提交 c3632b87 编写于 作者: Y yuyang18

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into feature/faster_recordio

...@@ -4,6 +4,7 @@ ...@@ -4,6 +4,7 @@
| backyes | Yan-Fei Wang | | backyes | Yan-Fei Wang |
| baiyfbupt | Yi-Fan Bai | | baiyfbupt | Yi-Fan Bai |
| beckett1124 | Bin Qi | | beckett1124 | Bin Qi |
| ChengduoZH | Cheng-Duo Zhao|
| chengxiaohua1105 | Xiao-Hua Cheng | | chengxiaohua1105 | Xiao-Hua Cheng |
| cxwangyi, yiwangbaidu, wangkuiyi | Yi Wang | | cxwangyi, yiwangbaidu, wangkuiyi | Yi Wang |
| cxysteven | Xing-Yi Cheng | | cxysteven | Xing-Yi Cheng |
......
FROM nvidia/cuda:9.0-cudnn7-devel-ubuntu16.04
RUN apt-get update && apt-get install -y python python-pip iputils-ping libgtk2.0-dev wget vim net-tools iftop
RUN ln -s /usr/lib/x86_64-linux-gnu/libcudnn.so.7 /usr/lib/libcudnn.so && ln -s /usr/lib/x86_64-linux-gnu/libnccl.so.2 /usr/lib/libnccl.so
RUN pip install -U pip
RUN pip install -U kubernetes opencv-python paddlepaddle
# IMPORTANT:
# Add "ENV http_proxy=http://ip:port" if your download is slow, and don't forget to unset it at runtime.
RUN sh -c 'echo "import paddle.v2 as paddle\npaddle.dataset.cifar.train10()\npaddle.dataset.flowers.fetch()" | python'
RUN sh -c 'echo "import paddle.v2 as paddle\npaddle.dataset.mnist.train()\npaddle.dataset.mnist.test()\npaddle.dataset.imdb.fetch()" | python'
RUN sh -c 'echo "import paddle.v2 as paddle\npaddle.dataset.imikolov.fetch()" | python'
RUN pip uninstall -y paddlepaddle && mkdir /workspace
ADD https://raw.githubusercontent.com/PaddlePaddle/cloud/develop/docker/paddle_k8s /usr/bin
ADD https://raw.githubusercontent.com/PaddlePaddle/cloud/develop/docker/k8s_tools.py /root
ADD *.whl /
RUN pip install /*.whl && rm -f /*.whl && chmod +x /usr/bin/paddle_k8s
ENV LD_LIBRARY_PATH=/usr/local/lib
ADD fluid_benchmark.py dataset.py models/ /workspace/
...@@ -44,11 +44,25 @@ Currently supported `--model` argument include: ...@@ -44,11 +44,25 @@ Currently supported `--model` argument include:
## Run Distributed Benchmark on Kubernetes Cluster ## Run Distributed Benchmark on Kubernetes Cluster
You may need to build a Docker image before submitting a cluster job onto Kubernetes, or you will
have to start all those processes mannually on each node, which is not recommended.
To build the Docker image, you need to choose a paddle "whl" package to run with, you may either
download it from
http://www.paddlepaddle.org/docs/develop/documentation/zh/build_and_install/pip_install_en.html or
build it by your own. Once you've got the "whl" package, put it under the current directory and run:
```bash
docker build -t [your docker image name]:[your docker image tag] .
```
Then push the image to a Docker registry that your Kubernetes cluster can reach.
We provide a script `kube_gen_job.py` to generate Kubernetes yaml files to submit We provide a script `kube_gen_job.py` to generate Kubernetes yaml files to submit
distributed benchmark jobs to your cluster. To generate a job yaml, just run: distributed benchmark jobs to your cluster. To generate a job yaml, just run:
```bash ```bash
python kube_gen_job.py --jobname myjob --pscpu 4 --cpu 8 --gpu 8 --psmemory 20 --memory 40 --pservers 4 --trainers 4 --entry "python fluid_benchmark.py --model mnist --parallel 1 --device GPU --update_method pserver " --disttype pserver python kube_gen_job.py --jobname myjob --pscpu 4 --cpu 8 --gpu 8 --psmemory 20 --memory 40 --pservers 4 --trainers 4 --entry "python fluid_benchmark.py --model mnist --gpus 8 --device GPU --update_method pserver " --disttype pserver
``` ```
Then the yaml files are generated under directory `myjob`, you can run: Then the yaml files are generated under directory `myjob`, you can run:
......
...@@ -37,7 +37,8 @@ nohup stdbuf -oL nvidia-smi \ ...@@ -37,7 +37,8 @@ nohup stdbuf -oL nvidia-smi \
-l 1 & -l 1 &
# mnist # mnist
# mnist gpu mnist 128 # mnist gpu mnist 128
FLAGS_benchmark=true stdbuf -oL python fluid/mnist.py \ FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \
--model=mnist \
--device=GPU \ --device=GPU \
--batch_size=128 \ --batch_size=128 \
--skip_batch_num=5 \ --skip_batch_num=5 \
...@@ -46,7 +47,8 @@ FLAGS_benchmark=true stdbuf -oL python fluid/mnist.py \ ...@@ -46,7 +47,8 @@ FLAGS_benchmark=true stdbuf -oL python fluid/mnist.py \
# vgg16 # vgg16
# gpu cifar10 128 # gpu cifar10 128
FLAGS_benchmark=true stdbuf -oL python fluid/vgg16.py \ FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \
--model=vgg16 \
--device=GPU \ --device=GPU \
--batch_size=128 \ --batch_size=128 \
--skip_batch_num=5 \ --skip_batch_num=5 \
...@@ -54,7 +56,8 @@ FLAGS_benchmark=true stdbuf -oL python fluid/vgg16.py \ ...@@ -54,7 +56,8 @@ FLAGS_benchmark=true stdbuf -oL python fluid/vgg16.py \
2>&1 | tee -a vgg16_gpu_128.log 2>&1 | tee -a vgg16_gpu_128.log
# flowers gpu 128 # flowers gpu 128
FLAGS_benchmark=true stdbuf -oL python fluid/vgg16.py \ FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \
--model=vgg16 \
--device=GPU \ --device=GPU \
--batch_size=32 \ --batch_size=32 \
--data_set=flowers \ --data_set=flowers \
...@@ -64,40 +67,39 @@ FLAGS_benchmark=true stdbuf -oL python fluid/vgg16.py \ ...@@ -64,40 +67,39 @@ FLAGS_benchmark=true stdbuf -oL python fluid/vgg16.py \
# resnet50 # resnet50
# resnet50 gpu cifar10 128 # resnet50 gpu cifar10 128
FLAGS_benchmark=true stdbuf -oL python fluid/resnet50.py \ FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \
--model=resnet50 \
--device=GPU \ --device=GPU \
--batch_size=128 \ --batch_size=128 \
--data_set=cifar10 \ --data_set=cifar10 \
--model=resnet_cifar10 \
--skip_batch_num=5 \ --skip_batch_num=5 \
--iterations=30 \ --iterations=30 \
2>&1 | tee -a resnet50_gpu_128.log 2>&1 | tee -a resnet50_gpu_128.log
# resnet50 gpu flowers 64 # resnet50 gpu flowers 64
FLAGS_benchmark=true stdbuf -oL python fluid/resnet50.py \ FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \
--model=resnet50 \
--device=GPU \ --device=GPU \
--batch_size=64 \ --batch_size=64 \
--data_set=flowers \ --data_set=flowers \
--model=resnet_imagenet \
--skip_batch_num=5 \ --skip_batch_num=5 \
--iterations=30 \ --iterations=30 \
2>&1 | tee -a resnet50_gpu_flowers_64.log 2>&1 | tee -a resnet50_gpu_flowers_64.log
# lstm # lstm
# lstm gpu imdb 32 # tensorflow only support batch=32 # lstm gpu imdb 32 # tensorflow only support batch=32
FLAGS_benchmark=true stdbuf -oL python fluid/stacked_dynamic_lstm.py \ FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \
--model=stacked_dynamic_lstm \
--device=GPU \ --device=GPU \
--batch_size=32 \ --batch_size=32 \
--skip_batch_num=5 \ --skip_batch_num=5 \
--iterations=30 \ --iterations=30 \
--hidden_dim=512 \
--emb_dim=512 \
--crop_size=1500 \
2>&1 | tee -a lstm_gpu_32.log 2>&1 | tee -a lstm_gpu_32.log
# seq2seq # seq2seq
# seq2seq gpu wmb 128 # seq2seq gpu wmb 128
FLAGS_benchmark=true stdbuf -oL python fluid/machine_translation.py \ FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \
--model=machine_translation \
--device=GPU \ --device=GPU \
--batch_size=128 \ --batch_size=128 \
--skip_batch_num=5 \ --skip_batch_num=5 \
......
