n32g45x_i2c.h 26.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
/*****************************************************************************
 * Copyright (c) 2019, Nations Technologies Inc.
 *
 * All rights reserved.
 * ****************************************************************************
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * - Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the disclaimer below.
 *
 * Nations' name may not be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * DISCLAIMER: THIS SOFTWARE IS PROVIDED BY NATIONS "AS IS" AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
 * DISCLAIMED. IN NO EVENT SHALL NATIONS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 * ****************************************************************************/

/**
 * @file n32g45x_i2c.h
 * @author Nations
 * @version v1.0.0
 *
 * @copyright Copyright (c) 2019, Nations Technologies Inc. All rights reserved.
 */
#ifndef __N32G45X_I2C_H__
#define __N32G45X_I2C_H__

#ifdef __cplusplus
extern "C" {
#endif

#include "n32g45x.h"

/** @addtogroup N32G45X_StdPeriph_Driver
 * @{
 */

/** @addtogroup I2C
 * @{
 */

/** @addtogroup I2C_Exported_Types
 * @{
 */

/**
 * @brief  I2C Init structure definition
 */

typedef struct
{
    uint32_t ClkSpeed; /*!< Specifies the clock frequency.
                                  This parameter must be set to a value lower than 400kHz */

    uint16_t BusMode; /*!< Specifies the I2C mode.
                            This parameter can be a value of @ref I2C_BusMode */

    uint16_t FmDutyCycle; /*!< Specifies the I2C fast mode duty cycle.
                                 This parameter can be a value of @ref I2C_duty_cycle_in_fast_mode */

    uint16_t OwnAddr1; /*!< Specifies the first device own address.
                                   This parameter can be a 7-bit or 10-bit address. */

    uint16_t AckEnable; /*!< Enables or disables the acknowledgement.
                           This parameter can be a value of @ref I2C_acknowledgement */

    uint16_t AddrMode; /*!< Specifies if 7-bit or 10-bit address is acknowledged.
                                           This parameter can be a value of @ref I2C_acknowledged_address */
} I2C_InitType;

/**
 * @}
 */

/** @addtogroup I2C_Exported_Constants
 * @{
 */

#define IS_I2C_PERIPH(PERIPH) (((PERIPH) == I2C1) || ((PERIPH) == I2C2) || ((PERIPH) == I2C3) || ((PERIPH) == I2C4))
/** @addtogroup I2C_BusMode
 * @{
 */

#define I2C_BUSMODE_I2C       ((uint16_t)0x0000)
#define I2C_BUSMODE_SMBDEVICE ((uint16_t)0x0002)
#define I2C_BUSMODE_SMBHOST   ((uint16_t)0x000A)
#define IS_I2C_BUS_MODE(MODE)                                                                                          \
    (((MODE) == I2C_BUSMODE_I2C) || ((MODE) == I2C_BUSMODE_SMBDEVICE) || ((MODE) == I2C_BUSMODE_SMBHOST))
/**
 * @}
 */

/** @addtogroup I2C_duty_cycle_in_fast_mode
 * @{
 */

#define I2C_FMDUTYCYCLE_16_9        ((uint16_t)0x4000) /*!< I2C fast mode Tlow/Thigh = 16/9 */
#define I2C_FMDUTYCYCLE_2           ((uint16_t)0xBFFF) /*!< I2C fast mode Tlow/Thigh = 2 */
#define IS_I2C_FM_DUTY_CYCLE(CYCLE) (((CYCLE) == I2C_FMDUTYCYCLE_16_9) || ((CYCLE) == I2C_FMDUTYCYCLE_2))
/**
 * @}
 */

/** @addtogroup I2C_acknowledgement
 * @{
 */

#define I2C_ACKEN               ((uint16_t)0x0400)
#define I2C_ACKDIS              ((uint16_t)0x0000)
#define IS_I2C_ACK_STATE(STATE) (((STATE) == I2C_ACKEN) || ((STATE) == I2C_ACKDIS))
/**
 * @}
 */

