squared_mat_sub_fuse_pass.cc 14.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#include "paddle/fluid/framework/ir/squared_mat_sub_fuse_pass.h"
#include <string>
17
#include <unordered_set>
18 19
#include <vector>
#include "paddle/fluid/framework/lod_tensor.h"
20
#include "paddle/fluid/framework/op_version_registry.h"
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

namespace paddle {
namespace framework {
namespace ir {

PDNode* BuildSquaredMatSubPattern(PDPattern* pattern,
                                  const std::string& name_scope) {
  auto var_is_op_input = [=](Node* x, const std::string& op_type,
                             const std::string& arg_name = "") -> bool {
    if (!(x && x->IsVar())) {
      return false;
    }
    for (auto* op : x->outputs) {
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type) {
        if (arg_name.empty()) {
          return true;
        }
        for (auto& name : op->Op()->Input(arg_name)) {
          if (name == x->Name()) {
            return true;
          }
        }
      }
    }
    return false;
  };

  auto var_is_op_only_output = [](Node* x, const std::string& op_type) -> bool {
    return x && x->IsVar() && x->inputs.size() == 1 && x->inputs[0] &&
           x->inputs[0]->IsOp() && x->inputs[0]->Op()->Type() == op_type &&
           x->inputs[0]->outputs.size() == 1;
  };

  auto next_op = [=](Node* x, const std::string& op_type) -> Node* {
    if (!(x && x->IsVar())) {
56
      return nullptr;
57 58 59 60 61 62 63 64 65 66 67
    }
    for (auto* op : x->outputs) {
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type) {
        return op;
      }
    }
    return nullptr;
  };

  auto get_op_input_var = [=](Node* x, const std::string& arg_name) -> Node* {
    if (!(x && x->IsOp())) {
68
      return nullptr;
69 70 71 72 73 74 75 76 77 78 79 80
    }
    for (auto* var : x->inputs) {
      for (auto name : x->Op()->Input(arg_name)) {
        if (var->Name() == name) {
          return var;
        }
      }
    }
    return nullptr;
  };

  auto is_fusion_input_var = [=](Node* x, const std::string& arg_name) {
81 82
    bool basic = (var_is_op_input(x, "matmul_v2", arg_name) ||
                  var_is_op_input(x, "matmul", arg_name)) &&
83 84 85 86 87 88 89 90 91 92
                 var_is_op_input(x, "square", "X");
    if (!basic) {
      return false;
    }
    auto* squared_x_op = next_op(x, "square");
    if (!(squared_x_op && squared_x_op->outputs.size() == 1)) {
      return false;
    }
    auto* squared_x = squared_x_op->outputs[0];
    bool next_is_matmul_from_arg =
93 94
        (var_is_op_input(squared_x, "matmul_v2", arg_name) ||
         var_is_op_input(squared_x, "matmul", arg_name)) &&
95 96 97 98 99
        squared_x->outputs.size() == 1 &&
        squared_x->outputs[0]->outputs.size() == 1;
    if (!next_is_matmul_from_arg) {
      return false;
    }
100 101 102 103
    auto* sub_y_in = squared_x->outputs[0]->outputs[0];
    return var_is_op_input(sub_y_in, "elementwise_sub", "Y") &&
           sub_y_in->outputs[0]->outputs.size() == 1 &&
           var_is_op_input(sub_y_in->outputs[0]->outputs[0], "elementwise_mul");
104 105 106 107 108
  };

  auto is_fusion_first_mul_out = [=](Node* x) -> bool {
    bool input_is_matmul_op = x && x->inputs.size() == 1 &&
                              x->inputs[0]->IsOp() &&
109 110
                              (x->inputs[0]->Op()->Type() == "matmul_v2" ||
                               x->inputs[0]->Op()->Type() == "matmul");
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    if (!input_is_matmul_op) {
      return false;
    }
    auto* mat_x = get_op_input_var(x->inputs[0], "X");
    auto* mat_y = get_op_input_var(x->inputs[0], "Y");
    bool input_mul_is_valid = mat_x && is_fusion_input_var(mat_x, "X") &&
                              mat_y && is_fusion_input_var(mat_y, "Y");
    if (!input_mul_is_valid) {
      return false;
    }