...@@ -1009,3 +1009,9 @@ ____ ...@@ -1009,3 +1009,9 @@ ____
.. autofunction:: paddle.fluid.layers.upsampling_bilinear2d .. autofunction:: paddle.fluid.layers.upsampling_bilinear2d
:noindex: :noindex:
gather
____
.. autofunction:: paddle.fluid.layers.gather
:noindex:
...@@ -4,5 +4,5 @@ ...@@ -4,5 +4,5 @@
.. toctree:: .. toctree::
:maxdepth: 1 :maxdepth: 1
inference/index_cn.rst
optimization/index_cn.rst optimization/index_cn.rst
inference/inference_support_in_fluid.md
...@@ -5,4 +5,3 @@ HOW TO ...@@ -5,4 +5,3 @@ HOW TO
:maxdepth: 1 :maxdepth: 1
optimization/index_en.rst optimization/index_en.rst
inference/inference_support_in_fluid.md
安装与编译C++预测库
===========================
直接下载安装
-------------
====================== ========================================
版本说明 C++预测库
====================== ========================================
cpu_avx_mkl `fluid.tgz <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/fluid.tgz>`_
cpu_avx_openblas `fluid.tgz <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxOpenblas/.lastSuccessful/fluid.tgz>`_
cpu_noavx_openblas `fluid.tgz <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/fluid.tgz>`_
cuda7.5_cudnn5_avx_mkl `fluid.tgz <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/fluid.tgz>`_
cuda8.0_cudnn5_avx_mkl `fluid.tgz <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/fluid.tgz>`_
cuda8.0_cudnn7_avx_mkl `fluid.tgz <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/fluid.tgz>`_
====================== ========================================
从源码编译
----------
用户也可以从 PaddlePaddle 核心代码编译C++预测库,只需在编译时配制下面这些编译选项:
================= =========
选项 值
================= =========
CMAKE_BUILD_TYPE Release
FLUID_INSTALL_DIR 安装路径
WITH_FLUID_ONLY ON(推荐)
WITH_SWIG_PY OFF(推荐
WITH_PYTHON OFF(推荐)
WITH_GPU ON/OFF
WITH_MKL ON/OFF
================= =========
建议按照推荐值设置,以避免链接不必要的库。其它可选编译选项按需进行设定。
下面的代码片段从github拉取最新代码,配制编译选项(需要将PADDLE_ROOT替换为PaddlePaddle预测库的安装路径):
.. code-block:: bash
pip install paddlepaddle-gpu
PADDLE_ROOT=/path/of/capi
git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
mkdir build
cd build
cmake -DFLUID_INSTALL_DIR=$PADDLE_ROOT \
-DCMAKE_BUILD_TYPE=Release \
-DWITH_FLUID_ONLY=ON \
-DWITH_SWIG_PY=OFF \
-DWITH_PYTHON=OFF \
-DWITH_MKL=OFF \
-DWITH_GPU=OFF \
..
make
make inference_lib_dist
成功编译后,使用C++预测库所需的依赖(包括:(1)编译出的PaddlePaddle预测库和头文件;(2)第三方链接库和头文件;(3)版本信息与编译选项信息)
均会存放于PADDLE_ROOT目录中。目录结构如下:
.. code-block:: text
PaddleRoot/
├── CMakeCache.txt
├── paddle
│   └── fluid
│   ├── framework
│   ├── inference
│   ├── memory
│   ├── platform
│   ├── pybind
│   └── string
├── third_party
│   ├── boost
│   │   └── boost
│   ├── eigen3
│   │   ├── Eigen
│   │   └── unsupported
│   └── install
│   ├── gflags
│   ├── glog
│   ├── mklml
│   ├── protobuf
│   ├── snappy
│   ├── snappystream
│   └── zlib
└── version.txt
version.txt 中记录了该预测库的版本信息,包括Git Commit ID、使用OpenBlas或MKL数学库、CUDA/CUDNN版本号,如:
.. code-block:: text
GIT COMMIT ID: c95cd4742f02bb009e651a00b07b21c979637dc8
WITH_MKL: ON
WITH_GPU: ON
CUDA version: 8.0
CUDNN version: v5
预测库
------------
.. toctree::
:maxdepth: 1
build_and_install_lib_cn.rst
inference_support_in_fluid_cn.md
# Fluid Inference使用指南 # 使用指南
## 目录: ## 目录:
- Python Inference API - Python Inference API
- 编译Fluid Inference库
- Inference C++ API - Inference C++ API
- Inference实例 - Inference实例
- Inference计算优化 - Inference计算优化
...@@ -55,62 +54,6 @@ ...@@ -55,62 +54,6 @@
return [program, feed_target_names, fetch_targets] return [program, feed_target_names, fetch_targets]
``` ```
## 编译Fluid Inference库
- **不需要额外的CMake选项**
- 1、 配置CMake命令,更多配置请参考[源码编译PaddlePaddle](http://www.paddlepaddle.org/docs/develop/documentation/zh/build_and_install/build_from_source_cn.html)
```bash
$ git clone https://github.com/PaddlePaddle/Paddle.git
$ cd Paddle
$ mkdir build
$ cd build
$ cmake -DCMAKE_INSTALL_PREFIX=your/path/to/paddle_inference_lib \
-DCMAKE_BUILD_TYPE=Release \
-DWITH_PYTHON=ON \
-DWITH_MKL=OFF \
-DWITH_GPU=OFF \
..
```
- 2、 编译PaddlePaddle
```bash
$ make
```
- 3、 部署。执行如下命令将PaddlePaddle Fluid Inference库部署到`your/path/to/paddle_inference_lib`目录。
```bash
$ make inference_lib_dist
```
- 目录结构
```bash
$ cd your/path/to/paddle_inference_lib
$ tree
.
|-- paddle
| `-- fluid
| |-- framework
| |-- inference
| | |-- io.h
| | `-- libpaddle_fluid.so
| |-- memory
| |-- platform
| `-- string
|-- third_party
| |-- eigen3
| `-- install
| |-- gflags
| |-- glog
| `-- protobuf
`-- ...
```
假设`PADDLE_ROOT=your/path/to/paddle_inference_lib`
## 链接Fluid Inference库 ## 链接Fluid Inference库
- 示例项目([链接](https://github.com/luotao1/fluid_inference_example.git)) - 示例项目([链接](https://github.com/luotao1/fluid_inference_example.git))
......
...@@ -40,14 +40,23 @@ struct PaddleBuf { ...@@ -40,14 +40,23 @@ struct PaddleBuf {
struct PaddleTensor { struct PaddleTensor {
std::string name; // variable name. std::string name; // variable name.
std::vector<int> shape; std::vector<int> shape;
// TODO(Superjomn) for LoD support, add a vector<vector<int>> field if needed.
PaddleBuf data; // blob of data. PaddleBuf data; // blob of data.
PaddleDType dtype; PaddleDType dtype;
}; };
enum class PaddleEngineKind {
kNative = 0, // Use the native Fluid facility.
// TODO(Superjomn) support following engines latter.
// kAnakin, // Use Anakin for inference.
// kTensorRT, // Use TensorRT for inference.
// kAutoMixedAnakin, // Automatically mix Fluid with Anakin.
// kAutoMixedTensorRT, // Automatically mix Fluid with TensorRT.
};
/* /*
* A simple Inference API for Paddle. Currently this API can be used by * A simple Inference API for Paddle. Currently this API can be used by
* non-sequence scenerios. * non-sequence scenerios.
* TODO(Superjomn) Support another API for NLP-related usages.
*/ */
class PaddlePredictor { class PaddlePredictor {
public: public:
...@@ -69,15 +78,6 @@ class PaddlePredictor { ...@@ -69,15 +78,6 @@ class PaddlePredictor {
// Destroy the Predictor. // Destroy the Predictor.
virtual ~PaddlePredictor() {} virtual ~PaddlePredictor() {}
enum class EngineKind {
kNative = -1, // Use the native Fluid facility.
// TODO(Superjomn) support latter.
// kAnakin, // Use Anakin for inference.
// kTensorRT, // Use TensorRT for inference.
// kAutoMixedAnakin, // Automatically mix Fluid with Anakin.
// kAutoMixedTensorRT, // Automatically mix Fluid with TensorRT.
};
// The common configs for all the predictors. // The common configs for all the predictors.
struct Config { struct Config {
std::string model_dir; // path to the model directory. std::string model_dir; // path to the model directory.
...@@ -86,18 +86,24 @@ class PaddlePredictor { ...@@ -86,18 +86,24 @@ class PaddlePredictor {
}; };
struct NativeConfig : public PaddlePredictor::Config { struct NativeConfig : public PaddlePredictor::Config {
// GPU related fields.
bool use_gpu{false}; bool use_gpu{false};
int device; int device{0};
float fraction_of_gpu_memory; float fraction_of_gpu_memory{-1.f}; // Negative to notify initialization.
std::string prog_file; std::string prog_file;
std::string param_file; std::string param_file;
bool share_variables;
}; };
// A factory to help create difference predictor. // A factory to help create different predictors.
template < //
typename ConfigT, // FOR EXTENSION DEVELOPER:
PaddlePredictor::EngineKind engine = PaddlePredictor::EngineKind::kNative> // Different predictors are designated by config type and engine kind. Similar
// configs can be merged, but there shouldn't be a huge config containing
// different fields for more than one kind of predictors.
//
// Similarly, each engine kind should map to a unique predictor implementation.
template <typename ConfigT, PaddleEngineKind engine = PaddleEngineKind::kNative>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT& config); std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT& config);
} // namespace paddle } // namespace paddle
...@@ -57,8 +57,7 @@ std::string num2str(T a) { ...@@ -57,8 +57,7 @@ std::string num2str(T a) {
bool NativePaddlePredictor::Init() { bool NativePaddlePredictor::Init() {
VLOG(3) << "Predictor::init()"; VLOG(3) << "Predictor::init()";
// TODO(panyx0718): Should CPU vs GPU device be decided by id? if (config_.use_gpu) {
if (config_.device >= 0) {
place_ = paddle::platform::CUDAPlace(config_.device); place_ = paddle::platform::CUDAPlace(config_.device);
} else { } else {
place_ = paddle::platform::CPUPlace(); place_ = paddle::platform::CPUPlace();
...@@ -85,11 +84,13 @@ bool NativePaddlePredictor::Init() { ...@@ -85,11 +84,13 @@ bool NativePaddlePredictor::Init() {
} }
ctx_ = executor_->Prepare(*inference_program_, 0); ctx_ = executor_->Prepare(*inference_program_, 0);
// Create variables // Create temporary variables first, so that the first batch do not need to
// TODO(panyx0718): Why need to test share_variables here? // create variables in the runtime. This is the logics of the old inference
if (config_.share_variables) { // API.
executor_->CreateVariables(*inference_program_, scope_.get(), 0); // TODO(Superjomn) this should be modified when `Clone` is valid for
} // multi-thread application.