/** @addtogroup I2C_transfer_direction
 * @{
 */

#define I2C_DIRECTION_SEND          ((uint8_t)0x00)
#define I2C_DIRECTION_RECV          ((uint8_t)0x01)
#define IS_I2C_DIRECTION(DIRECTION) (((DIRECTION) == I2C_DIRECTION_SEND) || ((DIRECTION) == I2C_DIRECTION_RECV))
/**
 * @}
 */

/** @addtogroup I2C_acknowledged_address
 * @{
 */

#define I2C_ADDR_MODE_7BIT        ((uint16_t)0x4000)
#define I2C_ADDR_MODE_10BIT       ((uint16_t)0xC000)
#define IS_I2C_ADDR_MODE(ADDRESS) (((ADDRESS) == I2C_ADDR_MODE_7BIT) || ((ADDRESS) == I2C_ADDR_MODE_10BIT))
/**
 * @}
 */

/** @addtogroup I2C_registers
 * @{
 */

#define I2C_REG_CTRL1   ((uint8_t)0x00)
#define I2C_REG_CTRL2   ((uint8_t)0x04)
#define I2C_REG_OADDR1  ((uint8_t)0x08)
#define I2C_REG_OADDR2  ((uint8_t)0x0C)
#define I2C_REG_DAT     ((uint8_t)0x10)
#define I2C_REG_STS1    ((uint8_t)0x14)
#define I2C_REG_STS2    ((uint8_t)0x18)
#define I2C_REG_CLKCTRL ((uint8_t)0x1C)
#define I2C_REG_TMRISE  ((uint8_t)0x20)
#define IS_I2C_REG(REGISTER)                                                                                           \
    (((REGISTER) == I2C_REG_CTRL1) || ((REGISTER) == I2C_REG_CTRL2) || ((REGISTER) == I2C_REG_OADDR1)                  \
     || ((REGISTER) == I2C_REG_OADDR2) || ((REGISTER) == I2C_REG_DAT) || ((REGISTER) == I2C_REG_STS1)                  \
     || ((REGISTER) == I2C_REG_STS2) || ((REGISTER) == I2C_REG_CLKCTRL) || ((REGISTER) == I2C_REG_TMRISE))
/**
 * @}
 */

/** @addtogroup I2C_SMBus_alert_pin_level
 * @{
 */

#define I2C_SMBALERT_LOW        ((uint16_t)0x2000)
#define I2C_SMBALERT_HIGH       ((uint16_t)0xDFFF)
#define IS_I2C_SMB_ALERT(ALERT) (((ALERT) == I2C_SMBALERT_LOW) || ((ALERT) == I2C_SMBALERT_HIGH))
/**
 * @}
 */

/** @addtogroup I2C_PEC_position
 * @{
 */

#define I2C_PEC_POS_NEXT         ((uint16_t)0x0800)
#define I2C_PEC_POS_CURRENT      ((uint16_t)0xF7FF)
#define IS_I2C_PEC_POS(POSITION) (((POSITION) == I2C_PEC_POS_NEXT) || ((POSITION) == I2C_PEC_POS_CURRENT))
/**
 * @}
 */

/** @addtogroup I2C_NCAK_position
 * @{
 */

#define I2C_NACK_POS_NEXT         ((uint16_t)0x0800)
#define I2C_NACK_POS_CURRENT      ((uint16_t)0xF7FF)
#define IS_I2C_NACK_POS(POSITION) (((POSITION) == I2C_NACK_POS_NEXT) || ((POSITION) == I2C_NACK_POS_CURRENT))
/**
 * @}
 */

/** @addtogroup I2C_interrupts_definition
 * @{
 */

#define I2C_INT_BUF        ((uint16_t)0x0400)
#define I2C_INT_EVENT      ((uint16_t)0x0200)
#define I2C_INT_ERR        ((uint16_t)0x0100)
#define IS_I2C_CFG_INT(IT) ((((IT) & (uint16_t)0xF8FF) == 0x00) && ((IT) != 0x00))
/**
 * @}
 */

