test_transformer.py 10.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import numpy as np
import time
import os
import unittest

import paddle.fluid as fluid

import transformer_util as util
from transformer_dygraph_model import Transformer
from transformer_dygraph_model import CrossEntropyCriterion

trainer_count = 1
place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda() else fluid.CPUPlace(
)
SEED = 10


def train_static(args, batch_generator):
    train_prog = fluid.default_main_program()
    startup_prog = fluid.default_startup_program()
    train_prog.random_seed = SEED
    startup_prog.random_seed = SEED
    with fluid.program_guard(train_prog, startup_prog):
        with fluid.unique_name.guard():
            # define input and reader
            input_field_names = util.encoder_data_input_fields + \
                                util.decoder_data_input_fields[:-1] + util.label_data_input_fields
            input_descs = util.get_input_descs(args)
            input_slots = [{
                "name": name,
                "shape": input_descs[name][0],
                "dtype": input_descs[name][1]
            } for name in input_field_names]
            input_field = util.InputField(input_slots)
            # Define DataLoader
            data_loader = fluid.io.DataLoader.from_generator(
                input_field.feed_list, capacity=60)
            data_loader.set_batch_generator(batch_generator, places=place)
            # define model
            transformer = Transformer(
                args.src_vocab_size, args.trg_vocab_size, args.max_length + 1,
                args.n_layer, args.n_head, args.d_key, args.d_value,
                args.d_model, args.d_inner_hid, args.prepostprocess_dropout,
                args.attention_dropout, args.relu_dropout, args.preprocess_cmd,
                args.postprocess_cmd, args.weight_sharing, args.bos_idx,
                args.eos_idx)
            logits = transformer(*input_field.feed_list[:7])
            # define loss
            criterion = CrossEntropyCriterion(args.label_smooth_eps)
            lbl_word, lbl_weight = input_field.feed_list[7:]
            sum_cost, avg_cost, token_num = criterion(logits, lbl_word,
                                                      lbl_weight)
            # define optimizer
            learning_rate = fluid.layers.learning_rate_scheduler.noam_decay(
                args.d_model, args.warmup_steps, args.learning_rate)
            optimizer = fluid.optimizer.Adam(
                learning_rate=learning_rate,
                beta1=args.beta1,
                beta2=args.beta2,
                epsilon=float(args.eps))
            optimizer.minimize(avg_cost)
            # the best cross-entropy value with label smoothing
            loss_normalizer = -((1. - args.label_smooth_eps) * np.log(
                (1. - args.label_smooth_eps)) + args.label_smooth_eps * np.log(
                    args.label_smooth_eps / (args.trg_vocab_size - 1) + 1e-20))
    step_idx = 0
    total_batch_num = 0
    avg_loss = []
    exe = fluid.Executor(place)
    exe.run(startup_prog)
    for pass_id in range(args.epoch):
        batch_id = 0
        for feed_dict in data_loader:
            outs = exe.run(program=train_prog,
                           feed=feed_dict,
                           fetch_list=[sum_cost.name, token_num.name])
            if step_idx % args.print_step == 0:
                sum_cost_val, token_num_val = np.array(outs[0]), np.array(outs[
                    1])
                total_sum_cost = sum_cost_val.sum()
                total_token_num = token_num_val.sum()
                total_avg_cost = total_sum_cost / total_token_num
                avg_loss.append(total_avg_cost)
                if step_idx == 0:
                    logging.info(
                        "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
                        "normalized loss: %f, ppl: %f" %
                        (step_idx, pass_id, batch_id, total_avg_cost,
                         total_avg_cost - loss_normalizer,
                         np.exp([min(total_avg_cost, 100)])))
                    avg_batch_time = time.time()
                else:
                    logging.info(
                        "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
                        "normalized loss: %f, ppl: %f, speed: %.2f step/s" %
                        (step_idx, pass_id, batch_id, total_avg_cost,
                         total_avg_cost - loss_normalizer,
                         np.exp([min(total_avg_cost, 100)]),
                         args.print_step / (time.time() - avg_batch_time)))
                    avg_batch_time = time.time()
            batch_id += 1
            step_idx += 1
            total_batch_num = total_batch_num + 1
            if step_idx == 10:
                if args.save_model:
                    model_path = os.path.join(
                        args.save_model, "step_" + str(step_idx), "transformer")
                    fluid.save(train_prog, model_path)
                break
    return np.array(avg_loss)