executor_->CreateVariables(*inference_program_, scope_.get(), 0);
// Get the feed_target_names and fetch_target_names // Get the feed_target_names and fetch_target_names
feed_target_names_ = inference_program_->GetFeedTargetNames(); feed_target_names_ = inference_program_->GetFeedTargetNames();
fetch_target_names_ = inference_program_->GetFetchTargetNames(); fetch_target_names_ = inference_program_->GetFetchTargetNames();
...@@ -124,7 +125,7 @@ bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs, ...@@ -124,7 +125,7 @@ bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
scope_.get(), scope_.get(),
&feed_targets, &feed_targets,
&fetch_targets, &fetch_targets,
!config_.share_variables); false /* don't create variable eatch time */);
if (!GetFetch(fetchs, output_data)) { if (!GetFetch(fetchs, output_data)) {
LOG(ERROR) << "fail to get fetchs"; LOG(ERROR) << "fail to get fetchs";
return false; return false;
...@@ -242,11 +243,14 @@ bool NativePaddlePredictor::GetFetch( ...@@ -242,11 +243,14 @@ bool NativePaddlePredictor::GetFetch(
template <> template <>
std::unique_ptr<PaddlePredictor> std::unique_ptr<PaddlePredictor>
CreatePaddlePredictor<NativeConfig, PaddlePredictor::EngineKind::kNative>( CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(
const NativeConfig &config) { const NativeConfig &config) {
VLOG(3) << "create NativePaddlePredictor"; VLOG(3) << "create NativePaddlePredictor";
if (config.use_gpu) { if (config.use_gpu) {
// 1. GPU memeroy // 1. GPU memeroy
PADDLE_ENFORCE(
config.fraction_of_gpu_memory > 0.f,
"fraction_of_gpu_memory in the config should be set to range (0., 1.]");
std::vector<std::string> flags; std::vector<std::string> flags;
if (config.fraction_of_gpu_memory >= 0.0f || if (config.fraction_of_gpu_memory >= 0.0f ||
config.fraction_of_gpu_memory <= 0.95f) { config.fraction_of_gpu_memory <= 0.95f) {
......
...@@ -47,7 +47,6 @@ NativeConfig GetConfig() { ...@@ -47,7 +47,6 @@ NativeConfig GetConfig() {
config.fraction_of_gpu_memory = 0.15; config.fraction_of_gpu_memory = 0.15;
config.use_gpu = true; config.use_gpu = true;
config.device = 0; config.device = 0;
config.share_variables = true;
return config; return config;
} }
......
...@@ -200,7 +200,7 @@ BlockDesc::BlockDesc(ProgramDesc *prog, proto::BlockDesc *desc) ...@@ -200,7 +200,7 @@ BlockDesc::BlockDesc(ProgramDesc *prog, proto::BlockDesc *desc)
vars_[var_desc.name()].reset(new VarDesc(var_desc)); vars_[var_desc.name()].reset(new VarDesc(var_desc));
} }
for (const proto::OpDesc &op_desc : desc_->ops()) { for (const proto::OpDesc &op_desc : desc_->ops()) {
ops_.emplace_back(new OpDesc(op_desc, prog, this)); ops_.emplace_back(new OpDesc(op_desc, this));
} }
} }
...@@ -209,7 +209,7 @@ BlockDesc::BlockDesc(const BlockDesc &other, proto::BlockDesc *desc, ...@@ -209,7 +209,7 @@ BlockDesc::BlockDesc(const BlockDesc &other, proto::BlockDesc *desc,
: prog_(prog), desc_(desc) { : prog_(prog), desc_(desc) {
need_update_ = true; need_update_ = true;
for (auto &op : other.ops_) { for (auto &op : other.ops_) {
ops_.emplace_back(new OpDesc(*op->Proto(), prog, this)); ops_.emplace_back(new OpDesc(*op, this));
} }
for (auto &it : other.vars_) { for (auto &it : other.vars_) {
auto *var = new VarDesc(*it.second); auto *var = new VarDesc(*it.second);
......
...@@ -105,7 +105,7 @@ class BlockDesc { ...@@ -105,7 +105,7 @@ class BlockDesc {
size_t OpSize() const { return ops_.size(); } size_t OpSize() const { return ops_.size(); }
OpDesc *Op(int idx) { return ops_.at(idx).get(); } OpDesc *Op(int idx) const { return ops_.at(idx).get(); }
void Flush(); void Flush();
......
...@@ -11,11 +11,15 @@ ...@@ -11,11 +11,15 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h" #include <algorithm>
#include <fstream> #include <fstream>
#include <string>
#include <utility> #include <utility>
#include <vector>
#include "paddle/fluid/framework/details/broadcast_op_handle.h" #include "paddle/fluid/framework/details/broadcast_op_handle.h"
#include "paddle/fluid/framework/details/computation_op_handle.h" #include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
#include "paddle/fluid/framework/details/reduce_op_handle.h" #include "paddle/fluid/framework/details/reduce_op_handle.h"
#include "paddle/fluid/framework/details/rpc_op_handle.h" #include "paddle/fluid/framework/details/rpc_op_handle.h"
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h" #include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
...@@ -26,9 +30,6 @@ ...@@ -26,9 +30,6 @@
#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h" #include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h"
#endif #endif
#include <string>
#include <vector>
DEFINE_string(ssa_graph_path, "/tmp/ssa_graph.dot", DEFINE_string(ssa_graph_path, "/tmp/ssa_graph.dot",
"the ssa graph path only print with GLOG_v=10," "the ssa graph path only print with GLOG_v=10,"
"default /tmp/graph.dot"); "default /tmp/graph.dot");
...@@ -148,9 +149,9 @@ bool MultiDevSSAGraphBuilder::IsDistTrainOp( ...@@ -148,9 +149,9 @@ bool MultiDevSSAGraphBuilder::IsDistTrainOp(
std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build( std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
const ProgramDesc &program) const { const ProgramDesc &program) const {
std::unordered_map<std::string, proto::VarType::Type> var_types; std::unordered_map<std::string, VarDesc *> all_vars;
for (auto *var : program.Block(0).AllVars()) { for (auto *var : program.Block(0).AllVars()) {
var_types[var->Name()] = var->GetType(); all_vars[var->Name()] = var;
} }
auto graph = new SSAGraph(); auto graph = new SSAGraph();
...@@ -167,12 +168,28 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build( ...@@ -167,12 +168,28 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
auto send_vars = FindDistTrainSendVars(program); auto send_vars = FindDistTrainSendVars(program);
auto recv_vars = FindDistTrainRecvVars(program); auto recv_vars = FindDistTrainRecvVars(program);
size_t cur_device_id = 0;
std::vector<std::unordered_set<std::string>> var_name_on_devices; std::vector<std::unordered_set<std::string>> var_name_on_devices;
std::vector<std::unordered_set<std::string>> bcast_var_name_set; std::vector<std::unordered_set<std::string>> bcast_var_name_set;
var_name_on_devices.resize(places_.size()); var_name_on_devices.resize(places_.size());
bcast_var_name_set.resize(places_.size()); bcast_var_name_set.resize(places_.size());
size_t cur_device_id = 0;
std::vector<int64_t> balance_grads(places_.size(), 0);
auto get_appropriate_dev = [&](std::string &g_name) -> size_t {
auto var_desc = all_vars.at(g_name);
PADDLE_ENFORCE_NOT_NULL(var_desc);
auto dim = framework::make_ddim(var_desc->GetShape());
int64_t numel = framework::product(dim);
PADDLE_ENFORCE_GE(numel, 0);
auto smallest =
std::min_element(std::begin(balance_grads), std::end(balance_grads));
size_t dev_id =
static_cast<size_t>(std::distance(std::begin(balance_grads), smallest));
balance_grads[dev_id] += numel;
return dev_id;
};
bool is_forwarding = true; bool is_forwarding = true;
for (auto *op : program.Block(0).AllOps()) { for (auto *op : program.Block(0).AllOps()) {
if (boost::get<int>( if (boost::get<int>(
...@@ -220,13 +237,13 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build( ...@@ -220,13 +237,13 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
switch (strategy_.reduce_) { switch (strategy_.reduce_) {
case BuildStrategy::ReduceStrategy::kReduce: case BuildStrategy::ReduceStrategy::kReduce:
cur_device_id = get_appropriate_dev(g_name);
CreateReduceOp(&result, g_name, cur_device_id); CreateReduceOp(&result, g_name, cur_device_id);
var_name_on_devices[cur_device_id].emplace(g_name); var_name_on_devices[cur_device_id].emplace(g_name);
bcast_var_name_set[cur_device_id].emplace(p_name); bcast_var_name_set[cur_device_id].emplace(p_name);
cur_device_id = (cur_device_id + 1) % places_.size();
break; break;
case BuildStrategy::ReduceStrategy::kAllReduce: case BuildStrategy::ReduceStrategy::kAllReduce:
if (IsSparseGradient(var_types, g_name)) { if (IsSparseGradient(all_vars, g_name)) {
CreateReduceOp(&result, g_name, 0); CreateReduceOp(&result, g_name, 0);
CreateBroadcastOp(&result, g_name, 0); CreateBroadcastOp(&result, g_name, 0);
} else { } else {
...@@ -269,10 +286,10 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build( ...@@ -269,10 +286,10 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
} }
bool MultiDevSSAGraphBuilder::IsSparseGradient( bool MultiDevSSAGraphBuilder::IsSparseGradient(
const std::unordered_map<std::string, proto::VarType::Type> &var_types, const std::unordered_map<std::string, VarDesc *> &all_vars,
const std::string &og) const { const std::string &og) const {
PADDLE_ENFORCE(var_types.count(og) != 0); PADDLE_ENFORCE(all_vars.count(og) != 0);
if (var_types.at(og) == proto::VarType::SELECTED_ROWS) { if (all_vars.at(og)->GetType() == proto::VarType::SELECTED_ROWS) {
return true; return true;
} }
return false; return false;
......
...@@ -106,7 +106,7 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder { ...@@ -106,7 +106,7 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
size_t src_dev_id) const; size_t src_dev_id) const;
bool IsSparseGradient( bool IsSparseGradient(
const std::unordered_map<std::string, proto::VarType::Type> &var_types, const std::unordered_map<std::string, VarDesc *> &all_vars,
const std::string &og) const; const std::string &og) const;
private: private:
......
