pooling.h 16.5 KB
Newer Older
F
From00 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
#include <string>
#include <vector>
#include "paddle/fluid/platform/macros.h"  // import FLT_MAX
#include "paddle/phi/common/amp_type_traits.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/hostdevice.h"

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#include "paddle/phi/backends/gpu/gpu_decls.h"
#endif

namespace phi {
namespace funcs {

/*
 * \brief Extracting simple operations from pooling.
 *        Both MaxPool and AvgPool need "initial", "compute" and "finalize"
 * operation.
 *        MaxPool initializes temp variable to the negative maximum to find the
 * maximum value in the pooling field.
 *        AvgPool initializes temp variable to the zero to accumulate all values
 * in pool pooling, and finally takes the average.
 *        MaxPoolGrad and AvgPoolGrad are gradient operations respectively.
 */
template <class T>
class MaxPool {
 public:
  DEVICE inline T initial() { return static_cast<T>(-FLT_MAX); }
  DEVICE inline void compute(const T& x, T* y) { *y = *y > x ? *y : x; }
  DEVICE inline void finalize(const T& pool_field, T* y) {}
};

template <class T>
class AvgPool {
  using MT = typename dtype::MPTypeTrait<T>::Type;
  MT intermediate_res;

 public:
  DEVICE inline T initial() {
    intermediate_res = static_cast<MT>(0.0f);
    return static_cast<T>(0);
  }

  DEVICE inline void compute(const T& x, T* y) {
    intermediate_res += static_cast<MT>(x);
  }

  DEVICE inline void finalize(const T& pool_field, T* y) {
    *y = static_cast<T>(intermediate_res / (static_cast<MT>(pool_field)));
  }
};

template <class T>
class MaxPoolGrad {
 public:
  static constexpr bool use_x = true;
  HOSTDEVICE inline void compute(
      const T& x, const T& y, const T& dy, T scale, T* dx) {
    *dx += dy * static_cast<T>(x == y);
  }
};

template <class T>
class AvgPoolGrad {
 public:
  static constexpr bool use_x = false;
  HOSTDEVICE inline void compute(
      const T& x, const T& y, const T& dy, T scale, T* dx) {
    *dx += (scale * dy);
  }
};

/* used for adaptive pool to calculate start and end index of each divided grid
 */
HOSTDEVICE inline int AdaptStartIndex(int ph, int input_size, int output_size) {
  return static_cast<int>(
      floor(static_cast<double>(ph * input_size) / output_size));
}

HOSTDEVICE inline int AdaptEndIndex(int ph, int input_size, int output_size) {
  return static_cast<int>(
      ceil(static_cast<double>((ph + 1) * input_size) / output_size));
}

/*
 * \brief Getting pooling results, and calculating gradient.
 *
 * In pool2d, all Tensors are in NCHW or NHWC format. Where N is batch size, C
 * is the number of channels, H and W is the height and width of feature.
 * In pool3d, all Tensors are in NCDHW or NDHWC format. Where N is batch size, C
 * is the number of channels, D, H and W is the depth, height and width of
 * feature.
 *
 * In max pooling, it is possible that the pooling region has multiple maximum
 * elements. In this case, we should compute the gradient of the first maximum
 * element.
 * This is different from average pooling. So we rewrite the max_pool_grad:
 * MaxPool2dGradFunctor, MaxPool3dGradFunctor.
 */
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
template <typename PoolProcess, typename T>
class Pool2dDirectCUDAFunctor {
 public:
  void operator()(const T* input,
                  const std::vector<int>& input_shape,
                  const std::vector<int>& output_shape,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  bool exclusive,
                  bool adaptive,
                  T* output,
                  gpuStream_t stream,
                  PoolProcess pool_compute);
};
#endif

template <typename Context, typename PoolProcess, typename T>
class Pool2dFunctor {
 public:
  void operator()(const Context& context,
                  const DenseTensor& input,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  bool exclusive,
                  bool adaptive,
                  DenseTensor* output,
                  PoolProcess pool_compute);

