nu_spi.c 61.9 KB
Newer Older
W
Wayne Lin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
/**************************************************************************//**
 * @file     spi.c
 * @version  V3.00
 * @brief    M2354 series SPI driver source file
 *
 * @copyright SPDX-License-Identifier: Apache-2.0
 * @copyright Copyright (C) 2020 Nuvoton Technology Corp. All rights reserved.
 *****************************************************************************/
#include "NuMicro.h"

/** @addtogroup Standard_Driver Standard Driver
  @{
*/

/** @addtogroup SPI_Driver SPI Driver
  @{
*/


/** @addtogroup SPI_EXPORTED_FUNCTIONS SPI Exported Functions
  @{
*/

static uint32_t SPII2S_GetSourceClockFreq(SPI_T *i2s);

/**
  * @brief  This function make SPI module be ready to transfer.
  * @param[in]  spi The pointer of the specified SPI module.
  * @param[in]  u32MasterSlave Decides the SPI module is operating in master mode or in slave mode. (SPI_SLAVE, SPI_MASTER)
  * @param[in]  u32SPIMode Decides the transfer timing. (SPI_MODE_0, SPI_MODE_1, SPI_MODE_2, SPI_MODE_3)
  * @param[in]  u32DataWidth Decides the data width of a SPI transaction.
  * @param[in]  u32BusClock The expected frequency of SPI bus clock in Hz.
  * @return Actual frequency of SPI peripheral clock.
  * @details By default, the SPI transfer sequence is MSB first, the slave selection signal is active low and the automatic
  *          slave selection function is disabled.
  *          In Slave mode, the u32BusClock shall be NULL and the SPI clock divider setting will be 0.
  *          The actual clock rate may be different from the target SPI clock rate.
  *          For example, if the SPI source clock rate is 12 MHz and the target SPI bus clock rate is 7 MHz, the
  *          actual SPI clock rate will be 6MHz.
  * @note   If u32BusClock = 0, DIVIDER setting will be set to the maximum value.
  * @note   If u32BusClock >= system clock frequency for Secure, SPI peripheral clock source will be set to APB clock and DIVIDER will be set to 0.
  * @note   If u32BusClock >= system clock frequency for Non-Secure, this function does not do anything to avoid the situation that the frequency of
  *         SPI bus clock cannot be faster than the system clock rate. User should set up carefully.
  * @note   If u32BusClock >= SPI peripheral clock source, DIVIDER will be set to 0.
  * @note   In slave mode for Secure, the SPI peripheral clock rate will equal to APB clock rate.
  * @note   In slave mode for Non-Secure, the SPI peripheral clock rate will equal to the clock rate set in secure mode.
  */
uint32_t SPI_Open(SPI_T *spi,
                  uint32_t u32MasterSlave,
                  uint32_t u32SPIMode,
                  uint32_t u32DataWidth,
                  uint32_t u32BusClock)
{
    uint32_t u32ClkSrc = 0UL, u32Div, u32HCLKFreq, u32PCLK0Freq, u32PCLK1Freq, u32RetValue = 0UL;

    /* Disable I2S mode */
    spi->I2SCTL &= ~SPI_I2SCTL_I2SEN_Msk;

    if(u32DataWidth == 32UL)
    {
        u32DataWidth = 0UL;
    }

    /* Get system clock frequency */
    u32HCLKFreq = CLK_GetHCLKFreq();
    /* Get APB0 clock frequency */
    u32PCLK0Freq = CLK_GetPCLK0Freq();
    /* Get APB1 clock frequency */
    u32PCLK1Freq = CLK_GetPCLK1Freq();

    if(u32MasterSlave == SPI_MASTER)
    {
        /* Default setting: slave selection signal is active low; disable automatic slave selection function. */
        spi->SSCTL = SPI_SS_ACTIVE_LOW;

        /* Default setting: MSB first, disable unit transfer interrupt, SP_CYCLE = 0. */
        spi->CTL = u32MasterSlave | (u32DataWidth << SPI_CTL_DWIDTH_Pos) | (u32SPIMode) | SPI_CTL_SPIEN_Msk;

        if(u32BusClock >= u32HCLKFreq)
        {
            if(!(__PC() & NS_OFFSET))
            {
                /* Select PCLK as the clock source of SPI */
                if((spi == SPI0) || (spi == SPI0_NS))
                {
                    CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI0SEL_Msk)) | CLK_CLKSEL2_SPI0SEL_PCLK1;
                }
                else if((spi == SPI1) || (spi == SPI1_NS))
                {
                    CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI1SEL_Msk)) | CLK_CLKSEL2_SPI1SEL_PCLK0;
                }
                else if((spi == SPI2) || (spi == SPI2_NS))
                {
                    CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI2SEL_Msk)) | CLK_CLKSEL2_SPI2SEL_PCLK1;
                }
                else
                {
                    CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI3SEL_Msk)) | CLK_CLKSEL2_SPI3SEL_PCLK0;
                }
            }
        }

        /* Check clock source of SPI */
        if((spi == SPI0) || (spi == SPI0_NS))
        {
            if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_HXT)
            {
                u32ClkSrc = __HXT; /* Clock source is HXT */
            }
            else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PLL)
            {
                u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
            }
            else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PCLK1)
            {
                u32ClkSrc = CLK_GetPCLK1Freq(); /* Clock source is PCLK1 */
            }
            else
            {
                u32ClkSrc = __HIRC; /* Clock source is HIRC */
            }
        }
        else if((spi == SPI1) || (spi == SPI1_NS))
        {
            if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_HXT)
            {
                u32ClkSrc = __HXT; /* Clock source is HXT */
            }
            else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PLL)
            {
                u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
            }
            else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PCLK0)
            {
                u32ClkSrc = CLK_GetPCLK0Freq(); /* Clock source is PCLK0 */
            }
            else
            {
                u32ClkSrc = __HIRC; /* Clock source is HIRC */
            }
        }
        else if((spi == SPI2) || (spi == SPI2_NS))
        {
            if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_HXT)
            {
                u32ClkSrc = __HXT; /* Clock source is HXT */
            }
            else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PLL)
            {
                u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
            }
            else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PCLK1)
            {
                u32ClkSrc = CLK_GetPCLK1Freq(); /* Clock source is PCLK1 */
            }
            else
            {
                u32ClkSrc = __HIRC; /* Clock source is HIRC */
            }
        }
        else
        {
            if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_HXT)
            {
                u32ClkSrc = __HXT; /* Clock source is HXT */
            }
            else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PLL)
            {
                u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
            }
            else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PCLK0)
            {
                u32ClkSrc = CLK_GetPCLK0Freq(); /* Clock source is PCLK0 */
            }
            else
            {
                u32ClkSrc = __HIRC; /* Clock source is HIRC */
            }
        }