...@@ -103,7 +103,7 @@ void OpDesc::CopyFrom(const OpDesc &op_desc) { ...@@ -103,7 +103,7 @@ void OpDesc::CopyFrom(const OpDesc &op_desc) {
need_update_ = true; need_update_ = true;
} }
OpDesc::OpDesc(const proto::OpDesc &desc, ProgramDesc *prog, BlockDesc *block) OpDesc::OpDesc(const proto::OpDesc &desc, BlockDesc *block)
: desc_(desc), need_update_(false) { : desc_(desc), need_update_(false) {
// restore inputs_ // restore inputs_
int input_size = desc_.inputs_size(); int input_size = desc_.inputs_size();
......
...@@ -33,13 +33,14 @@ class OpDesc { ...@@ -33,13 +33,14 @@ class OpDesc {
OpDesc(const std::string &type, const VariableNameMap &inputs, OpDesc(const std::string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs, const AttributeMap &attrs); const VariableNameMap &outputs, const AttributeMap &attrs);
OpDesc(const proto::OpDesc &desc, ProgramDesc *prog, BlockDesc *block); OpDesc(const proto::OpDesc &desc, BlockDesc *block);
explicit OpDesc(BlockDesc *block) : block_(block) {} explicit OpDesc(BlockDesc *block) : block_(block) {}
OpDesc(const OpDesc &other, BlockDesc *block) { OpDesc(const OpDesc &other, BlockDesc *block) {
*this = other; *this = other;
block_ = block; block_ = block;
need_update_ = true;
} }
void CopyFrom(const OpDesc &op_desc); void CopyFrom(const OpDesc &op_desc);
......
...@@ -51,12 +51,15 @@ ProgramDesc::ProgramDesc(const ProgramDesc &o) { ...@@ -51,12 +51,15 @@ ProgramDesc::ProgramDesc(const ProgramDesc &o) {
auto *block = desc_.mutable_blocks(i); auto *block = desc_.mutable_blocks(i);
blocks_.emplace_back(new BlockDesc(*o.blocks_[i], block, this)); blocks_.emplace_back(new BlockDesc(*o.blocks_[i], block, this));
} }
for (auto &block : blocks_) { for (size_t block_id = 0; block_id < blocks_.size(); ++block_id) {
for (auto *op : block->AllOps()) { auto all_ops = blocks_[block_id]->AllOps();
for (const auto &attr : op->Proto()->attrs()) { for (size_t op_id = 0; op_id < all_ops.size(); ++op_id) {
if (attr.type() == proto::AttrType::BLOCK) { auto &op = all_ops[op_id];
size_t blk_idx = attr.block_idx(); for (const std::string &attr_name : op->AttrNames()) {
op->SetBlockAttr(attr.name(), this->MutableBlock(blk_idx)); if (op->GetAttrType(attr_name) == proto::AttrType::BLOCK) {
int sub_block_id =
o.Block(block_id).Op(op_id)->GetBlockAttr(attr_name);
op->SetBlockAttr(attr_name, MutableBlock(sub_block_id));
} }
} }
} }
...@@ -86,6 +89,16 @@ ProgramDesc::ProgramDesc(const std::string &binary_str) { ...@@ -86,6 +89,16 @@ ProgramDesc::ProgramDesc(const std::string &binary_str) {
for (auto &block_desc : *desc_.mutable_blocks()) { for (auto &block_desc : *desc_.mutable_blocks()) {
blocks_.emplace_back(new BlockDesc(this, &block_desc)); blocks_.emplace_back(new BlockDesc(this, &block_desc));
} }
for (auto &block : blocks_) {
for (auto *op : block->AllOps()) {
for (const auto &attr : op->Proto()->attrs()) {
if (attr.type() == proto::AttrType::BLOCK) {
size_t blk_idx = attr.block_idx();
op->SetBlockAttr(attr.name(), this->MutableBlock(blk_idx));
}
}
}
}
} }
const std::vector<std::string> ProgramDesc::GetFeedTargetNames() { const std::vector<std::string> ProgramDesc::GetFeedTargetNames() {
......
...@@ -8,3 +8,5 @@ nv_test(test_op_converter SRCS test_op_converter.cc mul_op.cc conv2d_op.cc DEPS ...@@ -8,3 +8,5 @@ nv_test(test_op_converter SRCS test_op_converter.cc mul_op.cc conv2d_op.cc DEPS
nv_test(test_io_converter SRCS test_io_converter.cc io_converter.cc DEPS dynload_cuda dynamic_loader lod_tensor) nv_test(test_io_converter SRCS test_io_converter.cc io_converter.cc DEPS dynload_cuda dynamic_loader lod_tensor)
nv_test(test_trt_mul_op SRCS test_mul_op.cc mul_op.cc nv_test(test_trt_mul_op SRCS test_mul_op.cc mul_op.cc
DEPS ${FLUID_CORE_MODULES} tensorrt_engine mul_op SERIAL) DEPS ${FLUID_CORE_MODULES} tensorrt_engine mul_op SERIAL)
nv_test(test_trt_fc_op SRCS test_fc_op.cc fc_op.cc
DEPS ${FLUID_CORE_MODULES} tensorrt_engine mul_op SERIAL)
...@@ -24,7 +24,7 @@ class ReluOpConverter : public OpConverter { ...@@ -24,7 +24,7 @@ class ReluOpConverter : public OpConverter {
void operator()(const framework::proto::OpDesc& op) override { void operator()(const framework::proto::OpDesc& op) override {
// Here the two nullptr looks strange, that's because the // Here the two nullptr looks strange, that's because the
// framework::OpDesc's constructor is strange. // framework::OpDesc's constructor is strange.
framework::OpDesc op_desc(op, nullptr, nullptr); framework::OpDesc op_desc(op, nullptr);
LOG(INFO) << "convert a fluid relu op to tensorrt activation layer whose " LOG(INFO) << "convert a fluid relu op to tensorrt activation layer whose "
"type is Relu"; "type is Relu";
const nvinfer1::ITensor* input_tensor = const nvinfer1::ITensor* input_tensor =
......
...@@ -21,7 +21,8 @@ namespace tensorrt { ...@@ -21,7 +21,8 @@ namespace tensorrt {
class Conv2dOpConverter : public OpConverter { class Conv2dOpConverter : public OpConverter {
public: public:
Conv2dOpConverter() {} Conv2dOpConverter() {}
void operator()(const framework::proto::OpDesc& op) override { void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope) override {
LOG(INFO) LOG(INFO)
<< "convert a fluid conv2d op to tensorrt conv layer without bias"; << "convert a fluid conv2d op to tensorrt conv layer without bias";
} }
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/platform/place.h"
namespace paddle {
namespace inference {
namespace tensorrt {
// Reorder the elements from istrides to ostrides, borrowed from TRT convert in
// tensorflow.
// https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/tensorrt/convert/convert_nodes.cc#L318
template <typename T>
void Reorder2(nvinfer1::DimsHW shape, const T* idata, nvinfer1::DimsHW istrides,
T* odata, nvinfer1::DimsHW ostrides) {
for (int h = 0; h < shape.h(); ++h) {
for (int w = 0; w < shape.w(); ++w) {
odata[h * ostrides.h() + w * ostrides.w()] =
idata[h * ostrides.h() + w * ostrides.w()];
}
}
}
// Reorder the data layout from CK to KC.
void ReorderCKtoKC(TensorRTEngine::Weight& iweights,
TensorRTEngine::Weight* oweights) {
int c = iweights.dims[0];
int k = iweights.dims[1];
oweights->dims.assign({k, c});
nvinfer1::DimsHW istrides = {1, k};
nvinfer1::DimsHW ostrides = {c, 1};
Reorder2({k, c}, static_cast<float const*>(iweights.get().values), istrides,
static_cast<float*>(const_cast<void*>(oweights->get().values)),
ostrides);
}
/*
* FC converter convert a MUL op in Fluid to a FC layer in TRT.
*/
class FcOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope) override {
VLOG(4) << "convert a fluid fc op to tensorrt fc layer without bias";
framework::OpDesc op_desc(op, nullptr);
PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1);
PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1); // Y is a weight
PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1);
// Declare inputs
auto* X = engine_->GetITensor(op_desc.Input("X").front());
// Declare weights
auto* Y_v = scope.FindVar(op_desc.Input("Y").front());
PADDLE_ENFORCE_NOT_NULL(Y_v);
auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
// This may trigger a GPU->CPU copy, because TRT's weight can only be
// assigned from CPU memory, that can't be avoided.
auto* weight_data = Y_t->mutable_data<float>(platform::CPUPlace());
PADDLE_ENFORCE_EQ(Y_t->dims().size(), 2UL); // a matrix
size_t n_output = Y_t->dims()[1];
framework::LoDTensor tmp;
tmp.Resize(Y_t->dims());
memcpy(tmp.mutable_data<float>(platform::CPUPlace()), Y_t->data<float>(),
Y_t->dims()[0] * Y_t->dims()[1]);
TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
static_cast<void*>(weight_data),
Y_t->memory_size() / sizeof(float)};
TensorRTEngine::Weight tmp_weight(nvinfer1::DataType::kFLOAT,
static_cast<void*>(tmp.data<float>()),
Y_t->memory_size() / sizeof(float));
weight.dims.assign({Y_t->dims()[0], Y_t->dims()[1]});
tmp_weight.dims = weight.dims;
// The data layout of TRT FC layer's weight is different from fluid's FC,
// need to reorder the elements.
ReorderCKtoKC(tmp_weight, &weight);
// Currently, the framework can only handle one fluid op -> one TRT layer,
// but fc fuses `mul` and `bias` (2 fluid ops), so here is a trick, just
// handle `mul`, leave `add` as another layer.