/** @addtogroup I2C_interrupts_definition
 * @{
 */

#define I2C_INT_SMBALERT ((uint32_t)0x01008000)
#define I2C_INT_TIMOUT   ((uint32_t)0x01004000)
#define I2C_INT_PECERR   ((uint32_t)0x01001000)
#define I2C_INT_OVERRUN  ((uint32_t)0x01000800)
#define I2C_INT_ACKFAIL  ((uint32_t)0x01000400)
#define I2C_INT_ARLOST   ((uint32_t)0x01000200)
#define I2C_INT_BUSERR   ((uint32_t)0x01000100)
#define I2C_INT_TXDATE   ((uint32_t)0x06000080)
#define I2C_INT_RXDATNE  ((uint32_t)0x06000040)
#define I2C_INT_STOPF    ((uint32_t)0x02000010)
#define I2C_INT_ADDR10F  ((uint32_t)0x02000008)
#define I2C_INT_BYTEF    ((uint32_t)0x02000004)
#define I2C_INT_ADDRF    ((uint32_t)0x02000002)
#define I2C_INT_STARTBF  ((uint32_t)0x02000001)

#define IS_I2C_CLR_INT(IT) ((((IT) & (uint16_t)0x20FF) == 0x00) && ((IT) != (uint16_t)0x00))

#define IS_I2C_GET_INT(IT)                                                                                             \
    (((IT) == I2C_INT_SMBALERT) || ((IT) == I2C_INT_TIMOUT) || ((IT) == I2C_INT_PECERR) || ((IT) == I2C_INT_OVERRUN)   \
     || ((IT) == I2C_INT_ACKFAIL) || ((IT) == I2C_INT_ARLOST) || ((IT) == I2C_INT_BUSERR) || ((IT) == I2C_INT_TXDATE)  \
     || ((IT) == I2C_INT_RXDATNE) || ((IT) == I2C_INT_STOPF) || ((IT) == I2C_INT_ADDR10F) || ((IT) == I2C_INT_BYTEF)   \
     || ((IT) == I2C_INT_ADDRF) || ((IT) == I2C_INT_STARTBF))
/**
 * @}
 */

/** @addtogroup I2C_flags_definition
 * @{
 */

/**
 * @brief  STS2 register flags
 */

#define I2C_FLAG_DUALFLAG  ((uint32_t)0x00800000)
#define I2C_FLAG_SMBHADDR  ((uint32_t)0x00400000)
#define I2C_FLAG_SMBDADDR  ((uint32_t)0x00200000)
#define I2C_FLAG_GCALLADDR ((uint32_t)0x00100000)
#define I2C_FLAG_TRF       ((uint32_t)0x00040000)
#define I2C_FLAG_BUSY      ((uint32_t)0x00020000)
#define I2C_FLAG_MSMODE    ((uint32_t)0x00010000)

/**
 * @brief  STS1 register flags
 */

#define I2C_FLAG_SMBALERT ((uint32_t)0x10008000)
#define I2C_FLAG_TIMOUT   ((uint32_t)0x10004000)
#define I2C_FLAG_PECERR   ((uint32_t)0x10001000)
#define I2C_FLAG_OVERRUN  ((uint32_t)0x10000800)
#define I2C_FLAG_ACKFAIL  ((uint32_t)0x10000400)
#define I2C_FLAG_ARLOST   ((uint32_t)0x10000200)
#define I2C_FLAG_BUSERR   ((uint32_t)0x10000100)
#define I2C_FLAG_TXDATE   ((uint32_t)0x10000080)
#define I2C_FLAG_RXDATNE  ((uint32_t)0x10000040)
#define I2C_FLAG_STOPF    ((uint32_t)0x10000010)
#define I2C_FLAG_ADDR10F  ((uint32_t)0x10000008)
#define I2C_FLAG_BYTEF    ((uint32_t)0x10000004)
#define I2C_FLAG_ADDRF    ((uint32_t)0x10000002)
#define I2C_FLAG_STARTBF  ((uint32_t)0x10000001)

#define IS_I2C_CLR_FLAG(FLAG) ((((FLAG) & (uint16_t)0x20FF) == 0x00) && ((FLAG) != (uint16_t)0x00))