        if(u32BusClock >= u32HCLKFreq)
        {
            /* Set DIVIDER = 0 */
            spi->CLKDIV = 0UL;
            /* Return master peripheral clock rate */
            u32RetValue = u32ClkSrc;
        }
        else if(u32BusClock >= u32ClkSrc)
        {
            /* Set DIVIDER = 0 */
            spi->CLKDIV = 0UL;
            /* Return master peripheral clock rate */
            u32RetValue = u32ClkSrc;
        }
        else if(u32BusClock == 0UL)
        {
            /* Set DIVIDER to the maximum value 0x1FF. f_spi = f_spi_clk_src / (DIVIDER + 1) */
            spi->CLKDIV |= SPI_CLKDIV_DIVIDER_Msk;
            /* Return master peripheral clock rate */
            u32RetValue = (u32ClkSrc / (0x1FFUL + 1UL));
        }
        else
        {
            u32Div = (((u32ClkSrc * 10UL) / u32BusClock + 5UL) / 10UL) - 1UL; /* Round to the nearest integer */
            if(u32Div > 0x1FFUL)
            {
                u32Div = 0x1FFUL;
                spi->CLKDIV |= SPI_CLKDIV_DIVIDER_Msk;
                /* Return master peripheral clock rate */
                u32RetValue = (u32ClkSrc / (0x1FFUL + 1UL));
            }
            else
            {
                spi->CLKDIV = (spi->CLKDIV & (~SPI_CLKDIV_DIVIDER_Msk)) | (u32Div << SPI_CLKDIV_DIVIDER_Pos);
                /* Return master peripheral clock rate */
                u32RetValue = (u32ClkSrc / (u32Div + 1UL));
            }
        }
    }
    else     /* For slave mode, force the SPI peripheral clock rate to equal APB clock rate. */
    {
        /* Default setting: slave selection signal is low level active. */
        spi->SSCTL = SPI_SS_ACTIVE_LOW;

        /* Default setting: MSB first, disable unit transfer interrupt, SP_CYCLE = 0. */
        spi->CTL = u32MasterSlave | (u32DataWidth << SPI_CTL_DWIDTH_Pos) | (u32SPIMode) | SPI_CTL_SPIEN_Msk;

        /* Set DIVIDER = 0 */
        spi->CLKDIV = 0UL;

        if(!(__PC() & NS_OFFSET))
        {
            /* Select PCLK as the clock source of SPI */
            if((spi == SPI0) || (spi == SPI0_NS))
            {
                CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI0SEL_Msk)) | CLK_CLKSEL2_SPI0SEL_PCLK1;
                /* Return slave peripheral clock rate */
                u32RetValue = u32PCLK1Freq;
            }
            else if((spi == SPI1) || (spi == SPI1_NS))
            {
                CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI1SEL_Msk)) | CLK_CLKSEL2_SPI1SEL_PCLK0;
                /* Return slave peripheral clock rate */
                u32RetValue = u32PCLK0Freq;
            }
            else if((spi == SPI2) || (spi == SPI2_NS))
            {
                CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI2SEL_Msk)) | CLK_CLKSEL2_SPI2SEL_PCLK1;
                /* Return slave peripheral clock rate */
                u32RetValue = u32PCLK1Freq;
            }
            else
            {
                CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI3SEL_Msk)) | CLK_CLKSEL2_SPI3SEL_PCLK0;
                /* Return slave peripheral clock rate */
                u32RetValue = u32PCLK0Freq;
            }
        }
        else
        {
            /* Check clock source of SPI */
            if((spi == SPI0) || (spi == SPI0_NS))
            {
                if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_HXT)
                {
                    u32RetValue = __HXT; /* Clock source is HXT */
                }
                else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PLL)
                {
                    u32RetValue = CLK_GetPLLClockFreq(); /* Clock source is PLL */
                }
                else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PCLK1)
                {
                    u32RetValue = u32PCLK1Freq; /* Clock source is PCLK1 */
                }
                else
                {
                    u32RetValue = __HIRC; /* Clock source is HIRC */
                }
            }
            else if((spi == SPI1) || (spi == SPI1_NS))
            {
                if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_HXT)
                {
                    u32RetValue = __HXT; /* Clock source is HXT */
                }
                else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PLL)
                {
                    u32RetValue = CLK_GetPLLClockFreq(); /* Clock source is PLL */
                }
                else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PCLK0)
                {
                    u32RetValue = u32PCLK0Freq; /* Clock source is PCLK0 */
                }
                else
                {
                    u32RetValue = __HIRC; /* Clock source is HIRC */
                }
            }
            else if((spi == SPI2) || (spi == SPI2_NS))
            {
                if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_HXT)
                {
                    u32RetValue = __HXT; /* Clock source is HXT */
                }
                else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PLL)
                {
                    u32RetValue = CLK_GetPLLClockFreq(); /* Clock source is PLL */
                }
                else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PCLK1)
                {
                    u32RetValue = u32PCLK1Freq; /* Clock source is PCLK1 */
                }
                else
                {
                    u32RetValue = __HIRC; /* Clock source is HIRC */
                }
            }
            else
            {
                if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_HXT)
                {
                    u32RetValue = __HXT; /* Clock source is HXT */
                }
                else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PLL)
                {
                    u32RetValue = CLK_GetPLLClockFreq(); /* Clock source is PLL */
                }
                else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PCLK0)
                {
                    u32RetValue = u32PCLK0Freq; /* Clock source is PCLK0 */
                }
                else
                {
                    u32RetValue = __HIRC; /* Clock source is HIRC */
                }
            }
        }
    }

    return u32RetValue;
}

/**
  * @brief  Disable SPI controller.
  * @param[in]  spi The pointer of the specified SPI module.
  * @return None
  * @details Clear SPIEN bit of SPI_CTL register to disable SPI transfer control.
  */
void SPI_Close(SPI_T *spi)
{
    spi->CTL &= ~SPI_CTL_SPIEN_Msk;
}

/**
  * @brief  Clear RX FIFO buffer.
  * @param[in]  spi The pointer of the specified SPI module.
  * @return None
  * @details This function will clear SPI RX FIFO buffer. The RXEMPTY (SPI_STATUS[8]) will be set to 1.
  */
void SPI_ClearRxFIFO(SPI_T *spi)
{
    spi->FIFOCTL |= SPI_FIFOCTL_RXFBCLR_Msk;
}