// DEBUG
TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT, nullptr, 0};
auto* layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected,
*const_cast<nvinfer1::ITensor*>(X),
n_output, weight.get(), bias.get());
auto output_name = op_desc.Output("Out").front();
engine_->DeclareOutput(layer, 0, output_name);
}
};
REGISTER_TRT_OP_CONVERTER(fc, FcOpConverter);
} // namespace tensorrt
} // namespace inference
} // namespace paddle
USE_OP(mul);
...@@ -24,10 +24,11 @@ namespace tensorrt { ...@@ -24,10 +24,11 @@ namespace tensorrt {
class MulOpConverter : public OpConverter { class MulOpConverter : public OpConverter {
public: public:
MulOpConverter() {} MulOpConverter() {}
void operator()(const framework::proto::OpDesc& op) override { void operator()(const framework::proto::OpDesc& op,
VLOG(4) << "convert a fluid mul op to tensorrt fc layer without bias"; const framework::Scope& scope) override {
VLOG(4) << "convert a fluid mul op to tensorrt mul layer without bias";
framework::OpDesc op_desc(op, nullptr, nullptr); framework::OpDesc op_desc(op, nullptr);
// Declare inputs // Declare inputs
auto* input1 = engine_->GetITensor(op_desc.Input("X")[0]); auto* input1 = engine_->GetITensor(op_desc.Input("X")[0]);
auto* input2 = engine_->GetITensor(op_desc.Input("Y")[0]); auto* input2 = engine_->GetITensor(op_desc.Input("Y")[0]);
......
...@@ -31,27 +31,42 @@ namespace tensorrt { ...@@ -31,27 +31,42 @@ namespace tensorrt {
class OpConverter { class OpConverter {
public: public:
OpConverter() {} OpConverter() {}
virtual void operator()(const framework::proto::OpDesc& op) {}
void Run(const framework::proto::OpDesc& op, TensorRTEngine* engine) { // Converter logic for an op.
std::string type = op.type(); virtual void operator()(const framework::proto::OpDesc& op,
auto* it = Registry<OpConverter>::Lookup(type); const framework::Scope& scope) {}
PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]", type);
it->SetEngine(engine); // Convert a single fluid operaotr and add the corresponding layer to TRT.
(*it)(op); void ConvertOp(const framework::proto::OpDesc& op,
} const std::unordered_set<std::string>& parameters,
const framework::Scope& scope, TensorRTEngine* engine) {
framework::OpDesc op_desc(op, nullptr);
OpConverter* it{nullptr};
// convert fluid op to tensorrt layer if (op_desc.Type() == "mul") {
void ConvertOp(const framework::proto::OpDesc& op, TensorRTEngine* engine) { PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1UL);
OpConverter::Run(op, engine); std::string Y = op_desc.Input("Y")[0];
if (parameters.count(Y)) {
it = Registry<OpConverter>::Lookup("fc");
}
}
if (!it) {
it = Registry<OpConverter>::Lookup(op_desc.Type());
}
PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]",
op_desc.Type());
it->SetEngine(engine);
(*it)(op, scope);
} }
// convert fluid block to tensorrt network // convert fluid block to tensorrt network
void ConvertBlock(const framework::proto::BlockDesc& block, void ConvertBlock(const framework::proto::BlockDesc& block,
TensorRTEngine* engine) { const std::unordered_set<std::string>& parameters,
const framework::Scope& scope, TensorRTEngine* engine) {
for (int i = 0; i < block.ops_size(); i++) { for (int i = 0; i < block.ops_size(); i++) {
const auto& op = block.ops(i); const auto& op = block.ops(i);
OpConverter::Run(op, engine); ConvertOp(op, parameters, scope, engine);
} }
} }
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/convert/ut_helper.h"
namespace paddle {
namespace inference {
namespace tensorrt {
TEST(fc_op, test) {
std::unordered_set<std::string> parameters({"mul-Y"});
framework::Scope scope;
TRTConvertValidation validator(20, parameters, scope, 1000);
validator.DeclInputVar("mul-X", nvinfer1::Dims4(8, 3, 1, 1));
validator.DeclParamVar("mul-Y", nvinfer1::Dims2(3, 2));
validator.DeclOutputVar("mul-Out", nvinfer1::Dims2(8, 2));
// Prepare Op description
framework::OpDesc desc;
desc.SetType("mul");
desc.SetInput("X", {"mul-X"});
desc.SetInput("Y", {"mul-Y"});
desc.SetOutput("Out", {"mul-Out"});
validator.SetOp(*desc.Proto());
validator.Execute(10);
}
} // namespace tensorrt
} // namespace inference
} // namespace paddle
...@@ -21,7 +21,9 @@ namespace inference { ...@@ -21,7 +21,9 @@ namespace inference {
namespace tensorrt { namespace tensorrt {
TEST(MulOpConverter, main) { TEST(MulOpConverter, main) {
TRTConvertValidation validator(10, 1000); framework::Scope scope;
std::unordered_set<std::string> parameters;
TRTConvertValidation validator(10, parameters, scope, 1000);
validator.DeclInputVar("mul-X", nvinfer1::Dims2(10, 6)); validator.DeclInputVar("mul-X", nvinfer1::Dims2(10, 6));
validator.DeclInputVar("mul-Y", nvinfer1::Dims2(6, 10)); validator.DeclInputVar("mul-Y", nvinfer1::Dims2(6, 10));
validator.DeclOutputVar("mul-Out", nvinfer1::Dims2(10, 10)); validator.DeclOutputVar("mul-Out", nvinfer1::Dims2(10, 10));
......
...@@ -12,9 +12,10 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,9 +12,10 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include "paddle/fluid/framework/program_desc.h" #include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace paddle { namespace paddle {
namespace inference { namespace inference {
...@@ -27,7 +28,9 @@ TEST(OpConverter, ConvertBlock) { ...@@ -27,7 +28,9 @@ TEST(OpConverter, ConvertBlock) {
conv2d_op->SetType("conv2d"); conv2d_op->SetType("conv2d");
OpConverter converter; OpConverter converter;
converter.ConvertBlock(*block->Proto(), nullptr /*TensorRTEngine*/); framework::Scope scope;
converter.ConvertBlock(*block->Proto(), {}, scope,
nullptr /*TensorRTEngine*/);
} }
} // namespace tensorrt } // namespace tensorrt
......
...@@ -61,7 +61,10 @@ class TRTConvertValidation { ...@@ -61,7 +61,10 @@ class TRTConvertValidation {
public: public:
TRTConvertValidation() = delete; TRTConvertValidation() = delete;
explicit TRTConvertValidation(int batch_size, int workspace_size = 1024) { TRTConvertValidation(int batch_size,
const std::unordered_set<std::string>& parameters,
framework::Scope& scope, int workspace_size = 1 << 10)
: parameters_(parameters), scope_(scope) {
// create engine. // create engine.
engine_.reset(new TensorRTEngine(10, 1 << 10, &stream_)); engine_.reset(new TensorRTEngine(10, 1 << 10, &stream_));
engine_->InitNetwork(); engine_->InitNetwork();
...@@ -76,19 +79,22 @@ class TRTConvertValidation { ...@@ -76,19 +79,22 @@ class TRTConvertValidation {
engine_->DeclareInput(name, nvinfer1::DataType::kFLOAT, dims); engine_->DeclareInput(name, nvinfer1::DataType::kFLOAT, dims);
} }
// Declare a parameter varaible in the scope.
void DeclParamVar(const std::string& name, const nvinfer1::Dims& dims) {
DeclVar(name, dims);
}
void DeclOutputVar(const std::string& name, const nvinfer1::Dims& dims) { void DeclOutputVar(const std::string& name, const nvinfer1::Dims& dims) {
DeclVar(name, dims); DeclVar(name, dims);
} }
// Declare a variable in a fluid Scope.
void DeclVar(const std::string& name, const nvinfer1::Dims& dims) { void DeclVar(const std::string& name, const nvinfer1::Dims& dims) {
platform::CPUPlace place; platform::CPUPlace place;
platform::CPUDeviceContext ctx(place); platform::CPUDeviceContext ctx(place);
// Init Fluid tensor. // Init Fluid tensor.
std::vector<int> dim_vec(dims.nbDims); std::vector<int> dim_vec(dims.d, dims.d + dims.nbDims);
for (int i = 0; i < dims.nbDims; i++) {
dim_vec[i] = dims.d[i];
}
auto* x = scope_.Var(name); auto* x = scope_.Var(name);
auto* x_tensor = x->GetMutable<framework::LoDTensor>(); auto* x_tensor = x->GetMutable<framework::LoDTensor>();
x_tensor->Resize(framework::make_ddim(dim_vec)); x_tensor->Resize(framework::make_ddim(dim_vec));
...@@ -99,20 +105,22 @@ class TRTConvertValidation { ...@@ -99,20 +105,22 @@ class TRTConvertValidation {
op_ = framework::OpRegistry::CreateOp(desc); op_ = framework::OpRegistry::CreateOp(desc);
OpConverter op_converter; OpConverter op_converter;
op_converter.ConvertOp(desc, engine_.get()); op_converter.ConvertOp(desc, parameters_, scope_, engine_.get());
engine_->FreezeNetwork(); engine_->FreezeNetwork();
// Declare outputs. // Declare outputs.
op_desc_.reset(new framework::OpDesc(desc, nullptr, nullptr)); op_desc_.reset(new framework::OpDesc(desc, nullptr));
// Set Inputs. // Set Inputs.