#define IS_I2C_GET_FLAG(FLAG)                                                                                          \
    (((FLAG) == I2C_FLAG_DUALFLAG) || ((FLAG) == I2C_FLAG_SMBHADDR) || ((FLAG) == I2C_FLAG_SMBDADDR)                   \
     || ((FLAG) == I2C_FLAG_GCALLADDR) || ((FLAG) == I2C_FLAG_TRF) || ((FLAG) == I2C_FLAG_BUSY)                        \
     || ((FLAG) == I2C_FLAG_MSMODE) || ((FLAG) == I2C_FLAG_SMBALERT) || ((FLAG) == I2C_FLAG_TIMOUT)                    \
     || ((FLAG) == I2C_FLAG_PECERR) || ((FLAG) == I2C_FLAG_OVERRUN) || ((FLAG) == I2C_FLAG_ACKFAIL)                    \
     || ((FLAG) == I2C_FLAG_ARLOST) || ((FLAG) == I2C_FLAG_BUSERR) || ((FLAG) == I2C_FLAG_TXDATE)                      \
     || ((FLAG) == I2C_FLAG_RXDATNE) || ((FLAG) == I2C_FLAG_STOPF) || ((FLAG) == I2C_FLAG_ADDR10F)                     \
     || ((FLAG) == I2C_FLAG_BYTEF) || ((FLAG) == I2C_FLAG_ADDRF) || ((FLAG) == I2C_FLAG_STARTBF))
/**
 * @}
 */

/** @addtogroup I2C_Events
 * @{
 */

/*========================================

                     I2C Master Events (Events grouped in order of communication)
                                                        ==========================================*/
/**
 * @brief  Communication start
 *
 * After sending the START condition (I2C_GenerateStart() function) the master
 * has to wait for this event. It means that the Start condition has been correctly
 * released on the I2C bus (the bus is free, no other devices is communicating).
 *
 */
/* --EV5 */
#define I2C_EVT_MASTER_MODE_FLAG ((uint32_t)0x00030001) /* BUSY, MSL and SB flag */

/**
 * @brief  Address Acknowledge
 *
 * After checking on EV5 (start condition correctly released on the bus), the
 * master sends the address of the slave(s) with which it will communicate
 * (I2C_SendAddr7bit() function, it also determines the direction of the communication:
 * Master transmitter or Receiver). Then the master has to wait that a slave acknowledges
 * his address. If an acknowledge is sent on the bus, one of the following events will
 * be set:
 *
 *  1) In case of Master Receiver (7-bit addressing): the I2C_EVT_MASTER_RXMODE_FLAG
 *     event is set.
 *
 *  2) In case of Master Transmitter (7-bit addressing): the I2C_EVT_MASTER_TXMODE_FLAG
 *     is set
 *
 *  3) In case of 10-Bit addressing mode, the master (just after generating the START
 *  and checking on EV5) has to send the header of 10-bit addressing mode (I2C_SendData()
 *  function). Then master should wait on EV9. It means that the 10-bit addressing
 *  header has been correctly sent on the bus. Then master should send the second part of
 *  the 10-bit address (LSB) using the function I2C_SendAddr7bit(). Then master
 *  should wait for event EV6.
 *
 */

/* --EV6 */
#define I2C_EVT_MASTER_TXMODE_FLAG ((uint32_t)0x00070082) /* BUSY, MSL, ADDR, TXE and TRA flags */
#define I2C_EVT_MASTER_RXMODE_FLAG ((uint32_t)0x00030002) /* BUSY, MSL and ADDR flags */
/* --EV9 */
#define I2C_EVT_MASTER_MODE_ADDRESS10_FLAG ((uint32_t)0x00030008) /* BUSY, MSL and ADD10 flags */