/**
  * @brief  Clear TX FIFO buffer.
  * @param[in]  spi The pointer of the specified SPI module.
  * @return None
  * @details This function will clear SPI TX FIFO buffer. The TXEMPTY (SPI_STATUS[16]) will be set to 1.
  * @note The TX shift register will not be cleared.
  */
void SPI_ClearTxFIFO(SPI_T *spi)
{
    spi->FIFOCTL |= SPI_FIFOCTL_TXFBCLR_Msk;
}

/**
  * @brief  Disable the automatic slave selection function.
  * @param[in]  spi The pointer of the specified SPI module.
  * @return None
  * @details This function will disable the automatic slave selection function and set slave selection signal to inactive state.
  */
void SPI_DisableAutoSS(SPI_T *spi)
{
    spi->SSCTL &= ~(SPI_SSCTL_AUTOSS_Msk | SPI_SSCTL_SS_Msk);
}

/**
  * @brief  Enable the automatic slave selection function.
  * @param[in]  spi The pointer of the specified SPI module.
  * @param[in]  u32SSPinMask Specifies slave selection pins. (SPI_SS)
  * @param[in]  u32ActiveLevel Specifies the active level of slave selection signal. (SPI_SS_ACTIVE_HIGH, SPI_SS_ACTIVE_LOW)
  * @return None
  * @details This function will enable the automatic slave selection function. Only available in Master mode.
  *          The slave selection pin and the active level will be set in this function.
  */
void SPI_EnableAutoSS(SPI_T *spi, uint32_t u32SSPinMask, uint32_t u32ActiveLevel)
{
    spi->SSCTL = (spi->SSCTL & (~(SPI_SSCTL_AUTOSS_Msk | SPI_SSCTL_SSACTPOL_Msk | SPI_SSCTL_SS_Msk))) | (u32SSPinMask | u32ActiveLevel | SPI_SSCTL_AUTOSS_Msk);
}

/**
  * @brief  Set the SPI bus clock.
  * @param[in]  spi The pointer of the specified SPI module.
  * @param[in]  u32BusClock The expected frequency of SPI bus clock in Hz.
  * @return Actual frequency of SPI bus clock.
  * @details This function is only available in Master mode. The actual clock rate may be different from the target SPI bus clock rate.
  *          For example, if the SPI source clock rate is 12 MHz and the target SPI bus clock rate is 7 MHz, the actual SPI bus clock
  *          rate will be 6 MHz.
  * @note   If u32BusClock = 0, DIVIDER setting will be set to the maximum value.
  * @note   If u32BusClock >= system clock frequency for Secure, SPI peripheral clock source will be set to APB clock and DIVIDER will be set to 0.
  * @note   If u32BusClock >= system clock frequency for Non-Secure, this function does not do anything to avoid the situation that the frequency of
  *         SPI bus clock cannot be faster than the system clock rate. User should set up carefully.
  * @note   If u32BusClock >= SPI peripheral clock source, DIVIDER will be set to 0.
  */
uint32_t SPI_SetBusClock(SPI_T *spi, uint32_t u32BusClock)
{
    uint32_t u32ClkSrc, u32HCLKFreq;
    uint32_t u32Div, u32RetValue;

    /* Get system clock frequency */
    u32HCLKFreq = CLK_GetHCLKFreq();

    if(u32BusClock >= u32HCLKFreq)
    {
        if(!(__PC() & NS_OFFSET))
        {
            /* Select PCLK as the clock source of SPI */
            if((spi == SPI0) || (spi == SPI0_NS))
            {
                CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI0SEL_Msk)) | CLK_CLKSEL2_SPI0SEL_PCLK1;
            }
            else if((spi == SPI1) || (spi == SPI1_NS))
            {
                CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI1SEL_Msk)) | CLK_CLKSEL2_SPI1SEL_PCLK0;
            }
            else if((spi == SPI2) || (spi == SPI2_NS))
            {
                CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI2SEL_Msk)) | CLK_CLKSEL2_SPI2SEL_PCLK1;
            }
            else
            {
                CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI3SEL_Msk)) | CLK_CLKSEL2_SPI3SEL_PCLK0;
            }
        }
    }

    /* Check clock source of SPI */
    if((spi == SPI0) || (spi == SPI0_NS))
    {
        if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_HXT)
        {
            u32ClkSrc = __HXT; /* Clock source is HXT */
        }
        else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PLL)
        {
            u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
        }
        else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PCLK1)
        {
            u32ClkSrc = CLK_GetPCLK1Freq(); /* Clock source is PCLK1 */
        }
        else
        {
            u32ClkSrc = __HIRC; /* Clock source is HIRC */
        }
    }
    else if((spi == SPI1) || (spi == SPI1_NS))
    {
        if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_HXT)
        {
            u32ClkSrc = __HXT; /* Clock source is HXT */
        }
        else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PLL)
        {
            u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
        }
        else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PCLK0)
        {
            u32ClkSrc = CLK_GetPCLK0Freq(); /* Clock source is PCLK0 */
        }
        else
        {
            u32ClkSrc = __HIRC; /* Clock source is HIRC */
        }
    }
    else if((spi == SPI2) || (spi == SPI2_NS))
    {
        if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_HXT)
        {
            u32ClkSrc = __HXT; /* Clock source is HXT */
        }
        else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PLL)
        {
            u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
        }
        else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PCLK1)
        {
            u32ClkSrc = CLK_GetPCLK1Freq(); /* Clock source is PCLK1 */
        }
        else
        {
            u32ClkSrc = __HIRC; /* Clock source is HIRC */
        }
    }
    else
    {
        if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_HXT)
        {
            u32ClkSrc = __HXT; /* Clock source is HXT */
        }
        else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PLL)
        {
            u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
        }
        else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PCLK0)
        {
            u32ClkSrc = CLK_GetPCLK0Freq(); /* Clock source is PCLK0 */
        }
        else
        {
            u32ClkSrc = __HIRC; /* Clock source is HIRC */
        }
    }