for (const auto& input : op_desc_->InputArgumentNames()) { for (const auto& input : op_desc_->InputArgumentNames()) {
if (parameters_.count(input)) continue;
auto* var = scope_.FindVar(input); auto* var = scope_.FindVar(input);
PADDLE_ENFORCE(var); PADDLE_ENFORCE(var);
auto tensor = var->GetMutable<framework::LoDTensor>(); auto tensor = var->GetMutable<framework::LoDTensor>();
engine_->SetInputFromCPU( engine_->SetInputFromCPU(
input, static_cast<void*>(tensor->data<float>()), input, static_cast<void*>(tensor->data<void>()),
sizeof(float) * sizeof(float) *
analysis::AccuDims(tensor->dims(), tensor->dims().size())); analysis::AccuDims(tensor->dims(), tensor->dims().size()));
} }
...@@ -120,18 +128,21 @@ class TRTConvertValidation { ...@@ -120,18 +128,21 @@ class TRTConvertValidation {
void Execute(int batch_size) { void Execute(int batch_size) {
// Execute Fluid Op // Execute Fluid Op
// Execute TRT
platform::CPUPlace place; platform::CPUPlace place;
platform::CPUDeviceContext ctx(place); platform::CPUDeviceContext ctx(place);
engine_->Execute(batch_size);
op_->Run(scope_, place); op_->Run(scope_, place);
// Execute TRT.
engine_->Execute(batch_size);
cudaStreamSynchronize(*engine_->stream());
ASSERT_FALSE(op_desc_->OutputArgumentNames().empty()); ASSERT_FALSE(op_desc_->OutputArgumentNames().empty());
const size_t output_space_size = 200;
for (const auto& output : op_desc_->OutputArgumentNames()) { for (const auto& output : op_desc_->OutputArgumentNames()) {
std::vector<float> fluid_out; std::vector<float> fluid_out;
std::vector<float> trt_out(200); std::vector<float> trt_out(output_space_size);
engine_->GetOutputInCPU(output, &trt_out[0], 200 * sizeof(float)); engine_->GetOutputInCPU(output, &trt_out[0],
output_space_size * sizeof(float));
cudaStreamSynchronize(*engine_->stream());
auto* var = scope_.FindVar(output); auto* var = scope_.FindVar(output);
auto tensor = var->GetMutable<framework::LoDTensor>(); auto tensor = var->GetMutable<framework::LoDTensor>();
...@@ -139,7 +150,7 @@ class TRTConvertValidation { ...@@ -139,7 +150,7 @@ class TRTConvertValidation {
// Compare two output // Compare two output
ASSERT_FALSE(fluid_out.empty()); ASSERT_FALSE(fluid_out.empty());
for (size_t i = 0; i < fluid_out.size(); i++) { for (size_t i = 0; i < fluid_out.size(); i++) {
EXPECT_LT(std::abs(fluid_out[i] - trt_out[i]), 0.001); EXPECT_LT(std::abs(fluid_out[i] - trt_out[i]), 1e-6);
} }
} }
} }
...@@ -149,9 +160,10 @@ class TRTConvertValidation { ...@@ -149,9 +160,10 @@ class TRTConvertValidation {
private: private:
std::unique_ptr<TensorRTEngine> engine_; std::unique_ptr<TensorRTEngine> engine_;
cudaStream_t stream_; cudaStream_t stream_;
framework::Scope scope_;
std::unique_ptr<framework::OperatorBase> op_; std::unique_ptr<framework::OperatorBase> op_;
std::unique_ptr<framework::OpDesc> op_desc_; std::unique_ptr<framework::OpDesc> op_desc_;
const std::unordered_set<std::string>& parameters_;
framework::Scope& scope_;
}; };
} // namespace tensorrt } // namespace tensorrt
......
...@@ -106,6 +106,7 @@ void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer* layer, int offset, ...@@ -106,6 +106,7 @@ void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer* layer, int offset,
name); name);
auto* output = layer->getOutput(offset); auto* output = layer->getOutput(offset);
SetITensor(name, output);
PADDLE_ENFORCE(output != nullptr); PADDLE_ENFORCE(output != nullptr);
output->setName(name.c_str()); output->setName(name.c_str());
infer_network_->markOutput(*output); infer_network_->markOutput(*output);
......
...@@ -37,13 +37,15 @@ class TensorRTEngine : public EngineBase { ...@@ -37,13 +37,15 @@ class TensorRTEngine : public EngineBase {
// Weight is model parameter. // Weight is model parameter.
class Weight { class Weight {
public: public:
Weight(nvinfer1::DataType dtype, void* value, int num_elem) { Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
w_.type = dtype; w_.type = dtype;
w_.values = value; w_.values = value;
w_.count = num_elem; w_.count = num_elem;
} }
const nvinfer1::Weights& get() { return w_; } const nvinfer1::Weights& get() { return w_; }
std::vector<int64_t> dims;
private: private:
nvinfer1::Weights w_; nvinfer1::Weights w_;
}; };
......
...@@ -34,9 +34,22 @@ class BilinearInterpOp : public framework::OperatorWithKernel { ...@@ -34,9 +34,22 @@ class BilinearInterpOp : public framework::OperatorWithKernel {
int out_w = ctx->Attrs().Get<int>("out_w"); int out_w = ctx->Attrs().Get<int>("out_w");
PADDLE_ENFORCE_EQ(dim_x.size(), 4, "X's dimension must be 4"); PADDLE_ENFORCE_EQ(dim_x.size(), 4, "X's dimension must be 4");
if (ctx->HasInput("OutSize")) {
auto out_size_dim = ctx->GetInputDim("OutSize");
PADDLE_ENFORCE_EQ(out_size_dim.size(), 1,
"OutSize's dimension size must be 1");
PADDLE_ENFORCE_EQ(out_size_dim[0], 2, "OutSize's dim[0] must be 2");
}
std::vector<int64_t> dim_out({dim_x[0], dim_x[1], out_h, out_w}); std::vector<int64_t> dim_out({dim_x[0], dim_x[1], out_h, out_w});
ctx->SetOutputDim("Out", framework::make_ddim(dim_out)); ctx->SetOutputDim("Out", framework::make_ddim(dim_out));
} }
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace());
}
}; };
class BilinearInterpOpMaker : public framework::OpProtoAndCheckerMaker { class BilinearInterpOpMaker : public framework::OpProtoAndCheckerMaker {
...@@ -45,6 +58,10 @@ class BilinearInterpOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -45,6 +58,10 @@ class BilinearInterpOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("X", AddInput("X",
"(Tensor) The input tensor of bilinear interpolation, " "(Tensor) The input tensor of bilinear interpolation, "
"This is a 4-D tensor with shape of (N x C x h x w)"); "This is a 4-D tensor with shape of (N x C x h x w)");
AddInput("OutSize",
"(Tensor) This is a 1-D tensor with two number. "
"The first number is height and the second number is width.")
.AsDispensable();
AddOutput("Out", AddOutput("Out",
"(Tensor) The dimension of output is (N x C x out_h x out_w]"); "(Tensor) The dimension of output is (N x C x out_h x out_w]");
...@@ -78,6 +95,12 @@ class BilinearInterpOpGrad : public framework::OperatorWithKernel { ...@@ -78,6 +95,12 @@ class BilinearInterpOpGrad : public framework::OperatorWithKernel {
ctx->SetOutputDim(framework::GradVarName("X"), dim_x); ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
} }
} }
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace());
}
}; };
} // namespace operators } // namespace operators
......
...@@ -102,10 +102,21 @@ class BilinearInterpOpCUDAKernel : public framework::OpKernel<T> { ...@@ -102,10 +102,21 @@ class BilinearInterpOpCUDAKernel : public framework::OpKernel<T> {
auto* input_t = ctx.Input<Tensor>("X"); // float tensor auto* input_t = ctx.Input<Tensor>("X"); // float tensor
auto* output_t = ctx.Output<Tensor>("Out"); // float tensor auto* output_t = ctx.Output<Tensor>("Out"); // float tensor
auto* input = input_t->data<T>(); auto* input = input_t->data<T>();
auto* output = output_t->mutable_data<T>(ctx.GetPlace());
int out_h = ctx.Attr<int>("out_h"); int out_h = ctx.Attr<int>("out_h");
int out_w = ctx.Attr<int>("out_w"); int out_w = ctx.Attr<int>("out_w");
auto out_dims = output_t->dims();
auto out_size_t = ctx.Input<Tensor>("OutSize");
if (out_size_t != nullptr) {
Tensor sizes;
framework::TensorCopy(*out_size_t, platform::CPUPlace(), &sizes);
auto size_data = sizes.data<int>();
out_h = size_data[0];
out_w = size_data[1];
}
auto* output = output_t->mutable_data<T>(
{out_dims[0], out_dims[1], out_h, out_w}, ctx.GetPlace());
int batch_size = input_t->dims()[0]; int batch_size = input_t->dims()[0];
int channels = input_t->dims()[1]; int channels = input_t->dims()[1];
int in_h = input_t->dims()[2]; int in_h = input_t->dims()[2];
...@@ -139,8 +150,8 @@ class BilinearInterpGradOpCUDAKernel : public framework::OpKernel<T> { ...@@ -139,8 +150,8 @@ class BilinearInterpGradOpCUDAKernel : public framework::OpKernel<T> {
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
auto* d_input_t = ctx.Output<Tensor>(framework::GradVarName("X")); auto* d_input_t = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* d_output_t = ctx.Input<Tensor>(framework::GradVarName("Out")); auto* d_output_t = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* d_input = d_input_t->mutable_data<T>(ctx.GetPlace());
auto* d_output = d_output_t->data<T>(); auto* d_output = d_output_t->data<T>();
auto* d_input = d_input_t->mutable_data<T>(ctx.GetPlace());
auto& device_ctx = auto& device_ctx =
ctx.template device_context<platform::CUDADeviceContext>(); ctx.template device_context<platform::CUDADeviceContext>();
...@@ -149,6 +160,16 @@ class BilinearInterpGradOpCUDAKernel : public framework::OpKernel<T> { ...@@ -149,6 +160,16 @@ class BilinearInterpGradOpCUDAKernel : public framework::OpKernel<T> {
int out_h = ctx.Attr<int>("out_h"); int out_h = ctx.Attr<int>("out_h");
int out_w = ctx.Attr<int>("out_w"); int out_w = ctx.Attr<int>("out_w");
auto out_size_t = ctx.Input<Tensor>("OutSize");
if (out_size_t != nullptr) {
Tensor sizes;
framework::TensorCopy(*out_size_t, platform::CPUPlace(), &sizes);
auto size_data = sizes.data<int>();
out_h = size_data[0];
out_w = size_data[1];
}
int batch_size = d_input_t->dims()[0]; int batch_size = d_input_t->dims()[0];
int channels = d_input_t->dims()[1]; int channels = d_input_t->dims()[1];
int in_h = d_input_t->dims()[2]; int in_h = d_input_t->dims()[2];
......