/**
 * @brief Communication events
 *
 * If a communication is established (START condition generated and slave address
 * acknowledged) then the master has to check on one of the following events for
 * communication procedures:
 *
 * 1) Master Receiver mode: The master has to wait on the event EV7 then to read
 *    the data received from the slave (I2C_RecvData() function).
 *
 * 2) Master Transmitter mode: The master has to send data (I2C_SendData()
 *    function) then to wait on event EV8 or EV8_2.
 *    These two events are similar:
 *     - EV8 means that the data has been written in the data register and is
 *       being shifted out.
 *     - EV8_2 means that the data has been physically shifted out and output
 *       on the bus.
 *     In most cases, using EV8 is sufficient for the application.
 *     Using EV8_2 leads to a slower communication but ensure more reliable test.
 *     EV8_2 is also more suitable than EV8 for testing on the last data transmission
 *     (before Stop condition generation).
 *
 *  @note In case the  user software does not guarantee that this event EV7 is
 *  managed before the current byte end of transfer, then user may check on EV7
 *  and BTF flag at the same time (ie. (I2C_EVT_MASTER_DATA_RECVD_FLAG | I2C_FLAG_BYTEF)).
 *  In this case the communication may be slower.
 *
 */

/* Master RECEIVER mode -----------------------------*/
/* --EV7 */
#define I2C_EVT_MASTER_DATA_RECVD_FLAG ((uint32_t)0x00030040) /* BUSY, MSL and RXNE flags */

/* Master TRANSMITTER mode --------------------------*/
/* --EV8 */
#define I2C_EVT_MASTER_DATA_SENDING ((uint32_t)0x00070080) /* TRA, BUSY, MSL, TXE flags */
/* --EV8_2 */
#define I2C_EVT_MASTER_DATA_SENDED ((uint32_t)0x00070084) /* TRA, BUSY, MSL, TXE and BTF flags */

/*========================================

                     I2C Slave Events (Events grouped in order of communication)
                                                        ==========================================*/

/**
 * @brief  Communication start events
 *
 * Wait on one of these events at the start of the communication. It means that
 * the I2C peripheral detected a Start condition on the bus (generated by master
 * device) followed by the peripheral address. The peripheral generates an ACK
 * condition on the bus (if the acknowledge feature is enabled through function
 * I2C_ConfigAck()) and the events listed above are set :
 *
 * 1) In normal case (only one address managed by the slave), when the address
 *   sent by the master matches the own address of the peripheral (configured by
 *   OwnAddr1 field) the I2C_EVENT_SLAVE_XXX_ADDRESS_MATCHED event is set
 *   (where XXX could be TRANSMITTER or RECEIVER).
 *
 * 2) In case the address sent by the master matches the second address of the
 *   peripheral (configured by the function I2C_ConfigOwnAddr2() and enabled
 *   by the function I2C_EnableDualAddr()) the events I2C_EVENT_SLAVE_XXX_SECONDADDRESS_MATCHED
 *   (where XXX could be TRANSMITTER or RECEIVER) are set.
 *
 * 3) In case the address sent by the master is General Call (address 0x00) and
 *   if the General Call is enabled for the peripheral (using function I2C_EnableGeneralCall())
 *   the following event is set I2C_EVT_SLAVE_GCALLADDR_MATCHED.
 *
 */

/* --EV1  (all the events below are variants of EV1) */
/* 1) Case of One Single Address managed by the slave */
#define I2C_EVT_SLAVE_RECV_ADDR_MATCHED ((uint32_t)0x00020002) /* BUSY and ADDR flags */
#define I2C_EVT_SLAVE_SEND_ADDR_MATCHED ((uint32_t)0x00060082) /* TRA, BUSY, TXE and ADDR flags */

/* 2) Case of Dual address managed by the slave */
#define I2C_EVT_SLAVE_RECV_ADDR2_MATCHED ((uint32_t)0x00820000) /* DUALF and BUSY flags */
#define I2C_EVT_SLAVE_SEND_ADDR2_MATCHED ((uint32_t)0x00860080) /* DUALF, TRA, BUSY and TXE flags */

/* 3) Case of General Call enabled for the slave */
#define I2C_EVT_SLAVE_GCALLADDR_MATCHED ((uint32_t)0x00120000) /* GENCALL and BUSY flags */

