curve.go 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
package bn256

import (
	"math/big"
)

// curvePoint implements the elliptic curve y²=x³+3. Points are kept in Jacobian
// form and t=z² when valid. G₁ is the set of points of this curve on GF(p).
type curvePoint struct {
	x, y, z, t gfP
}

var curveB = newGFp(3)

// curveGen is the generator of G₁.
var curveGen = &curvePoint{
	x: *newGFp(1),
	y: *newGFp(2),
	z: *newGFp(1),
	t: *newGFp(1),
}

func (c *curvePoint) String() string {
	c.MakeAffine()
	x, y := &gfP{}, &gfP{}
	montDecode(x, &c.x)
	montDecode(y, &c.y)
	return "(" + x.String() + ", " + y.String() + ")"
}

func (c *curvePoint) Set(a *curvePoint) {
	c.x.Set(&a.x)
	c.y.Set(&a.y)
	c.z.Set(&a.z)
	c.t.Set(&a.t)
}

// IsOnCurve returns true iff c is on the curve.
func (c *curvePoint) IsOnCurve() bool {
	c.MakeAffine()
	if c.IsInfinity() {
		return true
	}

	y2, x3 := &gfP{}, &gfP{}
	gfpMul(y2, &c.y, &c.y)
	gfpMul(x3, &c.x, &c.x)
	gfpMul(x3, x3, &c.x)
	gfpAdd(x3, x3, curveB)

	return *y2 == *x3
}

func (c *curvePoint) SetInfinity() {
	c.x = gfP{0}
	c.y = *newGFp(1)
	c.z = gfP{0}
	c.t = gfP{0}
}

func (c *curvePoint) IsInfinity() bool {
	return c.z == gfP{0}
}

func (c *curvePoint) Add(a, b *curvePoint) {
	if a.IsInfinity() {
		c.Set(b)
		return
	}
	if b.IsInfinity() {
		c.Set(a)
		return
	}

	// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3

	// Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2]
	// by [u1:s1:z1·z2] and [u2:s2:z1·z2]
	// where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³
	z12, z22 := &gfP{}, &gfP{}
	gfpMul(z12, &a.z, &a.z)
	gfpMul(z22, &b.z, &b.z)

	u1, u2 := &gfP{}, &gfP{}
	gfpMul(u1, &a.x, z22)
	gfpMul(u2, &b.x, z12)

	t, s1 := &gfP{}, &gfP{}
	gfpMul(t, &b.z, z22)
	gfpMul(s1, &a.y, t)

	s2 := &gfP{}
	gfpMul(t, &a.z, z12)
	gfpMul(s2, &b.y, t)

	// Compute x = (2h)²(s²-u1-u2)
	// where s = (s2-s1)/(u2-u1) is the slope of the line through
	// (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below.
	// This is also:
	// 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1)
	//                        = r² - j - 2v
	// with the notations below.
	h := &gfP{}
	gfpSub(h, u2, u1)
	xEqual := *h == gfP{0}

	gfpAdd(t, h, h)
	// i = 4h²
	i := &gfP{}
	gfpMul(i, t, t)
	// j = 4h³
	j := &gfP{}
	gfpMul(j, h, i)

	gfpSub(t, s2, s1)
	yEqual := *t == gfP{0}
	if xEqual && yEqual {
		c.Double(a)
		return
	}
	r := &gfP{}
	gfpAdd(r, t, t)

	v := &gfP{}
	gfpMul(v, u1, i)

	// t4 = 4(s2-s1)²
	t4, t6 := &gfP{}, &gfP{}
	gfpMul(t4, r, r)
	gfpAdd(t, v, v)
	gfpSub(t6, t4, j)

	gfpSub(&c.x, t6, t)

	// Set y = -(2h)³(s1 + s*(x/4h²-u1))
	// This is also
	// y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j
	gfpSub(t, v, &c.x) // t7
	gfpMul(t4, s1, j)  // t8
	gfpAdd(t6, t4, t4) // t9
	gfpMul(t4, r, t)   // t10
	gfpSub(&c.y, t4, t6)

	// Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2
	gfpAdd(t, &a.z, &b.z) // t11
	gfpMul(t4, t, t)      // t12
	gfpSub(t, t4, z12)    // t13
	gfpSub(t4, t, z22)    // t14
	gfpMul(&c.z, t4, h)
}

func (c *curvePoint) Double(a *curvePoint) {
	// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
	A, B, C := &gfP{}, &gfP{}, &gfP{}
	gfpMul(A, &a.x, &a.x)
	gfpMul(B, &a.y, &a.y)
	gfpMul(C, B, B)

	t, t2 := &gfP{}, &gfP{}
	gfpAdd(t, &a.x, B)
	gfpMul(t2, t, t)
	gfpSub(t, t2, A)
	gfpSub(t2, t, C)

	d, e, f := &gfP{}, &gfP{}, &gfP{}
	gfpAdd(d, t2, t2)
	gfpAdd(t, A, A)
	gfpAdd(e, t, A)
	gfpMul(f, e, e)

	gfpAdd(t, d, d)
	gfpSub(&c.x, f, t)

	gfpAdd(t, C, C)
	gfpAdd(t2, t, t)
	gfpAdd(t, t2, t2)
	gfpSub(&c.y, d, &c.x)
	gfpMul(t2, e, &c.y)
	gfpSub(&c.y, t2, t)

	gfpMul(t, &a.y, &a.z)
	gfpAdd(&c.z, t, t)
}

func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int) {
186 187 188 189 190 191 192 193 194
	precomp := [1 << 2]*curvePoint{nil, {}, {}, {}}
	precomp[1].Set(a)
	precomp[2].Set(a)
	gfpMul(&precomp[2].x, &precomp[2].x, xiTo2PSquaredMinus2Over3)
	precomp[3].Add(precomp[1], precomp[2])

	multiScalar := curveLattice.Multi(scalar)

	sum := &curvePoint{}
195
	sum.SetInfinity()
196
	t := &curvePoint{}
197

198
	for i := len(multiScalar) - 1; i >= 0; i-- {
199
		t.Double(sum)
200
		if multiScalar[i] == 0 {
201
			sum.Set(t)
202 203
		} else {
			sum.Add(t, precomp[multiScalar[i]])
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
		}
	}
	c.Set(sum)
}

func (c *curvePoint) MakeAffine() {
	if c.z == *newGFp(1) {
		return
	} else if c.z == *newGFp(0) {
		c.x = gfP{0}
		c.y = *newGFp(1)
		c.t = gfP{0}
		return
	}

	zInv := &gfP{}
	zInv.Invert(&c.z)

	t, zInv2 := &gfP{}, &gfP{}
	gfpMul(t, &c.y, zInv)
	gfpMul(zInv2, zInv, zInv)

	gfpMul(&c.x, &c.x, zInv2)
	gfpMul(&c.y, t, zInv2)

	c.z = *newGFp(1)
	c.t = *newGFp(1)
}

func (c *curvePoint) Neg(a *curvePoint) {
	c.x.Set(&a.x)
	gfpNeg(&c.y, &a.y)
	c.z.Set(&a.z)
	c.t = gfP{0}
}