...@@ -24,11 +24,18 @@ class BilinearInterpKernel : public framework::OpKernel<T> { ...@@ -24,11 +24,18 @@ class BilinearInterpKernel : public framework::OpKernel<T> {
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
auto* input_t = ctx.Input<Tensor>("X"); // float tensor auto* input_t = ctx.Input<Tensor>("X"); // float tensor
auto* output_t = ctx.Output<Tensor>("Out"); // float tensor auto* output_t = ctx.Output<Tensor>("Out"); // float tensor
auto out_dims = output_t->dims();
auto* input = input_t->data<T>(); auto* input = input_t->data<T>();
auto* output = output_t->mutable_data<T>(ctx.GetPlace());
int out_h = ctx.Attr<int>("out_h"); int out_h = ctx.Attr<int>("out_h");
int out_w = ctx.Attr<int>("out_w"); int out_w = ctx.Attr<int>("out_w");
auto out_size_t = ctx.Input<Tensor>("OutSize");
if (out_size_t != nullptr) {
auto out_size_data = out_size_t->data<int>();
out_h = out_size_data[0];
out_w = out_size_data[1];
}
auto* output = output_t->mutable_data<T>(
{out_dims[0], out_dims[1], out_h, out_w}, ctx.GetPlace());
int batch_size = input_t->dims()[0]; int batch_size = input_t->dims()[0];
int channels = input_t->dims()[1]; int channels = input_t->dims()[1];
int in_h = input_t->dims()[2]; int in_h = input_t->dims()[2];
...@@ -83,9 +90,8 @@ class BilinearInterpGradKernel : public framework::OpKernel<T> { ...@@ -83,9 +90,8 @@ class BilinearInterpGradKernel : public framework::OpKernel<T> {
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
auto* d_input_t = ctx.Output<Tensor>(framework::GradVarName("X")); auto* d_input_t = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* d_output_t = ctx.Input<Tensor>(framework::GradVarName("Out")); auto* d_output_t = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* d_input = d_input_t->mutable_data<T>(ctx.GetPlace());
auto* d_output = d_output_t->data<T>(); auto* d_output = d_output_t->data<T>();
auto* d_input = d_input_t->mutable_data<T>(ctx.GetPlace());
auto& device_ctx = auto& device_ctx =
ctx.template device_context<platform::CPUDeviceContext>(); ctx.template device_context<platform::CPUDeviceContext>();
math::SetConstant<platform::CPUDeviceContext, T> zero; math::SetConstant<platform::CPUDeviceContext, T> zero;
...@@ -93,6 +99,14 @@ class BilinearInterpGradKernel : public framework::OpKernel<T> { ...@@ -93,6 +99,14 @@ class BilinearInterpGradKernel : public framework::OpKernel<T> {
int out_h = ctx.Attr<int>("out_h"); int out_h = ctx.Attr<int>("out_h");
int out_w = ctx.Attr<int>("out_w"); int out_w = ctx.Attr<int>("out_w");
auto out_size_t = ctx.Input<Tensor>("OutSize");
if (out_size_t != nullptr) {
auto out_size_data = out_size_t->data<int>();
out_h = out_size_data[0];
out_w = out_size_data[1];
}
int batch_size = d_input_t->dims()[0]; int batch_size = d_input_t->dims()[0];
int channels = d_input_t->dims()[1]; int channels = d_input_t->dims()[1];
int in_h = d_input_t->dims()[2]; int in_h = d_input_t->dims()[2];
......
...@@ -33,7 +33,6 @@ class GatherOp : public framework::OperatorWithKernel { ...@@ -33,7 +33,6 @@ class GatherOp : public framework::OperatorWithKernel {
auto index_dims = ctx->GetInputDim("Index"); auto index_dims = ctx->GetInputDim("Index");
PADDLE_ENFORCE(index_dims.size() == 1); PADDLE_ENFORCE(index_dims.size() == 1);
int batch_size = ctx->GetInputDim("Index")[0]; int batch_size = ctx->GetInputDim("Index")[0];
PADDLE_ENFORCE_GE(batch_size, 0, "Batch size must be >0");
framework::DDim output_dims(ctx->GetInputDim("X")); framework::DDim output_dims(ctx->GetInputDim("X"));
output_dims[0] = batch_size; output_dims[0] = batch_size;
ctx->SetOutputDim("Out", output_dims); ctx->SetOutputDim("Out", output_dims);
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/shape_op.h"
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
class ShapeOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Input"),
"Input (Input) of get_shape op should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output (Out) of get_shape op should not be null.");
auto in_dim = ctx->GetInputDim("Input");
ctx->SetOutputDim("Out", {in_dim.size()});
}
};
class ShapeOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("Input", "(Tensor), The input tensor.");
AddOutput("Out", "(Tensor), The shape of input tensor.");
AddComment(R"DOC(
Shape Operator.
Get the shape of input tensor.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(shape, ops::ShapeOp, ops::ShapeOpMaker,
paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(shape, ops::ShapeKernel<int>, ops::ShapeKernel<int64_t>,
ops::ShapeKernel<float>, ops::ShapeKernel<double>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/shape_op.h"
REGISTER_OP_CUDA_KERNEL(shape, paddle::operators::ShapeKernel<int>,
paddle::operators::ShapeKernel<int64_t>,
paddle::operators::ShapeKernel<float>,
paddle::operators::ShapeKernel<double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
class ShapeKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* in_t = ctx.Input<Tensor>("Input");
auto* out_t = ctx.Output<Tensor>("Out");
auto out_data = out_t->mutable_data<int64_t>(platform::CPUPlace());
auto in_dims = in_t->dims();
for (int i = 0; i < in_dims.size(); ++i) {
out_data[i] = in_dims[i];
}
}
};
} // namespace operators
} // namespace paddle
...@@ -31,8 +31,9 @@ void paddle::operators::TensorRTEngineKernel<DeviceContext, T>::Prepare( ...@@ -31,8 +31,9 @@ void paddle::operators::TensorRTEngineKernel<DeviceContext, T>::Prepare(
auto max_workspace = context.Attr<int>("max_workspace"); auto max_workspace = context.Attr<int>("max_workspace");
engine_.reset(new inference::tensorrt::TensorRTEngine( engine_.reset(new inference::tensorrt::TensorRTEngine(
max_batch_, max_workspace, nullptr)); max_batch_, max_workspace, nullptr));
// TODO(Superjomn) parameters should be passed after analysised from outside.
inference::Singleton<inference::tensorrt::OpConverter>::Global().ConvertBlock( inference::Singleton<inference::tensorrt::OpConverter>::Global().ConvertBlock(
block, engine_.get()); block, {}, context.scope(), engine_.get());
engine_->FreezeNetwork(); engine_->FreezeNetwork();
} }
......
...@@ -127,6 +127,7 @@ double Event::CpuElapsedMs(const Event& e) const { ...@@ -127,6 +127,7 @@ double Event::CpuElapsedMs(const Event& e) const {
double Event::CudaElapsedMs(const Event& e) const { double Event::CudaElapsedMs(const Event& e) const {
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
if (!has_cuda_) return 0.0;
PADDLE_ENFORCE(e.has_cuda() && has_cuda()); PADDLE_ENFORCE(e.has_cuda() && has_cuda());
PADDLE_ENFORCE(e.device() == device()); PADDLE_ENFORCE(e.device() == device());
PADDLE_ENFORCE(cudaEventSynchronize(event_)); PADDLE_ENFORCE(cudaEventSynchronize(event_));
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
__all__ = ['batch'] __all__ = ['batch']
def batch(reader, batch_size): def batch(reader, batch_size, drop_last=False):
""" """
Create a batched reader. Create a batched reader.
...@@ -23,6 +23,8 @@ def batch(reader, batch_size): ...@@ -23,6 +23,8 @@ def batch(reader, batch_size):
:type reader: callable :type reader: callable
:param batch_size: size of each mini-batch :param batch_size: size of each mini-batch
:type batch_size: int :type batch_size: int
:param drop_last: drop the last batch, if the size of last batch is not equal to batch_size.
:type drop_last: bool
:return: the batched reader. :return: the batched reader.
:rtype: callable :rtype: callable
""" """
...@@ -35,7 +37,7 @@ def batch(reader, batch_size): ...@@ -35,7 +37,7 @@ def batch(reader, batch_size):
if len(b) == batch_size: if len(b) == batch_size:
yield b yield b
b = [] b = []
if b: if drop_last == False and len(b) != 0:
yield b yield b
return batch_reader return batch_reader
...@@ -82,6 +82,7 @@ __all__ = [ ...@@ -82,6 +82,7 @@ __all__ = [
'roi_pool', 'roi_pool',
'dice_loss', 'dice_loss',
'upsampling_bilinear2d', 'upsampling_bilinear2d',
'gather',
'random_crop', 'random_crop',
] ]
...@@ -3889,7 +3890,6 @@ def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0): ...@@ -3889,7 +3890,6 @@ def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
def dice_loss(input, label, epsilon=0.00001): def dice_loss(input, label, epsilon=0.00001):
""" """
**Dice loss Layer**
Dice loss for comparing the similarity of two batch of data, Dice loss for comparing the similarity of two batch of data,
usually is used for binary image segmentation i.e. labels are binary. usually is used for binary image segmentation i.e. labels are binary.