/**
 * @brief  Communication events
 *
 * Wait on one of these events when EV1 has already been checked and:
 *
 * - Slave RECEIVER mode:
 *     - EV2: When the application is expecting a data byte to be received.
 *     - EV4: When the application is expecting the end of the communication: master
 *       sends a stop condition and data transmission is stopped.
 *
 * - Slave Transmitter mode:
 *    - EV3: When a byte has been transmitted by the slave and the application is expecting
 *      the end of the byte transmission. The two events I2C_EVT_SLAVE_DATA_SENDED and
 *      I2C_EVT_SLAVE_DATA_SENDING are similar. The second one can optionally be
 *      used when the user software doesn't guarantee the EV3 is managed before the
 *      current byte end of transfer.
 *    - EV3_2: When the master sends a NACK in order to tell slave that data transmission
 *      shall end (before sending the STOP condition). In this case slave has to stop sending
 *      data bytes and expect a Stop condition on the bus.
 *
 *  @note In case the  user software does not guarantee that the event EV2 is
 *  managed before the current byte end of transfer, then user may check on EV2
 *  and BTF flag at the same time (ie. (I2C_EVT_SLAVE_DATA_RECVD | I2C_FLAG_BYTEF)).
 * In this case the communication may be slower.
 *
 */

/* Slave RECEIVER mode --------------------------*/
/* --EV2 */
#define I2C_EVT_SLAVE_DATA_RECVD ((uint32_t)0x00020040) /* BUSY and RXNE flags */
/* --EV4  */
#define I2C_EVT_SLAVE_STOP_RECVD ((uint32_t)0x00000010) /* STOPF flag */

/* Slave TRANSMITTER mode -----------------------*/
/* --EV3 */
#define I2C_EVT_SLAVE_DATA_SENDED  ((uint32_t)0x00060084) /* TRA, BUSY, TXE and BTF flags */
#define I2C_EVT_SLAVE_DATA_SENDING ((uint32_t)0x00060080) /* TRA, BUSY and TXE flags */
/* --EV3_2 */
#define I2C_EVT_SLAVE_ACK_MISS ((uint32_t)0x00000400) /* AF flag */

/*===========================      End of Events Description           ==========================================*/

#define IS_I2C_EVT(EVENT)                                                                                              \
    (((EVENT) == I2C_EVT_SLAVE_SEND_ADDR_MATCHED) || ((EVENT) == I2C_EVT_SLAVE_RECV_ADDR_MATCHED)                      \
     || ((EVENT) == I2C_EVT_SLAVE_SEND_ADDR2_MATCHED) || ((EVENT) == I2C_EVT_SLAVE_RECV_ADDR2_MATCHED)                 \
     || ((EVENT) == I2C_EVT_SLAVE_GCALLADDR_MATCHED) || ((EVENT) == I2C_EVT_SLAVE_DATA_RECVD)                          \
     || ((EVENT) == (I2C_EVT_SLAVE_DATA_RECVD | I2C_FLAG_DUALFLAG))                                                    \
     || ((EVENT) == (I2C_EVT_SLAVE_DATA_RECVD | I2C_FLAG_GCALLADDR)) || ((EVENT) == I2C_EVT_SLAVE_DATA_SENDED)         \
     || ((EVENT) == (I2C_EVT_SLAVE_DATA_SENDED | I2C_FLAG_DUALFLAG))                                                   \
     || ((EVENT) == (I2C_EVT_SLAVE_DATA_SENDED | I2C_FLAG_GCALLADDR)) || ((EVENT) == I2C_EVT_SLAVE_STOP_RECVD)         \
     || ((EVENT) == I2C_EVT_MASTER_MODE_FLAG) || ((EVENT) == I2C_EVT_MASTER_TXMODE_FLAG)                               \
     || ((EVENT) == I2C_EVT_MASTER_RXMODE_FLAG) || ((EVENT) == I2C_EVT_MASTER_DATA_RECVD_FLAG)                         \
     || ((EVENT) == I2C_EVT_MASTER_DATA_SENDED) || ((EVENT) == I2C_EVT_MASTER_DATA_SENDING)                            \
     || ((EVENT) == I2C_EVT_MASTER_MODE_ADDRESS10_FLAG) || ((EVENT) == I2C_EVT_SLAVE_ACK_MISS))
/**
 * @}
 */