  // overload operator() to support argument data_format
  void operator()(const Context& context,
                  const DenseTensor& input,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  const std::string data_format,
                  bool exclusive,
                  bool adaptive,
                  DenseTensor* output,
                  PoolProcess pool_compute);
};

template <typename Context, typename PoolProcess, typename T>
class Pool2dGradFunctor {
 public:
  void operator()(const Context& context,
                  const DenseTensor& input,
                  const DenseTensor& output,
                  const DenseTensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  bool exclusive,
                  bool adaptive,
                  DenseTensor* input_grad,
                  PoolProcess pool_compute);
  // overload operator() to support argument data_format
  void operator()(const Context& context,
                  const DenseTensor& input,
                  const DenseTensor& output,
                  const DenseTensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  const std::string data_format,
                  bool exclusive,
                  bool adaptive,
                  DenseTensor* input_grad,
                  PoolProcess pool_compute);
};

template <typename Context, class T>
class MaxPool2dGradFunctor {
 public:
  void operator()(const Context& context,
                  const DenseTensor& input,
                  const DenseTensor& output,
                  const DenseTensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  DenseTensor* input_grad);
  // overload operator() to support argument data_format
  void operator()(const Context& context,
                  const DenseTensor& input,
                  const DenseTensor& output,
                  const DenseTensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  const std::string data_format,
                  DenseTensor* input_grad);
};

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
template <typename PoolProcess, typename T>
class Pool3dDirectCUDAFunctor {
 public:
  void operator()(const T* input,
                  const std::vector<int>& input_shape,
                  const std::vector<int>& output_shape,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  bool exclusive,
                  bool adaptive,
                  T* output,
                  gpuStream_t stream,
                  PoolProcess pool_compute);
};
#endif

template <typename Context, typename PoolProcess, typename T>
class Pool3dFunctor {
 public:
  void operator()(const Context& context,
                  const DenseTensor& input,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  bool exclusive,
                  bool adaptive,
                  DenseTensor* output,
                  PoolProcess pool_compute);
  // overload operator() to support argument data_format
  void operator()(const Context& context,
                  const DenseTensor& input,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  const std::string data_format,
                  bool exclusive,
                  bool adaptive,
                  DenseTensor* output,
                  PoolProcess pool_compute);
};

template <typename Context, typename PoolProcess, typename T>
class Pool3dGradFunctor {
 public:
  void operator()(const Context& context,
                  const DenseTensor& input,
                  const DenseTensor& output,
                  const DenseTensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  bool exclusive,
                  bool adaptive,
                  DenseTensor* input_grad,
                  PoolProcess pool_compute);
  // overload operator() to support argument data_format
  void operator()(const Context& context,
                  const DenseTensor& input,
                  const DenseTensor& output,
                  const DenseTensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  const std::string data_format,
                  bool exclusive,
                  bool adaptive,
                  DenseTensor* input_grad,
                  PoolProcess pool_compute);
};

template <typename Context, class T>
class MaxPool3dGradFunctor {
 public:
  void operator()(const Context& context,
                  const DenseTensor& input,
                  const DenseTensor& output,
                  const DenseTensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  DenseTensor* input_grad);
  // overload operator() to support argument data_format
  void operator()(const Context& context,
                  const DenseTensor& input,
                  const DenseTensor& output,
                  const DenseTensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  const std::string data_format,
                  DenseTensor* input_grad);
};

/*
 * \brief Getting max pooling results and corresponding max index, and
 * calculating gradient.
 * In up-sampling-pooling, it is necessary to know max element index.
 * In pool2d, all tensors are in NCHW format. In pool3d, all tensors are in
 * NCDHW format.
 */
template <typename Context, typename T1, typename T2>
class MaxPool2dWithIndexFunctor {
 public:
  void operator()(const Context& context,
                  const DenseTensor& input,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  bool adaptive,
                  DenseTensor* output,
                  DenseTensor* mask);
};

template <typename Context, typename T1, typename T2>
class MaxPool2dWithIndexGradFunctor {
 public:
  void operator()(const Context& context,
                  const DenseTensor& output_grad,
                  const DenseTensor& mask,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  bool adaptive,
                  DenseTensor* input_grad);
};