    if(u32BusClock >= u32HCLKFreq)
    {
        /* Set DIVIDER = 0 */
        spi->CLKDIV = 0UL;
        /* Return master peripheral clock rate */
        u32RetValue = u32ClkSrc;
    }
    else if(u32BusClock >= u32ClkSrc)
    {
        /* Set DIVIDER = 0 */
        spi->CLKDIV = 0UL;
        /* Return master peripheral clock rate */
        u32RetValue = u32ClkSrc;
    }
    else if(u32BusClock == 0UL)
    {
        /* Set DIVIDER to the maximum value 0x1FF. f_spi = f_spi_clk_src / (DIVIDER + 1) */
        spi->CLKDIV |= SPI_CLKDIV_DIVIDER_Msk;
        /* Return master peripheral clock rate */
        u32RetValue = (u32ClkSrc / (0x1FFUL + 1UL));
    }
    else
    {
        u32Div = (((u32ClkSrc * 10UL) / u32BusClock + 5UL) / 10UL) - 1UL; /* Round to the nearest integer */
        if(u32Div > 0x1FFUL)
        {
            u32Div = 0x1FFUL;
            spi->CLKDIV |= SPI_CLKDIV_DIVIDER_Msk;
            /* Return master peripheral clock rate */
            u32RetValue = (u32ClkSrc / (0x1FFUL + 1UL));
        }
        else
        {
            spi->CLKDIV = (spi->CLKDIV & (~SPI_CLKDIV_DIVIDER_Msk)) | (u32Div << SPI_CLKDIV_DIVIDER_Pos);
            /* Return master peripheral clock rate */
            u32RetValue = (u32ClkSrc / (u32Div + 1UL));
        }
    }

    return u32RetValue;
}

/**
  * @brief  Configure FIFO threshold setting.
  * @param[in]  spi The pointer of the specified SPI module.
  * @param[in]  u32TxThreshold Decides the TX FIFO threshold. It could be 0 ~ 3. If data width is 8 ~ 16 bits, it could be 0 ~ 7.
  * @param[in]  u32RxThreshold Decides the RX FIFO threshold. It could be 0 ~ 3. If data width is 8 ~ 16 bits, it could be 0 ~ 7.
  * @return None
  * @details Set TX FIFO threshold and RX FIFO threshold configurations.
  */
void SPI_SetFIFO(SPI_T *spi, uint32_t u32TxThreshold, uint32_t u32RxThreshold)
{
    spi->FIFOCTL = (spi->FIFOCTL & ~(SPI_FIFOCTL_TXTH_Msk | SPI_FIFOCTL_RXTH_Msk)) |
                   (u32TxThreshold << SPI_FIFOCTL_TXTH_Pos) |
                   (u32RxThreshold << SPI_FIFOCTL_RXTH_Pos);
}

/**
  * @brief  Get the actual frequency of SPI bus clock. Only available in Master mode.
  * @param[in]  spi The pointer of the specified SPI module.
  * @return Actual SPI bus clock frequency in Hz.
  * @details This function will calculate the actual SPI bus clock rate according to the SPIxSEL and DIVIDER settings. Only available in Master mode.
  */
uint32_t SPI_GetBusClock(SPI_T *spi)
{
    uint32_t u32Div;
    uint32_t u32ClkSrc;

    /* Get DIVIDER setting */
    u32Div = (spi->CLKDIV & SPI_CLKDIV_DIVIDER_Msk) >> SPI_CLKDIV_DIVIDER_Pos;

    /* Check clock source of SPI */
    if((spi == SPI0) || (spi == SPI0_NS))
    {
        if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_HXT)
        {
            u32ClkSrc = __HXT; /* Clock source is HXT */
        }
        else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PLL)
        {
            u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
        }
        else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PCLK1)
        {
            u32ClkSrc = CLK_GetPCLK1Freq(); /* Clock source is PCLK1 */
        }
        else
        {
            u32ClkSrc = __HIRC; /* Clock source is HIRC */
        }
    }
    else if((spi == SPI1) || (spi == SPI1_NS))
    {
        if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_HXT)
        {
            u32ClkSrc = __HXT; /* Clock source is HXT */
        }
        else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PLL)
        {
            u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
        }
        else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PCLK0)
        {
            u32ClkSrc = CLK_GetPCLK0Freq(); /* Clock source is PCLK0 */
        }
        else
        {
            u32ClkSrc = __HIRC; /* Clock source is HIRC */
        }
    }
    else if((spi == SPI2) || (spi == SPI2_NS))
    {
        if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_HXT)
        {
            u32ClkSrc = __HXT; /* Clock source is HXT */
        }
        else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PLL)
        {
            u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
        }
        else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PCLK1)
        {
            u32ClkSrc = CLK_GetPCLK1Freq(); /* Clock source is PCLK1 */
        }
        else
        {
            u32ClkSrc = __HIRC; /* Clock source is HIRC */
        }
    }
    else
    {
        if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_HXT)
        {
            u32ClkSrc = __HXT; /* Clock source is HXT */
        }
        else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PLL)
        {
            u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
        }
        else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PCLK0)
        {
            u32ClkSrc = CLK_GetPCLK0Freq(); /* Clock source is PCLK0 */
        }
        else
        {
            u32ClkSrc = __HIRC; /* Clock source is HIRC */
        }
    }

    /* Return SPI bus clock rate */
    return (u32ClkSrc / (u32Div + 1UL));
}

/**
  * @brief  Enable interrupt function.
  * @param[in]  spi The pointer of the specified SPI module.
  * @param[in]  u32Mask The combination of all related interrupt enable bits.
  *                     Each bit corresponds to a interrupt enable bit.
  *                     This parameter decides which interrupts will be enabled. It is combination of:
  *                       - \ref SPI_UNIT_INT_MASK
  *                       - \ref SPI_SSACT_INT_MASK
  *                       - \ref SPI_SSINACT_INT_MASK
  *                       - \ref SPI_SLVUR_INT_MASK
  *                       - \ref SPI_SLVBE_INT_MASK
  *                       - \ref SPI_TXUF_INT_MASK
  *                       - \ref SPI_FIFO_TXTH_INT_MASK
  *                       - \ref SPI_FIFO_RXTH_INT_MASK
  *                       - \ref SPI_FIFO_RXOV_INT_MASK
  *                       - \ref SPI_FIFO_RXTO_INT_MASK
  *
  * @return None
  * @details Enable SPI related interrupts specified by u32Mask parameter.
  */
void SPI_EnableInt(SPI_T *spi, uint32_t u32Mask)
{
    /* Enable unit transfer interrupt flag */
    if((u32Mask & SPI_UNIT_INT_MASK) == SPI_UNIT_INT_MASK)
    {
        spi->CTL |= SPI_CTL_UNITIEN_Msk;
    }

    /* Enable slave selection signal active interrupt flag */
    if((u32Mask & SPI_SSACT_INT_MASK) == SPI_SSACT_INT_MASK)
    {
        spi->SSCTL |= SPI_SSCTL_SSACTIEN_Msk;
    }