/** @addtogroup I2C_own_address1
 * @{
 */

#define IS_I2C_OWN_ADDR1(ADDRESS1) ((ADDRESS1) <= 0x3FF)
/**
 * @}
 */

/** @addtogroup I2C_clock_speed
 * @{
 */

//#define IS_I2C_CLK_SPEED(SPEED) (((SPEED) >= 0x1) && ((SPEED) <= 400000))
#define IS_I2C_CLK_SPEED(SPEED) (((SPEED) >= 0x1) && ((SPEED) <= 1000000))

/**
 * @}
 */

/**
 * @}
 */

/** @addtogroup I2C_Exported_Macros
 * @{
 */

/**
 * @}
 */

/** @addtogroup I2C_Exported_Functions
 * @{
 */

void I2C_DeInit(I2C_Module* I2Cx);
void I2C_Init(I2C_Module* I2Cx, I2C_InitType* I2C_InitStruct);
void I2C_InitStruct(I2C_InitType* I2C_InitStruct);
void I2C_Enable(I2C_Module* I2Cx, FunctionalState Cmd);
void I2C_EnableDMA(I2C_Module* I2Cx, FunctionalState Cmd);
void I2C_EnableDmaLastSend(I2C_Module* I2Cx, FunctionalState Cmd);
void I2C_GenerateStart(I2C_Module* I2Cx, FunctionalState Cmd);
void I2C_GenerateStop(I2C_Module* I2Cx, FunctionalState Cmd);
void I2C_ConfigAck(I2C_Module* I2Cx, FunctionalState Cmd);
void I2C_ConfigOwnAddr2(I2C_Module* I2Cx, uint8_t Address);
void I2C_EnableDualAddr(I2C_Module* I2Cx, FunctionalState Cmd);
void I2C_EnableGeneralCall(I2C_Module* I2Cx, FunctionalState Cmd);
void I2C_ConfigInt(I2C_Module* I2Cx, uint16_t I2C_IT, FunctionalState Cmd);
void I2C_SendData(I2C_Module* I2Cx, uint8_t Data);
uint8_t I2C_RecvData(I2C_Module* I2Cx);
void I2C_SendAddr7bit(I2C_Module* I2Cx, uint8_t Address, uint8_t I2C_Direction);
uint16_t I2C_GetRegister(I2C_Module* I2Cx, uint8_t I2C_Register);
void I2C_EnableSoftwareReset(I2C_Module* I2Cx, FunctionalState Cmd);
void I2C_ConfigNackLocation(I2C_Module* I2Cx, uint16_t I2C_NACKPosition);
void I2C_ConfigSmbusAlert(I2C_Module* I2Cx, uint16_t I2C_SMBusAlert);
void I2C_SendPEC(I2C_Module* I2Cx, FunctionalState Cmd);
void I2C_ConfigPecLocation(I2C_Module* I2Cx, uint16_t I2C_PECPosition);
void I2C_ComputePec(I2C_Module* I2Cx, FunctionalState Cmd);
uint8_t I2C_GetPec(I2C_Module* I2Cx);
void I2C_EnableArp(I2C_Module* I2Cx, FunctionalState Cmd);
void I2C_EnableExtendClk(I2C_Module* I2Cx, FunctionalState Cmd);
void I2C_ConfigFastModeDutyCycle(I2C_Module* I2Cx, uint16_t FmDutyCycle);

