], nil
}