drv_adc.c 4.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
/*
 * Copyright (c) 2006-2021, RT-Thread Development Team
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Change Logs:
 * Date           Author       Notes
 * 2021-08-20     breo.com     first version
 */

#include <board.h>
#include "drv_adc.h"

#if defined(BSP_USING_ADC1) || defined(BSP_USING_ADC2) || defined(BSP_USING_ADC3)
#define DRV_DEBUG
#define LOG_TAG             "drv.adc"
#include <drv_log.h>

struct n32_adc
{
    struct rt_adc_device n32_adc_device;
    ADC_Module *ADC_Handler;
    char *name;
};

static struct n32_adc n32_adc_obj[] =
{
#ifdef BSP_USING_ADC1
    ADC1_CONFIG,
#endif

#ifdef BSP_USING_ADC2
    ADC2_CONFIG,
#endif

#ifdef BSP_USING_ADC3
    ADC3_CONFIG,
#endif
};

static rt_uint32_t n32_adc_get_channel(rt_uint32_t channel)
{
    rt_uint32_t n32_channel = 0;

    switch (channel)
    {
        case  0:
            n32_channel = ADC_CH_0;
            break;
        case  1:
            n32_channel = ADC_CH_1;
            break;
        case  2:
            n32_channel = ADC_CH_2;
            break;
        case  3:
            n32_channel = ADC_CH_3;
            break;
        case  4:
            n32_channel = ADC_CH_4;
            break;
        case  5:
            n32_channel = ADC_CH_5;
            break;
        case  6:
            n32_channel = ADC_CH_6;
            break;
        case  7:
            n32_channel = ADC_CH_7;
            break;
        case  8:
            n32_channel = ADC_CH_8;
            break;
        case  9:
            n32_channel = ADC_CH_9;
            break;
        case 10:
            n32_channel = ADC_CH_10;
            break;
        case 11:
            n32_channel = ADC_CH_11;
            break;
        case 12:
            n32_channel = ADC_CH_12;
            break;
        case 13:
            n32_channel = ADC_CH_13;
            break;
        case 14:
            n32_channel = ADC_CH_14;
            break;
        case 15:
            n32_channel = ADC_CH_15;
            break;
        case 16:
            n32_channel = ADC_CH_16;
            break;
        case 17:
            n32_channel = ADC_CH_17;
            break;
    }

    return n32_channel;
}

static rt_err_t n32_adc_enabled(struct rt_adc_device *device, rt_uint32_t channel, rt_bool_t enabled)
{
    ADC_Module *n32_adc_handler;
    ADC_InitType ADC_InitStructure;
    RT_ASSERT(device != RT_NULL);
    n32_adc_handler = device->parent.user_data;

    n32_msp_adc_init(n32_adc_handler);

    ADC_InitStruct(&ADC_InitStructure);
    ADC_InitStructure.WorkMode              = ADC_WORKMODE_INDEPENDENT;
    ADC_InitStructure.MultiChEn             = DISABLE;
    ADC_InitStructure.ContinueConvEn        = DISABLE;
    ADC_InitStructure.ExtTrigSelect         = ADC_EXT_TRIGCONV_NONE;
    ADC_InitStructure.DatAlign              = ADC_DAT_ALIGN_R;
    ADC_InitStructure.ChsNumber             = 1;
    ADC_Init(n32_adc_handler, &ADC_InitStructure);

    /* ADCx regular channels configuration */
    ADC_ConfigRegularChannel(n32_adc_handler, n32_adc_get_channel(channel), 1, ADC_SAMP_TIME_28CYCLES5);

    /* Enable ADCx */
    ADC_Enable(n32_adc_handler, ENABLE);

    /* Start ADCx calibration */
    ADC_StartCalibration(n32_adc_handler);
    /* Check the end of ADCx calibration */
    while(ADC_GetCalibrationStatus(n32_adc_handler));

    if (enabled)
    {
        /* Enable ADC1 */
        ADC_Enable(n32_adc_handler, ENABLE);
    }
    else
    {
        /* Enable ADCx */
        ADC_Enable(n32_adc_handler, DISABLE);
    }

    return RT_EOK;
}

static rt_err_t n32_get_adc_value(struct rt_adc_device *device, rt_uint32_t channel, rt_uint32_t *value)
{
    ADC_Module *n32_adc_handler;

    RT_ASSERT(device != RT_NULL);
    RT_ASSERT(value != RT_NULL);

    n32_adc_handler = device->parent.user_data;

    /* Start ADCx Software Conversion */
    ADC_EnableSoftwareStartConv(n32_adc_handler, ENABLE);

    /* Wait for the ADC to convert */
    while(ADC_GetFlagStatus(n32_adc_handler, ADC_FLAG_ENDC) == RESET);

    /* get ADC value */
    *value = ADC_GetDat(n32_adc_handler);

    return RT_EOK;
}

static const struct rt_adc_ops at_adc_ops =
{
    .enabled = n32_adc_enabled,
    .convert = n32_get_adc_value,
};

static int rt_hw_adc_init(void)
{
    int result = RT_EOK;
    int i = 0;

    for (i = 0; i < sizeof(n32_adc_obj) / sizeof(n32_adc_obj[0]); i++)
    {
        /* register ADC device */
        if (rt_hw_adc_register(&n32_adc_obj[i].n32_adc_device,
                    n32_adc_obj[i].name, &at_adc_ops,
                    n32_adc_obj[i].ADC_Handler) == RT_EOK)
        {
            LOG_D("%s register success", n32_adc_obj[i].name);
        }
        else
        {
            LOG_E("%s register failed", n32_adc_obj[i].name);
            result = -RT_ERROR;
        }
    }

    return result;
}
INIT_BOARD_EXPORT(rt_hw_adc_init);

#endif /* BSP_USING_ADC */