def train_dygraph(args, batch_generator):
    with fluid.dygraph.guard(place):
        if SEED is not None:
            fluid.default_main_program().random_seed = SEED
            fluid.default_startup_program().random_seed = SEED
        # define data loader
        train_loader = fluid.io.DataLoader.from_generator(capacity=10)
        train_loader.set_batch_generator(batch_generator, places=place)
        # define model
        transformer = Transformer(
            args.src_vocab_size, args.trg_vocab_size, args.max_length + 1,
            args.n_layer, args.n_head, args.d_key, args.d_value, args.d_model,
            args.d_inner_hid, args.prepostprocess_dropout,
            args.attention_dropout, args.relu_dropout, args.preprocess_cmd,
            args.postprocess_cmd, args.weight_sharing, args.bos_idx,
            args.eos_idx)
        # define loss
        criterion = CrossEntropyCriterion(args.label_smooth_eps)
        # define optimizer
        learning_rate = fluid.layers.learning_rate_scheduler.noam_decay(
            args.d_model, args.warmup_steps, args.learning_rate)
        # define optimizer
        optimizer = fluid.optimizer.Adam(
            learning_rate=learning_rate,
            beta1=args.beta1,
            beta2=args.beta2,
            epsilon=float(args.eps),
            parameter_list=transformer.parameters())
        # the best cross-entropy value with label smoothing
        loss_normalizer = -(
            (1. - args.label_smooth_eps) * np.log(
                (1. - args.label_smooth_eps)) + args.label_smooth_eps *
            np.log(args.label_smooth_eps / (args.trg_vocab_size - 1) + 1e-20))
        ce_time = []
        ce_ppl = []
        avg_loss = []
        step_idx = 0
        for pass_id in range(args.epoch):
            pass_start_time = time.time()
            batch_id = 0
            for input_data in train_loader():
                (src_word, src_pos, src_slf_attn_bias, trg_word, trg_pos,
                 trg_slf_attn_bias, trg_src_attn_bias, lbl_word,
                 lbl_weight) = input_data
                logits = transformer(src_word, src_pos, src_slf_attn_bias,
                                     trg_word, trg_pos, trg_slf_attn_bias,
                                     trg_src_attn_bias)
                sum_cost, avg_cost, token_num = criterion(logits, lbl_word,
                                                          lbl_weight)
                avg_cost.backward()
                optimizer.minimize(avg_cost)
                transformer.clear_gradients()
                if step_idx % args.print_step == 0:
                    total_avg_cost = avg_cost.numpy() * trainer_count
                    avg_loss.append(total_avg_cost[0])
                    if step_idx == 0:
                        logging.info(
                            "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
                            "normalized loss: %f, ppl: %f" %
                            (step_idx, pass_id, batch_id, total_avg_cost,
                             total_avg_cost - loss_normalizer,
                             np.exp([min(total_avg_cost, 100)])))
                        avg_batch_time = time.time()
                    else:
                        logging.info(
                            "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
                            "normalized loss: %f, ppl: %f, speed: %.2f step/s" %
                            (step_idx, pass_id, batch_id, total_avg_cost,
                             total_avg_cost - loss_normalizer,
                             np.exp([min(total_avg_cost, 100)]),
                             args.print_step / (time.time() - avg_batch_time)))
                        ce_ppl.append(np.exp([min(total_avg_cost, 100)]))
                        avg_batch_time = time.time()
                batch_id += 1
                step_idx += 1
                if step_idx == 10:
                    if args.save_model:
                        model_dir = os.path.join(args.save_model + '_dygraph',
                                                 "step_" + str(step_idx))
                        if not os.path.exists(model_dir):
                            os.makedirs(model_dir)
                        fluid.save_dygraph(
                            transformer.state_dict(),
                            os.path.join(model_dir, "transformer"))
                        fluid.save_dygraph(
                            optimizer.state_dict(),
                            os.path.join(model_dir, "transformer"))
                    break
            time_consumed = time.time() - pass_start_time
            ce_time.append(time_consumed)
        return np.array(avg_loss)


class TestTransformer(unittest.TestCase):
    def prepare(self, mode='train'):
        args = util.ModelHyperParams()
        batch_generator = util.get_feed_data_reader(args, mode)
        return args, batch_generator

    def test_train(self):
        args, batch_generator = self.prepare(mode='train')
        static_avg_loss = train_static(args, batch_generator)
        dygraph_avg_loss = train_dygraph(args, batch_generator)
        self.assertTrue(np.allclose(static_avg_loss, dygraph_avg_loss))


if __name__ == '__main__':
    unittest.main()