graph_sample_neighbors_kernel.cc 4.8 KB
Newer Older
S
Siming Dai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <vector>

#include "paddle/phi/kernels/graph_sample_neighbors_kernel.h"

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <class bidiiter>
void SampleUniqueNeighbors(
    bidiiter begin,
    bidiiter end,
    int num_samples,
    std::mt19937& rng,
    std::uniform_int_distribution<int>& dice_distribution) {
  int left_num = std::distance(begin, end);
  for (int i = 0; i < num_samples; i++) {
    bidiiter r = begin;
    int random_step = dice_distribution(rng) % left_num;
    std::advance(r, random_step);
    std::swap(*begin, *r);
    ++begin;
    --left_num;
  }
}

template <typename T>
void SampleNeighbors(const T* row,
                     const T* col_ptr,
                     const T* input,
                     std::vector<T>* output,
                     std::vector<int>* output_count,
                     int sample_size,
                     int bs) {
  // Allocate the memory of output
  // Collect the neighbors size
  std::vector<std::vector<T>> out_src_vec;
  // `sample_cumsum_sizes` record the start position and end position
  // after sampling.
  std::vector<int> sample_cumsum_sizes(bs + 1);
  // `total_neighbors` the size of output after sample.
  int total_neighbors = 0;
  sample_cumsum_sizes[0] = total_neighbors;
  for (int i = 0; i < bs; i++) {
    T node = input[i];
    int cap = col_ptr[node + 1] - col_ptr[node];
    int k = cap > sample_size ? sample_size : cap;
    total_neighbors += k;
    sample_cumsum_sizes[i + 1] = total_neighbors;
    std::vector<T> out_src;
    out_src.resize(cap);
    out_src_vec.emplace_back(out_src);
  }

  output_count->resize(bs);
  output->resize(total_neighbors);

  std::random_device rd;
  std::mt19937 rng{rd()};
  std::uniform_int_distribution<int> dice_distribution(
      0, std::numeric_limits<int>::max());

#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  // Sample the neighbors in parallelism.
  for (int i = 0; i < bs; i++) {
    T node = input[i];
    T begin = col_ptr[node], end = col_ptr[node + 1];
    int cap = end - begin;
    if (sample_size < cap) {
      std::copy(row + begin, row + end, out_src_vec[i].begin());
      // TODO(daisiming): Check whether is correct.
      SampleUniqueNeighbors(out_src_vec[i].begin(),
                            out_src_vec[i].end(),
                            sample_size,
                            rng,
                            dice_distribution);
      *(output_count->data() + i) = sample_size;
    } else {
      std::copy(row + begin, row + end, out_src_vec[i].begin());
      *(output_count->data() + i) = cap;
    }
  }

#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  // Copy the results parallelism
  for (int i = 0; i < bs; i++) {
    int k = sample_cumsum_sizes[i + 1] - sample_cumsum_sizes[i];
    std::copy(out_src_vec[i].begin(),
              out_src_vec[i].begin() + k,
              output->data() + sample_cumsum_sizes[i]);
  }
}

template <typename T, typename Context>
void GraphSampleNeighborsKernel(
    const Context& dev_ctx,
    const DenseTensor& row,
    const DenseTensor& col_ptr,
    const DenseTensor& x,
    paddle::optional<const DenseTensor&> eids,
    paddle::optional<const DenseTensor&> perm_buffer,
    int sample_size,
    bool return_eids,
    bool flag_perm_buffer,
    DenseTensor* out,
    DenseTensor* out_count,
    DenseTensor* out_eids) {
  const T* row_data = row.data<T>();
  const T* col_ptr_data = col_ptr.data<T>();
  const T* x_data = x.data<T>();
  int bs = x.dims()[0];

  std::vector<T> output;
  std::vector<int> output_count;
  SampleNeighbors<T>(
      row_data, col_ptr_data, x_data, &output, &output_count, sample_size, bs);
  out->Resize({static_cast<int>(output.size())});
  T* out_data = dev_ctx.template Alloc<T>(out);
  std::copy(output.begin(), output.end(), out_data);
  out_count->Resize({bs});
  int* out_count_data = dev_ctx.template Alloc<int>(out_count);
  std::copy(output_count.begin(), output_count.end(), out_count_data);
}

}  // namespace phi

PD_REGISTER_KERNEL(graph_sample_neighbors,
                   CPU,
                   ALL_LAYOUT,
                   phi::GraphSampleNeighborsKernel,
                   int,
                   int64_t) {}