    bool next_is_square = var_is_op_input(x, "square", "X") &&
                          x->outputs.size() == 1 &&
                          x->outputs[0]->outputs.size() == 1;
    if (!next_is_square) {
      return false;
    }
128 129 130 131
    auto* sub_x_in = x->outputs[0]->outputs[0];
    return var_is_op_input(sub_x_in, "elementwise_sub", "X") &&
           sub_x_in->outputs[0]->outputs.size() == 1 &&
           var_is_op_input(sub_x_in->outputs[0]->outputs[0], "elementwise_mul");
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
  };

  auto* x = pattern->NewNode(
      [=](Node* x) { return is_fusion_input_var(x, "X"); }, name_scope + "/x");

  auto* y = pattern->NewNode(
      [=](Node* x) { return is_fusion_input_var(x, "Y"); }, name_scope + "/y");

  auto* square_x_op = pattern->NewNode(
      [=](Node* x) {
        return x && x->IsOp() && x->Op()->Type() == "square" &&
               is_fusion_input_var(x->inputs[0], "X");
      },
      name_scope + "/squared_x_op");

  auto* square_y_op = pattern->NewNode(
      [=](Node* x) {
        return x && x->IsOp() && x->Op()->Type() == "square" &&
               is_fusion_input_var(x->inputs[0], "Y");
      },
      name_scope + "/squared_y_op");

  auto* squared_x = pattern->NewNode(
      [=](Node* x) {
        return x && x->inputs.size() == 1 && x->inputs[0]->inputs.size() == 1 &&
               is_fusion_input_var(x->inputs[0]->inputs[0], "X");
      },
      name_scope + "/squared_x");

  auto* squared_y = pattern->NewNode(
      [=](Node* x) {
        return x && x->inputs.size() == 1 && x->inputs[0]->inputs.size() == 1 &&
               is_fusion_input_var(x->inputs[0]->inputs[0], "Y");
      },
      name_scope + "/squared_y");

  auto* matmuled_xy =
      pattern->NewNode([=](Node* x) { return is_fusion_first_mul_out(x); },
                       name_scope + "/matmuled_xy");

  auto* matmul_xy_op = pattern->NewNode(
      [=](Node* x) {
174 175
        return x && x->IsOp() && (x->Op()->Type() == "matmul_v2" ||
                                  x->Op()->Type() == "matmul") &&
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
               is_fusion_first_mul_out(x->outputs[0]);
      },
      name_scope + "/matmul_xy_op");

  auto* square_matmuled_xy_op = pattern->NewNode(
      [=](Node* x) {
        return x && x->IsOp() && x->Op()->Type() == "square" &&
               is_fusion_first_mul_out(x->inputs[0]);
      },
      name_scope + "/square_matmuled_xy_op");

  auto* squared_xmuly = pattern->NewNode(
      [=](Node* x) {
        return x && x->IsVar() && x->inputs.size() == 1 &&
               x->inputs[0]->IsOp() && x->inputs[0]->Op()->Type() == "square" &&
               is_fusion_first_mul_out(x->inputs[0]->inputs[0]);
      },
      name_scope + "/squared_xmuly");

  auto is_fusion_mat_squared_x_y_op_out = [=](Node* x) -> bool {
    bool basic = x && x->IsVar() && x->inputs.size() == 1 &&
197 198 199
                 x->inputs[0]->IsOp() &&
                 (x->inputs[0]->Op()->Type() == "matmul_v2" ||
                  x->inputs[0]->Op()->Type() == "matmul");
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
    if (!basic) {
      return false;
    }
    auto* sqx = get_op_input_var(x->inputs[0], "X");
    auto* sqy = get_op_input_var(x->inputs[0], "Y");

    return var_is_op_only_output(sqx, "square") &&
           var_is_op_only_output(sqy, "square") && sqx->inputs[0] &&
           sqx->inputs[0]->inputs.size() == 1 &&
           is_fusion_input_var(sqx->inputs[0]->inputs[0], "X") &&
           sqy->inputs[0] && sqy->inputs[0]->inputs.size() == 1 &&
           is_fusion_input_var(sqy->inputs[0]->inputs[0], "Y");
  };

