test_elementwise_api.cc 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <memory>

#include "paddle/pten/api/include/math.h"

#include "paddle/pten/api/lib/utils/allocator.h"
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/core/kernel_registry.h"

24 25 26
namespace paddle {
namespace tests {

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
namespace framework = paddle::framework;
using DDim = paddle::framework::DDim;

// TODO(chenweihang): Remove this test after the API is used in the dygraph
TEST(API, add) {
  // 1. create tensor
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());
  auto dense_x = std::make_shared<pten::DenseTensor>(
      alloc,
      pten::DenseTensorMeta(pten::DataType::FLOAT32,
                            framework::make_ddim({3, 10}),
                            pten::DataLayout::NCHW));
  auto* dense_x_data = dense_x->mutable_data<float>();

  auto dense_y = std::make_shared<pten::DenseTensor>(
      alloc,
      pten::DenseTensorMeta(pten::DataType::FLOAT32,
                            framework::make_ddim({10}),
                            pten::DataLayout::NCHW));
  auto* dense_y_data = dense_y->mutable_data<float>();

  float sum[3][10] = {0.0};
  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = (i * 10 + j) * 1.0;
      sum[i][j] = (i * 10 + j) * 1.0 + j * 2.0;
    }
  }
  for (size_t i = 0; i < 10; ++i) {
    dense_y_data[i] = i * 2.0;
  }
  paddle::experimental::Tensor x(dense_x);
  paddle::experimental::Tensor y(dense_y);

  // 2. test API
  auto out = paddle::experimental::add(x, y);

  // 3. check result
66
  ASSERT_EQ(out.shape().size(), 2UL);
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
  ASSERT_EQ(out.shape()[0], 3);
  ASSERT_EQ(out.numel(), 30);
  ASSERT_EQ(out.is_cpu(), true);
  ASSERT_EQ(out.type(), pten::DataType::FLOAT32);
  ASSERT_EQ(out.layout(), pten::DataLayout::NCHW);
  ASSERT_EQ(out.initialized(), true);

  auto expect_result = sum;
  auto dense_out = std::dynamic_pointer_cast<pten::DenseTensor>(out.impl());
  auto actual_result0 = dense_out->data<float>()[0];
  auto actual_result1 = dense_out->data<float>()[1];
  auto actual_result2 = dense_out->data<float>()[10];
  ASSERT_NEAR(expect_result[0][0], actual_result0, 1e-6f);
  ASSERT_NEAR(expect_result[0][1], actual_result1, 1e-6f);
  ASSERT_NEAR(expect_result[1][0], actual_result2, 1e-6f);
}
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

// TODO(chenweihang): Remove this test after the API is used in the dygraph
TEST(API, subtract) {
  // 1. create tensor
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());
  auto dense_x = std::make_shared<pten::DenseTensor>(
      alloc,
      pten::DenseTensorMeta(pten::DataType::FLOAT32,
                            framework::make_ddim({3, 10}),
                            pten::DataLayout::NCHW));
  auto* dense_x_data = dense_x->mutable_data<float>();

  auto dense_y = std::make_shared<pten::DenseTensor>(
      alloc,
      pten::DenseTensorMeta(pten::DataType::FLOAT32,
                            framework::make_ddim({10}),
                            pten::DataLayout::NCHW));
  auto* dense_y_data = dense_y->mutable_data<float>();

  float sub[3][10] = {0.0};
  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = (i * 10 + j) * 1.0;
      sub[i][j] = (i * 10 + j) * 1.0 - j * 2.0;
    }
  }
  for (size_t i = 0; i < 10; ++i) {
    dense_y_data[i] = i * 2.0;
  }
  paddle::experimental::Tensor x(dense_x);
  paddle::experimental::Tensor y(dense_y);

  // 2. test API
  auto out = paddle::experimental::subtract(x, y);

  // 3. check result
  ASSERT_EQ(out.shape().size(), 2UL);
  ASSERT_EQ(out.shape()[0], 3);
  ASSERT_EQ(out.numel(), 30);
  ASSERT_EQ(out.is_cpu(), true);
  ASSERT_EQ(out.type(), pten::DataType::FLOAT32);
  ASSERT_EQ(out.layout(), pten::DataLayout::NCHW);
  ASSERT_EQ(out.initialized(), true);

  auto expect_result = sub;
  auto dense_out = std::dynamic_pointer_cast<pten::DenseTensor>(out.impl());
  auto actual_result0 = dense_out->data<float>()[0];
  auto actual_result1 = dense_out->data<float>()[1];
  auto actual_result2 = dense_out->data<float>()[10];
  ASSERT_NEAR(expect_result[0][0], actual_result0, 1e-6f);
  ASSERT_NEAR(expect_result[0][1], actual_result1, 1e-6f);
  ASSERT_NEAR(expect_result[1][0], actual_result2, 1e-6f);
}
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