    /* Enable slave selection signal inactive interrupt flag */
    if((u32Mask & SPI_SSINACT_INT_MASK) == SPI_SSINACT_INT_MASK)
    {
        spi->SSCTL |= SPI_SSCTL_SSINAIEN_Msk;
    }

    /* Enable slave TX under run interrupt flag */
    if((u32Mask & SPI_SLVUR_INT_MASK) == SPI_SLVUR_INT_MASK)
    {
        spi->SSCTL |= SPI_SSCTL_SLVURIEN_Msk;
    }

    /* Enable slave bit count error interrupt flag */
    if((u32Mask & SPI_SLVBE_INT_MASK) == SPI_SLVBE_INT_MASK)
    {
        spi->SSCTL |= SPI_SSCTL_SLVBEIEN_Msk;
    }

    /* Enable slave TX underflow interrupt flag */
    if((u32Mask & SPI_TXUF_INT_MASK) == SPI_TXUF_INT_MASK)
    {
        spi->FIFOCTL |= SPI_FIFOCTL_TXUFIEN_Msk;
    }

    /* Enable TX threshold interrupt flag */
    if((u32Mask & SPI_FIFO_TXTH_INT_MASK) == SPI_FIFO_TXTH_INT_MASK)
    {
        spi->FIFOCTL |= SPI_FIFOCTL_TXTHIEN_Msk;
    }

    /* Enable RX threshold interrupt flag */
    if((u32Mask & SPI_FIFO_RXTH_INT_MASK) == SPI_FIFO_RXTH_INT_MASK)
    {
        spi->FIFOCTL |= SPI_FIFOCTL_RXTHIEN_Msk;
    }

    /* Enable RX overrun interrupt flag */
    if((u32Mask & SPI_FIFO_RXOV_INT_MASK) == SPI_FIFO_RXOV_INT_MASK)
    {
        spi->FIFOCTL |= SPI_FIFOCTL_RXOVIEN_Msk;
    }

    /* Enable RX time-out interrupt flag */
    if((u32Mask & SPI_FIFO_RXTO_INT_MASK) == SPI_FIFO_RXTO_INT_MASK)
    {
        spi->FIFOCTL |= SPI_FIFOCTL_RXTOIEN_Msk;
    }
}

/**
  * @brief  Disable interrupt function.
  * @param[in]  spi The pointer of the specified SPI module.
  * @param[in]  u32Mask The combination of all related interrupt enable bits.
  *                     Each bit corresponds to a interrupt bit.
  *                     This parameter decides which interrupts will be disabled. It is combination of:
  *                       - \ref SPI_UNIT_INT_MASK
  *                       - \ref SPI_SSACT_INT_MASK
  *                       - \ref SPI_SSINACT_INT_MASK
  *                       - \ref SPI_SLVUR_INT_MASK
  *                       - \ref SPI_SLVBE_INT_MASK
  *                       - \ref SPI_TXUF_INT_MASK
  *                       - \ref SPI_FIFO_TXTH_INT_MASK
  *                       - \ref SPI_FIFO_RXTH_INT_MASK
  *                       - \ref SPI_FIFO_RXOV_INT_MASK
  *                       - \ref SPI_FIFO_RXTO_INT_MASK
  *
  * @return None
  * @details Disable SPI related interrupts specified by u32Mask parameter.
  */
void SPI_DisableInt(SPI_T *spi, uint32_t u32Mask)
{
    /* Disable unit transfer interrupt flag */
    if((u32Mask & SPI_UNIT_INT_MASK) == SPI_UNIT_INT_MASK)
    {
        spi->CTL &= ~SPI_CTL_UNITIEN_Msk;
    }

    /* Disable slave selection signal active interrupt flag */
    if((u32Mask & SPI_SSACT_INT_MASK) == SPI_SSACT_INT_MASK)
    {
        spi->SSCTL &= ~SPI_SSCTL_SSACTIEN_Msk;
    }

    /* Disable slave selection signal inactive interrupt flag */
    if((u32Mask & SPI_SSINACT_INT_MASK) == SPI_SSINACT_INT_MASK)
    {
        spi->SSCTL &= ~SPI_SSCTL_SSINAIEN_Msk;
    }

    /* Disable slave TX under run interrupt flag */
    if((u32Mask & SPI_SLVUR_INT_MASK) == SPI_SLVUR_INT_MASK)
    {
        spi->SSCTL &= ~SPI_SSCTL_SLVURIEN_Msk;
    }

    /* Disable slave bit count error interrupt flag */
    if((u32Mask & SPI_SLVBE_INT_MASK) == SPI_SLVBE_INT_MASK)
    {
        spi->SSCTL &= ~SPI_SSCTL_SLVBEIEN_Msk;
    }

    /* Disable slave TX underflow interrupt flag */
    if((u32Mask & SPI_TXUF_INT_MASK) == SPI_TXUF_INT_MASK)
    {
        spi->FIFOCTL &= ~SPI_FIFOCTL_TXUFIEN_Msk;
    }

    /* Disable TX threshold interrupt flag */
    if((u32Mask & SPI_FIFO_TXTH_INT_MASK) == SPI_FIFO_TXTH_INT_MASK)
    {
        spi->FIFOCTL &= ~SPI_FIFOCTL_TXTHIEN_Msk;
    }

    /* Disable RX threshold interrupt flag */
    if((u32Mask & SPI_FIFO_RXTH_INT_MASK) == SPI_FIFO_RXTH_INT_MASK)
    {
        spi->FIFOCTL &= ~SPI_FIFOCTL_RXTHIEN_Msk;
    }

    /* Disable RX overrun interrupt flag */
    if((u32Mask & SPI_FIFO_RXOV_INT_MASK) == SPI_FIFO_RXOV_INT_MASK)
    {
        spi->FIFOCTL &= ~SPI_FIFOCTL_RXOVIEN_Msk;
    }

    /* Disable RX time-out interrupt flag */
    if((u32Mask & SPI_FIFO_RXTO_INT_MASK) == SPI_FIFO_RXTO_INT_MASK)
    {
        spi->FIFOCTL &= ~SPI_FIFOCTL_RXTOIEN_Msk;
    }
}