/**
 * @brief
 ****************************************************************************************
 *
 *                         I2C State Monitoring Functions
 *
 ****************************************************************************************
 * This I2C driver provides three different ways for I2C state monitoring
 *  depending on the application requirements and constraints:
 *
 *
 * 1) Basic state monitoring:
 *    Using I2C_CheckEvent() function:
 *    It compares the status registers (STS1 and STS2) content to a given event
 *    (can be the combination of one or more flags).
 *    It returns SUCCESS if the current status includes the given flags
 *    and returns ERROR if one or more flags are missing in the current status.
 *    - When to use:
 *      - This function is suitable for most applications as well as for startup
 *      activity since the events are fully described in the product reference manual
 *      (RM0008).
 *      - It is also suitable for users who need to define their own events.
 *    - Limitations:
 *      - If an error occurs (ie. error flags are set besides to the monitored flags),
 *        the I2C_CheckEvent() function may return SUCCESS despite the communication
 *        hold or corrupted real state.
 *        In this case, it is advised to use error interrupts to monitor the error
 *        events and handle them in the interrupt IRQ handler.
 *
 *        @note
 *        For error management, it is advised to use the following functions:
 *          - I2C_ConfigInt() to configure and enable the error interrupts (I2C_INT_ERR).
 *          - I2Cx_ER_IRQHandler() which is called when the error interrupt occurs.
 *            Where x is the peripheral instance (I2C1, I2C2 ...)
 *          - I2C_GetFlag() or I2C_GetIntStatus() to be called into I2Cx_ER_IRQHandler()
 *            in order to determine which error occurred.
 *          - I2C_ClrFlag() or I2C_ClrIntPendingBit() and/or I2C_EnableSoftwareReset()
 *            and/or I2C_GenerateStop() in order to clear the error flag and source,
 *            and return to correct communication status.
 *
 *
 *  2) Advanced state monitoring:
 *     Using the function I2C_GetLastEvent() which returns the image of both status
 *     registers in a single word (uint32_t) (Status Register 2 value is shifted left
 *     by 16 bits and concatenated to Status Register 1).
 *     - When to use:
 *       - This function is suitable for the same applications above but it allows to
 *         overcome the limitations of I2C_GetFlag() function (see below).
 *         The returned value could be compared to events already defined in the
 *         library (n32g45x_i2c.h) or to custom values defined by user.
 *       - This function is suitable when multiple flags are monitored at the same time.
 *       - At the opposite of I2C_CheckEvent() function, this function allows user to
 *         choose when an event is accepted (when all events flags are set and no
 *         other flags are set or just when the needed flags are set like
 *         I2C_CheckEvent() function).
 *     - Limitations:
 *       - User may need to define his own events.
 *       - Same remark concerning the error management is applicable for this
 *         function if user decides to check only regular communication flags (and
 *         ignores error flags).
 *
 *
 *  3) Flag-based state monitoring:
 *     Using the function I2C_GetFlag() which simply returns the status of
 *     one single flag (ie. I2C_FLAG_RXDATNE ...).
 *     - When to use:
 *        - This function could be used for specific applications or in debug phase.
 *        - It is suitable when only one flag checking is needed (most I2C events
 *          are monitored through multiple flags).
 *     - Limitations:
 *        - When calling this function, the Status register is accessed. Some flags are
 *          cleared when the status register is accessed. So checking the status
 *          of one Flag, may clear other ones.
 *        - Function may need to be called twice or more in order to monitor one
 *          single event.
 *
 */

/**
 *
 *  1) Basic state monitoring
 *******************************************************************************
 */
ErrorStatus I2C_CheckEvent(I2C_Module* I2Cx, uint32_t I2C_EVENT);
/**
 *
 *  2) Advanced state monitoring
 *******************************************************************************
 */
uint32_t I2C_GetLastEvent(I2C_Module* I2Cx);
/**
 *
 *  3) Flag-based state monitoring
 *******************************************************************************
 */
FlagStatus I2C_GetFlag(I2C_Module* I2Cx, uint32_t I2C_FLAG);
/**
 *
 *******************************************************************************
 */

void I2C_ClrFlag(I2C_Module* I2Cx, uint32_t I2C_FLAG);
INTStatus I2C_GetIntStatus(I2C_Module* I2Cx, uint32_t I2C_IT);
void I2C_ClrIntPendingBit(I2C_Module* I2Cx, uint32_t I2C_IT);

#ifdef __cplusplus
}
#endif

#endif /*__N32G45X_I2C_H */
/**
 * @}
 */

/**
 * @}
 */

/**
 * @}
 */