  auto* matmul_squared_x_y_op = pattern->NewNode(
      [=](Node* x) {
216 217
        return x && x->IsOp() && (x->Op()->Type() == "matmul_v2" ||
                                  x->Op()->Type() == "matmul") &&
218 219 220 221 222 223 224 225 226 227 228 229 230
               is_fusion_mat_squared_x_y_op_out(x->outputs[0]);
      },
      name_scope + "/matmul_squared_x_y_op");

  auto* mat_squared_x_y_op_out = pattern->NewNode(
      [=](Node* x) { return is_fusion_mat_squared_x_y_op_out(x); },
      name_scope + "/mat_squared_x_y_op_out");

  auto is_fusion_sub_op = [=](Node* x) -> bool {
    bool is_sub_op = x && x->IsOp() && x->Op()->Type() == "elementwise_sub";
    if (!is_sub_op) {
      return false;
    }
231
    auto* matmul_sqx_sqy_var = get_op_input_var(x, "Y");
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
    return is_fusion_mat_squared_x_y_op_out(matmul_sqx_sqy_var);
  };

  auto* sub_op = pattern->NewNode([=](Node* x) { return is_fusion_sub_op(x); },
                                  name_scope + "/sub_op");

  auto* sub_op_out = pattern->NewNode(
      [=](Node* x) {
        return x && x->IsVar() && x->inputs.size() == 1 &&
               is_fusion_sub_op(x->inputs[0]);
      },
      name_scope + "/sub_op_out");

  auto is_fusion_element_op = [=](Node* x) -> bool {
    bool is_elemul_op = x && x->IsOp() && x->Op()->Type() == "elementwise_mul";
    if (!is_elemul_op) {
      return false;
    }
    for (auto* in : x->inputs) {
251 252
      if (in && in->inputs.size() > 0 && in->inputs[0] &&
          is_fusion_sub_op(in->inputs[0])) {
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
        return true;
      }
    }
    return false;
  };

  auto* elementmul_op =
      pattern->NewNode([=](Node* x) { return is_fusion_element_op(x); },
                       name_scope + "/elementmul_op");

  auto* constant_op = pattern->NewNode(
      [=](Node* x) {
        return x && x->IsOp() && x->Op()->Type() == "fill_constant" &&
               x->outputs.size() == 1 &&
               is_fusion_element_op(x->outputs[0]->outputs[0]);
      },
      name_scope + "/fill_constant_op");

  auto* constant_op_out = pattern->NewNode(
      [=](Node* x) {
        return x && x->IsVar() && var_is_op_input(x, "elementwise_mul") &&
274
               x->inputs.size() > 0 && x->inputs[0] && x->inputs[0]->IsOp() &&
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
               x->inputs[0]->Op()->Type() == "fill_constant" && x->outputs[0] &&
               is_fusion_element_op(x->outputs[0]);
      },
      name_scope + "/constant_op_out");

  auto* last_out_var = pattern->NewNode(
      [=](Node* x) {
        return var_is_op_only_output(x, "elementwise_mul") &&
               is_fusion_element_op(x->inputs[0]);
      },
      name_scope + "/out");

  square_x_op->LinksFrom({x}).LinksTo({squared_x});
  square_y_op->LinksFrom({y}).LinksTo({squared_y});
  matmul_xy_op->LinksFrom({x, y}).LinksTo({matmuled_xy});
  matmul_squared_x_y_op->LinksFrom({squared_x, squared_y})
      .LinksTo({mat_squared_x_y_op_out});
  square_matmuled_xy_op->LinksFrom({matmuled_xy}).LinksTo({squared_xmuly});
293
  sub_op->LinksFrom({squared_xmuly, mat_squared_x_y_op_out})
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
      .LinksTo({sub_op_out});
  constant_op->LinksFrom({}).LinksTo({constant_op_out});
  elementmul_op->LinksFrom({constant_op_out, sub_op_out})
      .LinksTo({last_out_var});

  return last_out_var;
}

static int BuildFusion(Graph* graph, const std::string& name_scope) {
  GraphPatternDetector gpd;
  auto* pattern = gpd.mutable_pattern();