/**
  * @brief  Get interrupt flag.
  * @param[in]  spi The pointer of the specified SPI module.
  * @param[in]  u32Mask The combination of all related interrupt sources.
  *                     Each bit corresponds to a interrupt source.
  *                     This parameter decides which interrupt flags will be read. It is combination of:
  *                       - \ref SPI_UNIT_INT_MASK
  *                       - \ref SPI_SSACT_INT_MASK
  *                       - \ref SPI_SSINACT_INT_MASK
  *                       - \ref SPI_SLVUR_INT_MASK
  *                       - \ref SPI_SLVBE_INT_MASK
  *                       - \ref SPI_TXUF_INT_MASK
  *                       - \ref SPI_FIFO_TXTH_INT_MASK
  *                       - \ref SPI_FIFO_RXTH_INT_MASK
  *                       - \ref SPI_FIFO_RXOV_INT_MASK
  *                       - \ref SPI_FIFO_RXTO_INT_MASK
  *
  * @return Interrupt flags of selected sources.
  * @details Get SPI related interrupt flags specified by u32Mask parameter.
  */
uint32_t SPI_GetIntFlag(SPI_T *spi, uint32_t u32Mask)
{
    uint32_t u32IntStatus;
    uint32_t u32IntFlag = 0UL;

    u32IntStatus = spi->STATUS;

    /* Check unit transfer interrupt flag */
    if((u32Mask & SPI_UNIT_INT_MASK) && (u32IntStatus & SPI_STATUS_UNITIF_Msk))
    {
        u32IntFlag |= SPI_UNIT_INT_MASK;
    }

    /* Check slave selection signal active interrupt flag */
    if((u32Mask & SPI_SSACT_INT_MASK) && (u32IntStatus & SPI_STATUS_SSACTIF_Msk))
    {
        u32IntFlag |= SPI_SSACT_INT_MASK;
    }

    /* Check slave selection signal inactive interrupt flag */
    if((u32Mask & SPI_SSINACT_INT_MASK) && (u32IntStatus & SPI_STATUS_SSINAIF_Msk))
    {
        u32IntFlag |= SPI_SSINACT_INT_MASK;
    }

    /* Check slave TX under run interrupt flag */
    if((u32Mask & SPI_SLVUR_INT_MASK) && (u32IntStatus & SPI_STATUS_SLVURIF_Msk))
    {
        u32IntFlag |= SPI_SLVUR_INT_MASK;
    }

    /* Check slave bit count error interrupt flag */
    if((u32Mask & SPI_SLVBE_INT_MASK) && (u32IntStatus & SPI_STATUS_SLVBEIF_Msk))
    {
        u32IntFlag |= SPI_SLVBE_INT_MASK;
    }

    /* Check slave TX underflow interrupt flag */
    if((u32Mask & SPI_TXUF_INT_MASK) && (u32IntStatus & SPI_STATUS_TXUFIF_Msk))
    {
        u32IntFlag |= SPI_TXUF_INT_MASK;
    }

    /* Check TX threshold interrupt flag */
    if((u32Mask & SPI_FIFO_TXTH_INT_MASK) && (u32IntStatus & SPI_STATUS_TXTHIF_Msk))
    {
        u32IntFlag |= SPI_FIFO_TXTH_INT_MASK;
    }

    /* Check RX threshold interrupt flag */
    if((u32Mask & SPI_FIFO_RXTH_INT_MASK) && (u32IntStatus & SPI_STATUS_RXTHIF_Msk))
    {
        u32IntFlag |= SPI_FIFO_RXTH_INT_MASK;
    }

    /* Check RX overrun interrupt flag */
    if((u32Mask & SPI_FIFO_RXOV_INT_MASK) && (u32IntStatus & SPI_STATUS_RXOVIF_Msk))
    {
        u32IntFlag |= SPI_FIFO_RXOV_INT_MASK;
    }

    /* Check RX time-out interrupt flag */
    if((u32Mask & SPI_FIFO_RXTO_INT_MASK) && (u32IntStatus & SPI_STATUS_RXTOIF_Msk))
    {
        u32IntFlag |= SPI_FIFO_RXTO_INT_MASK;
    }

    return u32IntFlag;
}

/**
  * @brief  Clear interrupt flag.
  * @param[in]  spi The pointer of the specified SPI module.
  * @param[in]  u32Mask The combination of all related interrupt sources.
  *                     Each bit corresponds to a interrupt source.
  *                     This parameter decides which interrupt flags will be cleared. It could be the combination of:
  *                       - \ref SPI_UNIT_INT_MASK
  *                       - \ref SPI_SSACT_INT_MASK
  *                       - \ref SPI_SSINACT_INT_MASK
  *                       - \ref SPI_SLVUR_INT_MASK
  *                       - \ref SPI_SLVBE_INT_MASK
  *                       - \ref SPI_TXUF_INT_MASK
  *                       - \ref SPI_FIFO_RXOV_INT_MASK
  *                       - \ref SPI_FIFO_RXTO_INT_MASK
  *
  * @return None
  * @details Clear SPI related interrupt flags specified by u32Mask parameter.
  */
void SPI_ClearIntFlag(SPI_T *spi, uint32_t u32Mask)
{
    if(u32Mask & SPI_UNIT_INT_MASK)
    {
        spi->STATUS = SPI_STATUS_UNITIF_Msk; /* Clear unit transfer interrupt flag */
    }

    if(u32Mask & SPI_SSACT_INT_MASK)
    {
        spi->STATUS = SPI_STATUS_SSACTIF_Msk; /* Clear slave selection signal active interrupt flag */
    }

    if(u32Mask & SPI_SSINACT_INT_MASK)
    {
        spi->STATUS = SPI_STATUS_SSINAIF_Msk; /* Clear slave selection signal inactive interrupt flag */
    }

    if(u32Mask & SPI_SLVUR_INT_MASK)
    {
        spi->STATUS = SPI_STATUS_SLVURIF_Msk; /* Clear slave TX under run interrupt flag */
    }

    if(u32Mask & SPI_SLVBE_INT_MASK)
    {
        spi->STATUS = SPI_STATUS_SLVBEIF_Msk; /* Clear slave bit count error interrupt flag */
    }

    if(u32Mask & SPI_TXUF_INT_MASK)
    {
        spi->STATUS = SPI_STATUS_TXUFIF_Msk; /* Clear slave TX underflow interrupt flag */
    }

    if(u32Mask & SPI_FIFO_RXOV_INT_MASK)
    {
        spi->STATUS = SPI_STATUS_RXOVIF_Msk; /* Clear RX overrun interrupt flag */
    }

    if(u32Mask & SPI_FIFO_RXTO_INT_MASK)
    {
        spi->STATUS = SPI_STATUS_RXTOIF_Msk; /* Clear RX time-out interrupt flag */
    }
}