template <typename Context, typename T1, typename T2>
class MaxPool3dWithIndexFunctor {
 public:
  void operator()(const Context& context,
                  const DenseTensor& input,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  bool adaptive,
                  DenseTensor* output,
                  DenseTensor* mask);
};

template <typename Context, typename T1, typename T2>
class MaxPool3dWithIndexGradFunctor {
 public:
  void operator()(const Context& context,
                  const DenseTensor& output_grad,
                  const DenseTensor& mask,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  bool adaptive,
                  DenseTensor* input_grad);
};

inline int PoolOutputSize(int input_size,
                          int filter_size,
                          int padding_1,
                          int padding_2,
                          int stride,
                          bool ceil_mode) {
  int output_size;
  if (!ceil_mode) {
    output_size =
        (input_size - filter_size + padding_1 + padding_2) / stride + 1;
  } else {
    output_size =
        (input_size - filter_size + padding_1 + padding_2 + stride - 1) /
            stride +
        1;
  }
  PADDLE_ENFORCE_GT(
      output_size,
      0,
      errors::InvalidArgument(
          "the output size must be greater than 0. But received: "
          "output_size = %d due to the settings of input_size(%d), "
          "padding(%d,%d), "
          "k_size(%d) and stride(%d). Please check again!",
          output_size,
          input_size,
          padding_1,
          padding_2,
          filter_size,
          stride));
  return output_size;
}

inline int MaxPoolOutputSize(int input_size,
                             int filter_size,
                             int padding,
                             int stride) {
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

template <typename T = int>
inline void UpdatePadding(std::vector<T>* paddings,
                          const bool global_pooling,
                          const bool adaptive,
                          const std::string padding_algorithm,
                          const DDim data_dims,
                          const std::vector<T>& strides,
                          const std::vector<T>& kernel_size) {
  // set padding size == data_dims.size() * 2
  auto data_shape = vectorize<T>(data_dims);
  if (static_cast<int>(paddings->size()) == data_dims.size()) {
    for (int i = 0; i < data_dims.size(); ++i) {
      T copy_pad = *(paddings->begin() + 2 * i);
      paddings->insert(paddings->begin() + 2 * i + 1, copy_pad);
    }
  } else {
    PADDLE_ENFORCE_EQ(data_dims.size() * 2,
                      paddings->size(),
                      errors::InvalidArgument(
                          "Paddings size %d should be the same or twice as the "
                          "pooling size %d.",
                          paddings->size(),
                          data_dims.size() * 2));
  }

  // when padding_algorithm is "VALID" or "SAME"
  if (padding_algorithm == "SAME") {
    for (int i = 0; i < data_dims.size(); ++i) {
      T out_size = (data_dims[i] + strides[i] - 1) / strides[i];
      T pad_sum =
          std::max((out_size - 1) * strides[i] + kernel_size[i] - data_shape[i],
                   static_cast<T>(0));
      T pad_0 = pad_sum / 2;
      T pad_1 = pad_sum - pad_0;
      *(paddings->begin() + i * 2) = pad_0;
      *(paddings->begin() + i * 2 + 1) = pad_1;
    }
  } else if (padding_algorithm == "VALID") {
    for (auto it = paddings->begin(); it != paddings->end(); it++) {
      *it = 0;
    }
  }

  // if global_pooling == true or adaptive == true, padding will be ignore
  if (global_pooling || adaptive) {
    for (auto it = paddings->begin(); it != paddings->end(); it++) {
      *it = 0;
    }
  }
}

template <typename T = int>
inline void UpdateKernelSize(std::vector<T>* kernel_size,
                             const DDim data_dims) {
  kernel_size->resize(static_cast<size_t>(data_dims.size()));
  for (size_t i = 0; i < kernel_size->size(); ++i) {
    *(kernel_size->begin() + i) = static_cast<T>(data_dims[i]);
  }
}

}  // namespace funcs
}  // namespace phi