// TODO(chenweihang): Remove this test after the API is used in the dygraph
TEST(API, divide) {
  // 1. create tensor
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());
  auto dense_x = std::make_shared<pten::DenseTensor>(
      alloc,
      pten::DenseTensorMeta(pten::DataType::FLOAT32,
                            framework::make_ddim({3, 10}),
                            pten::DataLayout::NCHW));
  auto* dense_x_data = dense_x->mutable_data<float>();

  auto dense_y = std::make_shared<pten::DenseTensor>(
      alloc,
      pten::DenseTensorMeta(pten::DataType::FLOAT32,
                            framework::make_ddim({10}),
                            pten::DataLayout::NCHW));
  auto* dense_y_data = dense_y->mutable_data<float>();

  float div[3][10] = {0.0};
  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = (i * 10 + j) * 1.0;
      div[i][j] = (i * 10 + j) * 1.0 / (j * 2.0 + 1);
    }
  }
  for (size_t i = 0; i < 10; ++i) {
    dense_y_data[i] = i * 2.0 + 1;
  }
Y
YuanRisheng 已提交
167

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
  paddle::experimental::Tensor x(dense_x);
  paddle::experimental::Tensor y(dense_y);

  // 2. test API
  auto out = paddle::experimental::divide(x, y);

  // 3. check result
  ASSERT_EQ(out.shape().size(), 2UL);
  ASSERT_EQ(out.shape()[0], 3);
  ASSERT_EQ(out.numel(), 30);
  ASSERT_EQ(out.is_cpu(), true);
  ASSERT_EQ(out.type(), pten::DataType::FLOAT32);
  ASSERT_EQ(out.layout(), pten::DataLayout::NCHW);
  ASSERT_EQ(out.initialized(), true);

  auto expect_result = div;
  auto dense_out = std::dynamic_pointer_cast<pten::DenseTensor>(out.impl());
  auto actual_result0 = dense_out->data<float>()[0];
  auto actual_result1 = dense_out->data<float>()[1];
  auto actual_result2 = dense_out->data<float>()[10];
  ASSERT_NEAR(expect_result[0][0], actual_result0, 1e-6f);
  ASSERT_NEAR(expect_result[0][1], actual_result1, 1e-6f);
  ASSERT_NEAR(expect_result[1][0], actual_result2, 1e-6f);
}
192

Y
YuanRisheng 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
TEST(API, multiply) {
  // 1. create tensor
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());
  auto dense_x = std::make_shared<pten::DenseTensor>(
      alloc,
      pten::DenseTensorMeta(pten::DataType::FLOAT32,
                            framework::make_ddim({3, 10}),
                            pten::DataLayout::NCHW));
  auto* dense_x_data = dense_x->mutable_data<float>();

  auto dense_y = std::make_shared<pten::DenseTensor>(
      alloc,
      pten::DenseTensorMeta(pten::DataType::FLOAT32,
                            framework::make_ddim({10}),
                            pten::DataLayout::NCHW));
  auto* dense_y_data = dense_y->mutable_data<float>();

  float mul[3][10] = {0.0};
  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = (i * 10 + j) * 1.0;
      mul[i][j] = (i * 10 + j) * 1.0 * j * 2.0;
    }
  }
  for (size_t i = 0; i < 10; ++i) {
    dense_y_data[i] = i * 2.0;
  }
  paddle::experimental::Tensor x(dense_x);
  paddle::experimental::Tensor y(dense_y);

  // 2. test API
  auto out = paddle::experimental::multiply(x, y);

  // 3. check result
  ASSERT_EQ(out.shape().size(), 2UL);
  ASSERT_EQ(out.shape()[0], 3);
  ASSERT_EQ(out.numel(), 30);
  ASSERT_EQ(out.is_cpu(), true);
  ASSERT_EQ(out.type(), pten::DataType::FLOAT32);
  ASSERT_EQ(out.layout(), pten::DataLayout::NCHW);
  ASSERT_EQ(out.initialized(), true);

  auto expect_result = mul;
  auto dense_out = std::dynamic_pointer_cast<pten::DenseTensor>(out.impl());
  auto actual_result0 = dense_out->data<float>()[0];
  auto actual_result1 = dense_out->data<float>()[1];
  auto actual_result2 = dense_out->data<float>()[10];
  ASSERT_NEAR(expect_result[0][0], actual_result0, 1e-6f);
  ASSERT_NEAR(expect_result[0][1], actual_result1, 1e-6f);
  ASSERT_NEAR(expect_result[1][0], actual_result2, 1e-6f);
}
245 246
}  // namespace tests
}  // namespace paddle