The dice loss can be defined as below equation: The dice loss can be defined as below equation:
...@@ -3944,7 +3944,7 @@ def upsampling_bilinear2d(input, out_shape=None, scale=None, name=None): ...@@ -3944,7 +3944,7 @@ def upsampling_bilinear2d(input, out_shape=None, scale=None, name=None):
input (Variable): The input tensor of bilinear interpolation, input (Variable): The input tensor of bilinear interpolation,
This is a 4-D tensor of the shape This is a 4-D tensor of the shape
(num_batches, channels, in_h, in_w). (num_batches, channels, in_h, in_w).
out_shape(list|tuple|None): Output shape of bilinear interpolation out_shape(list|tuple|Variable|None): Output shape of bilinear interpolation
layer, the shape is (out_h, out_w). layer, the shape is (out_h, out_w).
Default: None Default: None
scale(int|None): The multiplier for the input height or width. scale(int|None): The multiplier for the input height or width.
...@@ -3971,13 +3971,20 @@ def upsampling_bilinear2d(input, out_shape=None, scale=None, name=None): ...@@ -3971,13 +3971,20 @@ def upsampling_bilinear2d(input, out_shape=None, scale=None, name=None):
def _is_list_or_turple_(data): def _is_list_or_turple_(data):
return (isinstance(data, list) or isinstance(data, tuple)) return (isinstance(data, list) or isinstance(data, tuple))
out_h = 0
out_w = 0
inputs = {"X": input}
if out_shape is not None: if out_shape is not None:
if not (_is_list_or_turple_(out_shape) and len(out_shape) == 2): if not (_is_list_or_turple_(out_shape) and len(out_shape) == 2) and (
out_shape is not Variable):
raise ValueError('out_shape should be a list or tuple ', raise ValueError('out_shape should be a list or tuple ',
'with length 2, (out_h, out_w).') 'with length 2, (out_h, out_w).')
out_shape = list(map(int, out_shape)) if _is_list_or_turple_(out_shape):
out_h = out_shape[0] out_shape = list(map(int, out_shape))
out_w = out_shape[1] out_h = out_shape[0]
out_w = out_shape[1]
else:
inputs['OutSize'] = out_shape
else: else:
out_h = int(input.shape[2] * scale) out_h = int(input.shape[2] * scale)
out_w = int(input.shape[3] * scale) out_w = int(input.shape[3] * scale)
...@@ -3985,13 +3992,62 @@ def upsampling_bilinear2d(input, out_shape=None, scale=None, name=None): ...@@ -3985,13 +3992,62 @@ def upsampling_bilinear2d(input, out_shape=None, scale=None, name=None):
out = helper.create_tmp_variable(dtype) out = helper.create_tmp_variable(dtype)
helper.append_op( helper.append_op(
type="bilinear_interp", type="bilinear_interp",
inputs={"X": input}, inputs=inputs,
outputs={"Out": out}, outputs={"Out": out},
attrs={"out_h": out_h, attrs={"out_h": out_h,
"out_w": out_w}) "out_w": out_w})
return out return out
def gather(input, index):
"""
Output is obtained by gathering entries of the outer-most dimension
of X indexed by `index` and concatenate them together.
.. math::
Out = X[Index]
.. code-block:: text
Given:
X = [[1, 2],
[3, 4],
[5, 6]]
Index = [1, 2]
Then:
Out = [[3, 4],
[5, 6]]
Args:
input (Variable): The source input with rank>=1.
index (Variable): The index input with rank=1.
Returns:
output (Variable): The output is a tensor with the same rank as input.
Examples:
.. code-block:: python
output = fluid.layers.gather(x, index)
"""
helper = LayerHelper('gather', **locals())
dtype = helper.input_dtype()
out = helper.create_tmp_variable(dtype)
helper.append_op(
type="gather",
inputs={"X": input,
"Index": index},
outputs={"Out": out})
return out
def random_crop(input, shape, seed=1): def random_crop(input, shape, seed=1):
helper = LayerHelper("random_crop", **locals()) helper = LayerHelper("random_crop", **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
......
...@@ -71,6 +71,7 @@ __all__ = [ ...@@ -71,6 +71,7 @@ __all__ = [
'cumsum', 'cumsum',
'scatter', 'scatter',
'sum', 'sum',
'shape',
] + __activations__ ] + __activations__
for _OP in set(__all__): for _OP in set(__all__):
......
...@@ -17,7 +17,10 @@ import numpy as np ...@@ -17,7 +17,10 @@ import numpy as np
from op_test import OpTest from op_test import OpTest
def bilinear_interp_np(input, out_h, out_w): def bilinear_interp_np(input, out_h, out_w, out_size):
if out_size is not None:
out_h = out_size[0]
out_w = out_size[1]
batch_size, channel, in_h, in_w = input.shape batch_size, channel, in_h, in_w = input.shape
if out_h > 1: if out_h > 1:
ratio_h = (in_h - 1.0) / (out_h - 1.0) ratio_h = (in_h - 1.0) / (out_h - 1.0)
...@@ -49,12 +52,15 @@ def bilinear_interp_np(input, out_h, out_w): ...@@ -49,12 +52,15 @@ def bilinear_interp_np(input, out_h, out_w):
class TestBilinearInterpOp(OpTest): class TestBilinearInterpOp(OpTest):
def setUp(self): def setUp(self):
self.out_size = None
self.init_test_case() self.init_test_case()
self.op_type = "bilinear_interp" self.op_type = "bilinear_interp"
input_np = np.random.random(self.input_shape).astype("float32") input_np = np.random.random(self.input_shape).astype("float32")
output_np = bilinear_interp_np(input_np, self.out_h, self.out_w) output_np = bilinear_interp_np(input_np, self.out_h, self.out_w,
self.out_size)
self.inputs = {'X': input_np} self.inputs = {'X': input_np}
if self.out_size is not None:
self.inputs['OutSize'] = self.out_size
self.attrs = {'out_h': self.out_h, 'out_w': self.out_w} self.attrs = {'out_h': self.out_h, 'out_w': self.out_w}
self.outputs = {'Out': output_np} self.outputs = {'Out': output_np}
...@@ -68,6 +74,7 @@ class TestBilinearInterpOp(OpTest): ...@@ -68,6 +74,7 @@ class TestBilinearInterpOp(OpTest):
self.input_shape = [2, 3, 4, 4] self.input_shape = [2, 3, 4, 4]
self.out_h = 2 self.out_h = 2
self.out_w = 2 self.out_w = 2
self.out_size = np.array([3, 3]).astype("int32")
class TestCase1(TestBilinearInterpOp): class TestCase1(TestBilinearInterpOp):
...@@ -91,5 +98,29 @@ class TestCase3(TestBilinearInterpOp): ...@@ -91,5 +98,29 @@ class TestCase3(TestBilinearInterpOp):
self.out_w = 128 self.out_w = 128
class TestCase4(TestBilinearInterpOp):
def init_test_case(self):
self.input_shape = [4, 1, 7, 8]
self.out_h = 1
self.out_w = 1
self.out_size = np.array([2, 2]).astype("int32")
class TestCase5(TestBilinearInterpOp):
def init_test_case(self):
self.input_shape = [3, 3, 9, 6]
self.out_h = 12
self.out_w = 12
self.out_size = np.array([11, 11]).astype("int32")
class TestCase6(TestBilinearInterpOp):
def init_test_case(self):
self.input_shape = [1, 1, 128, 64]
self.out_h = 64
self.out_w = 128
self.out_size = np.array([65, 129]).astype("int32")
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()
...@@ -20,8 +20,9 @@ from op_test import OpTest ...@@ -20,8 +20,9 @@ from op_test import OpTest
class TestGatherOp(OpTest): class TestGatherOp(OpTest):
def setUp(self): def setUp(self):
self.op_type = "gather" self.op_type = "gather"
xnp = np.random.random((10, 20)).astype("float32") self.config()
self.inputs = {'X': xnp, 'Index': np.array([1, 3, 5]).astype("int32")} xnp = np.random.random(self.x_shape).astype("float32")
self.inputs = {'X': xnp, 'Index': np.array(self.index).astype("int32")}
self.outputs = {'Out': self.inputs["X"][self.inputs["Index"]]} self.outputs = {'Out': self.inputs["X"][self.inputs["Index"]]}
def test_check_output(self): def test_check_output(self):
...@@ -30,6 +31,16 @@ class TestGatherOp(OpTest): ...@@ -30,6 +31,16 @@ class TestGatherOp(OpTest):
def test_check_grad(self): def test_check_grad(self):
self.check_grad(['X'], 'Out') self.check_grad(['X'], 'Out')
def config(self):
self.x_shape = (10, 20)
self.index = [1, 3, 5]
class TestCase1(TestGatherOp):
def config(self):
self.x_shape = (10)
self.index = [1, 3, 5]
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
class TestShapeOp(OpTest):
def setUp(self):
self.op_type = "shape"
self.config()
self.shape = [2, 3]
input = np.zeros(self.shape)
self.inputs = {'Input': input}
self.outputs = {'Out': np.array(self.shape)}
def config(self):
self.shape = [2, 3]
def test_check_output(self):
self.check_output()
class case1(TestShapeOp):
def config(self):
self.shape = [2]
class case2(TestShapeOp):
def config(self):
self.shape = [1, 2, 3]
if __name__ == '__main__':
unittest.main()
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
__all__ = ['batch'] __all__ = ['batch']
def batch(reader, batch_size): def batch(reader, batch_size, drop_last=False):
""" """
Create a batched reader. Create a batched reader.
...@@ -23,6 +23,8 @@ def batch(reader, batch_size): ...@@ -23,6 +23,8 @@ def batch(reader, batch_size):
:type reader: callable :type reader: callable
:param batch_size: size of each mini-batch :param batch_size: size of each mini-batch
:type batch_size: int :type batch_size: int
:param drop_last: drop the last batch, if the size of last batch is not equal to batch_size.
:type drop_last: bool
:return: the batched reader. :return: the batched reader.
:rtype: callable :rtype: callable
""" """
...@@ -35,7 +37,7 @@ def batch(reader, batch_size): ...@@ -35,7 +37,7 @@ def batch(reader, batch_size):
if len(b) == batch_size: if len(b) == batch_size:
yield b yield b
b = [] b = []
if b: if drop_last == False and len(b) != 0:
yield b yield b
return batch_reader return batch_reader
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册