/**
  * @brief  Get SPI status.
  * @param[in]  spi The pointer of the specified SPI module.
  * @param[in]  u32Mask The combination of all related sources.
  *                     Each bit corresponds to a source.
  *                     This parameter decides which flags will be read. It is combination of:
  *                       - \ref SPI_BUSY_MASK
  *                       - \ref SPI_RX_EMPTY_MASK
  *                       - \ref SPI_RX_FULL_MASK
  *                       - \ref SPI_TX_EMPTY_MASK
  *                       - \ref SPI_TX_FULL_MASK
  *                       - \ref SPI_TXRX_RESET_MASK
  *                       - \ref SPI_SPIEN_STS_MASK
  *                       - \ref SPI_SSLINE_STS_MASK
  *
  * @return Flags of selected sources.
  * @details Get SPI related status specified by u32Mask parameter.
  */
uint32_t SPI_GetStatus(SPI_T *spi, uint32_t u32Mask)
{
    uint32_t u32TmpStatus;
    uint32_t u32Flag = 0UL;

    u32TmpStatus = spi->STATUS;

    /* Check busy status */
    if((u32Mask & SPI_BUSY_MASK) && (u32TmpStatus & SPI_STATUS_BUSY_Msk))
    {
        u32Flag |= SPI_BUSY_MASK;
    }

    /* Check RX empty flag */
    if((u32Mask & SPI_RX_EMPTY_MASK) && (u32TmpStatus & SPI_STATUS_RXEMPTY_Msk))
    {
        u32Flag |= SPI_RX_EMPTY_MASK;
    }

    /* Check RX full flag */
    if((u32Mask & SPI_RX_FULL_MASK) && (u32TmpStatus & SPI_STATUS_RXFULL_Msk))
    {
        u32Flag |= SPI_RX_FULL_MASK;
    }

    /* Check TX empty flag */
    if((u32Mask & SPI_TX_EMPTY_MASK) && (u32TmpStatus & SPI_STATUS_TXEMPTY_Msk))
    {
        u32Flag |= SPI_TX_EMPTY_MASK;
    }

    /* Check TX full flag */
    if((u32Mask & SPI_TX_FULL_MASK) && (u32TmpStatus & SPI_STATUS_TXFULL_Msk))
    {
        u32Flag |= SPI_TX_FULL_MASK;
    }

    /* Check TX/RX reset flag */
    if((u32Mask & SPI_TXRX_RESET_MASK) && (u32TmpStatus & SPI_STATUS_TXRXRST_Msk))
    {
        u32Flag |= SPI_TXRX_RESET_MASK;
    }

    /* Check SPIEN flag */
    if((u32Mask & SPI_SPIEN_STS_MASK) && (u32TmpStatus & SPI_STATUS_SPIENSTS_Msk))
    {
        u32Flag |= SPI_SPIEN_STS_MASK;
    }

    /* Check SPIx_SS line status */
    if((u32Mask & SPI_SSLINE_STS_MASK) && (u32TmpStatus & SPI_STATUS_SSLINE_Msk))
    {
        u32Flag |= SPI_SSLINE_STS_MASK;
    }

    return u32Flag;
}

/**
  * @brief  Get SPI status2.
  * @param[in]  spi The pointer of the specified SPI module.
  * @param[in]  u32Mask The combination of all related sources.
  *                     Each bit corresponds to a source.
  *                     This parameter decides which flags will be read. It is combination of:
  *                       - \ref SPI_SLVBENUM_MASK
  *
  * @return Flags of selected sources.
  * @details Get SPI related status specified by u32Mask parameter.
  */
uint32_t SPI_GetStatus2(SPI_T *spi, uint32_t u32Mask)
{
    uint32_t u32TmpStatus;
    uint32_t u32Number = 0UL;

    u32TmpStatus = spi->STATUS2;

    /* Check effective bit number of uncompleted RX data status */
    if(u32Mask & SPI_SLVBENUM_MASK)
    {
        u32Number = (u32TmpStatus & SPI_STATUS2_SLVBENUM_Msk) >> SPI_STATUS2_SLVBENUM_Pos;
    }

    return u32Number;
}


/**
  * @brief  This function is used to get I2S source clock frequency.
  * @param[in]  i2s The pointer of the specified I2S module.
  * @return I2S source clock frequency (Hz).
  * @details Return the source clock frequency according to the setting of SPI0SEL (CLK_CLKSEL2[5:4]) or SPI1SEL (CLK_CLKSEL2[7:6]) or SPI2SEL (CLK_CLKSEL2[11:10]) or SPI3SEL (CLK_CLKSEL2[13:12]).
  */
static uint32_t SPII2S_GetSourceClockFreq(SPI_T *i2s)
{
    uint32_t u32Freq;

    if((i2s == SPI0) || (i2s == SPI0_NS))
    {
        if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_HXT)
        {
            u32Freq = __HXT; /* Clock source is HXT */
        }
        else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PLL)
        {
            u32Freq = CLK_GetPLLClockFreq(); /* Clock source is PLL */
        }
        else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PCLK1)
        {
            u32Freq = CLK_GetPCLK1Freq(); /* Clock source is PCLK1 */
        }
        else
        {
            u32Freq = __HIRC; /* Clock source is HIRC */
        }
    }
    else if((i2s == SPI1) || (i2s == SPI1_NS))
    {
        if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_HXT)
        {
            u32Freq = __HXT; /* Clock source is HXT */
        }
        else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PLL)
        {
            u32Freq = CLK_GetPLLClockFreq(); /* Clock source is PLL */
        }
        else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PCLK0)
        {
            u32Freq = CLK_GetPCLK0Freq(); /* Clock source is PCLK0 */
        }
        else
        {
            u32Freq = __HIRC; /* Clock source is HIRC */
        }
    }
    else if((i2s == SPI2) || (i2s == SPI2_NS))
    {
        if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_HXT)
        {
            u32Freq = __HXT; /* Clock source is HXT */
        }
        else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PLL)
        {
            u32Freq = CLK_GetPLLClockFreq(); /* Clock source is PLL */
        }
        else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PCLK1)
        {
            u32Freq = CLK_GetPCLK1Freq(); /* Clock source is PCLK1 */
        }
        else
        {
            u32Freq = __HIRC; /* Clock source is HIRC */
        }
    }
    else
    {
        if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_HXT)
        {
            u32Freq = __HXT; /* Clock source is HXT */
        }
        else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PLL)
        {
            u32Freq = CLK_GetPLLClockFreq(); /* Clock source is PLL */
        }
        else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PCLK0)
        {
            u32Freq = CLK_GetPCLK0Freq(); /* Clock source is PCLK0 */
        }
        else
        {
            u32Freq = __HIRC; /* Clock source is HIRC */
        }
    }