  BuildSquaredMatSubPattern(pattern, name_scope);

  auto retrieve_node = [](const std::string& name,
                          const GraphPatternDetector::subgraph_t& subgraph,
                          const PDPattern& pat) -> Node* {
311 312 313
    PADDLE_ENFORCE_GT(subgraph.count(pat.RetrieveNode(name)), 0,
                      platform::errors::NotFound(
                          "Pattern has no node called %s.", name.c_str()));
314
    Node* p = subgraph.at(pat.RetrieveNode(name));
315 316
    PADDLE_ENFORCE_NOT_NULL(p, platform::errors::NotFound(
                                   "Subgraph has no node %s.", name.c_str()));
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
    return p;
  };

  int fusion_count{0};
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    LOG(INFO) << "handle sqaure mat sub fuse";
    auto& fused_pattern = gpd.pattern();

    auto* matx = retrieve_node(name_scope + "/x", subgraph, fused_pattern);
    auto* maty = retrieve_node(name_scope + "/y", subgraph, fused_pattern);
    auto* squaredx =
        retrieve_node(name_scope + "/squared_x", subgraph, fused_pattern);
    auto* squaredy =
        retrieve_node(name_scope + "/squared_y", subgraph, fused_pattern);
    auto* squaredxy =
        retrieve_node(name_scope + "/squared_xmuly", subgraph, fused_pattern);
    auto* last_out_var =
        retrieve_node(name_scope + "/out", subgraph, fused_pattern);
    auto* fill_constant_op = retrieve_node(name_scope + "/fill_constant_op",
                                           subgraph, fused_pattern);

    // Create New OpDesc
    OpDesc op_desc;
    op_desc.SetType("fusion_squared_mat_sub");
    op_desc.SetInput("X", {matx->Name()});
    op_desc.SetInput("Y", {maty->Name()});
    op_desc.SetOutput("SquaredX", {squaredx->Name()});
    op_desc.SetOutput("SquaredY", {squaredy->Name()});
    op_desc.SetOutput("SquaredXY", {squaredxy->Name()});
    op_desc.SetOutput("Out", {last_out_var->Name()});
    op_desc.SetAttr("scalar", fill_constant_op->Op()->GetAttr("value"));

    auto* op = graph->CreateOpNode(&op_desc);
    IR_NODE_LINK_TO(matx, op);
    IR_NODE_LINK_TO(maty, op);
    IR_NODE_LINK_TO(op, squaredx);
    IR_NODE_LINK_TO(op, squaredy);
    IR_NODE_LINK_TO(op, squaredxy);
    IR_NODE_LINK_TO(op, last_out_var);

    std::unordered_set<const Node*> marked_nodes;
    for (auto& item : subgraph) {
      marked_nodes.insert(item.second);
    }

    marked_nodes.erase(matx);
    marked_nodes.erase(maty);
    marked_nodes.erase(squaredx);
    marked_nodes.erase(squaredy);
    marked_nodes.erase(squaredxy);
    marked_nodes.erase(last_out_var);
    GraphSafeRemoveNodes(graph, marked_nodes);
    ++fusion_count;
  };

  gpd(graph, handler);
  return fusion_count;
}

377 378 379
void SquaredMatSubFusePass::ApplyImpl(ir::Graph* graph) const {
  FusePassBase::Init(name_scope_, graph);
  int fusion_count = BuildFusion(graph, name_scope_);
380 381 382 383 384 385 386 387 388
  AddStatis(fusion_count);
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(squared_mat_sub_fuse_pass,
              paddle::framework::ir::SquaredMatSubFusePass);
389 390 391
REGISTER_PASS_CAPABILITY(squared_mat_sub_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
392
            .LE("matmul", 1)
393 394
            .EQ("matmul_v2", 0)
            .EQ("square", 0)
395 396
            .LE("elementwise_mul", 1)
            .LE("elementwise_sub", 1)
J
JZ-LIANG 已提交
397
            .LE("fill_constant", 2)
398
            .EQ("fusion_squared_mat_sub", 0));