    return u32Freq;
}

/**
  * @brief  This function configures some parameters of I2S interface for general purpose use.
  * @param[in] i2s The pointer of the specified I2S module.
  * @param[in] u32MasterSlave I2S operation mode. Valid values are listed below.
  *                                     - \ref SPII2S_MODE_MASTER
  *                                     - \ref SPII2S_MODE_SLAVE
  * @param[in] u32SampleRate Sample rate
  * @param[in] u32WordWidth Data length. Valid values are listed below.
  *                                     - \ref SPII2S_DATABIT_8
  *                                     - \ref SPII2S_DATABIT_16
  *                                     - \ref SPII2S_DATABIT_24
  *                                     - \ref SPII2S_DATABIT_32
  * @param[in] u32Channels Audio format. Valid values are listed below.
  *                                     - \ref SPII2S_MONO
  *                                     - \ref SPII2S_STEREO
  * @param[in] u32DataFormat Data format. Valid values are listed below.
  *                                     - \ref SPII2S_FORMAT_I2S
  *                                     - \ref SPII2S_FORMAT_MSB
  *                                     - \ref SPII2S_FORMAT_PCMA
  *                                     - \ref SPII2S_FORMAT_PCMB
  * @return Real sample rate of master mode or peripheral clock rate of slave mode.
  * @details This function will reset SPI/I2S controller and configure I2S controller according to the input parameters.
  *          Set TX FIFO threshold to 2 and RX FIFO threshold to 1. Both the TX and RX functions will be enabled.
  *          The actual sample rate may be different from the target sample rate. The real sample rate will be returned for reference.
  * @note   In slave mode for Secure, the SPI peripheral clock rate will equal to APB clock rate.
  * @note   In slave mode for Non-Secure, the SPI peripheral clock rate will equal to the clock rate set in secure mode.
  */
uint32_t SPII2S_Open(SPI_T *i2s, uint32_t u32MasterSlave, uint32_t u32SampleRate, uint32_t u32WordWidth, uint32_t u32Channels, uint32_t u32DataFormat)
{
    uint32_t u32Divider;
    uint32_t u32BitRate, u32SrcClk, u32RetValue;
    uint32_t u32PCLK0Freq, u32PCLK1Freq;

    if(!(__PC() & NS_OFFSET))
    {
        /* Reset SPI/I2S */
        if((i2s == SPI0) || (i2s == SPI0_NS))
        {
            SYS->IPRST1 |= SYS_IPRST1_SPI0RST_Msk;
            SYS->IPRST1 &= ~SYS_IPRST1_SPI0RST_Msk;
        }
        else if((i2s == SPI1) || (i2s == SPI1_NS))
        {
            SYS->IPRST1 |= SYS_IPRST1_SPI1RST_Msk;
            SYS->IPRST1 &= ~SYS_IPRST1_SPI1RST_Msk;
        }
        else if((i2s == SPI2) || (i2s == SPI2_NS))
        {
            SYS->IPRST1 |= SYS_IPRST1_SPI2RST_Msk;
            SYS->IPRST1 &= ~SYS_IPRST1_SPI2RST_Msk;
        }
        else
        {
            SYS->IPRST2 |= SYS_IPRST2_SPI3RST_Msk;
            SYS->IPRST2 &= ~SYS_IPRST2_SPI3RST_Msk;
        }
    }

    /* Configure I2S controller */
    i2s->I2SCTL = u32MasterSlave | u32WordWidth | u32Channels | u32DataFormat;
    /* Set TX FIFO threshold to 2 and RX FIFO threshold to 1 */
    i2s->FIFOCTL = SPII2S_FIFO_TX_LEVEL_WORD_2 | SPII2S_FIFO_RX_LEVEL_WORD_2;

    if(u32MasterSlave == SPII2S_MODE_MASTER)
    {
        /* Get the source clock rate */
        u32SrcClk = SPII2S_GetSourceClockFreq(i2s);

        /* Calculate the bit clock rate */
        u32BitRate = u32SampleRate * ((u32WordWidth >> SPI_I2SCTL_WDWIDTH_Pos) + 1UL) * 16UL;
        u32Divider = (((((u32SrcClk * 10UL) / u32BitRate) >> 1UL) + 5UL) / 10UL) - 1UL; /* Round to the nearest integer */
        /* Set BCLKDIV setting */
        i2s->I2SCLK = (i2s->I2SCLK & ~SPI_I2SCLK_BCLKDIV_Msk) | (u32Divider << SPI_I2SCLK_BCLKDIV_Pos);
        /* Enable I2S mode for the frequency of peripheral clock. */
        i2s->I2SCLK |= SPI_I2SCLK_I2SMODE_Msk;

        /* Calculate bit clock rate */
        u32BitRate = u32SrcClk / ((u32Divider + 1UL) * 2UL);
        /* Calculate real sample rate */
        u32SampleRate = u32BitRate / (((u32WordWidth >> SPI_I2SCTL_WDWIDTH_Pos) + 1UL) * 16UL);

        /* Enable TX function, RX function and I2S mode. */
        i2s->I2SCTL |= (SPI_I2SCTL_RXEN_Msk | SPI_I2SCTL_TXEN_Msk | SPI_I2SCTL_I2SEN_Msk);

        /* Return the real sample rate */
        u32RetValue = u32SampleRate;
    }
    else
    {
        /* Set BCLKDIV = 0 */
        i2s->I2SCLK &= ~SPI_I2SCLK_BCLKDIV_Msk;
        /* Get APB0 clock frequency */
        u32PCLK0Freq = CLK_GetPCLK0Freq();
        /* Get APB1 clock frequency */
        u32PCLK1Freq = CLK_GetPCLK1Freq();

        if((i2s == SPI0) || (i2s == SPI0_NS))
        {
            if(!(__PC() & NS_OFFSET))
            {
                /* Set the peripheral clock rate to equal APB clock rate */
                CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI0SEL_Msk)) | CLK_CLKSEL2_SPI0SEL_PCLK1;
                /* Return slave peripheral clock rate */
                u32RetValue = u32PCLK1Freq;
            }
            else
            {
                /* Check clock source of I2S */
                if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_HXT)
                {
                    u32RetValue = __HXT; /* Clock source is HXT */
                }
                else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PLL)
                {
                    u32RetValue = CLK_GetPLLClockFreq(); /* Clock source is PLL */
                }
                else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PCLK1)
                {
                    u32RetValue = CLK_GetPCLK1Freq(); /* Clock source is PCLK1 */
                }
                else
                {
                    u32RetValue = __HIRC; /* Clock source is HIRC */
                }
            }
            /* Enable I2S slave mode and I2S mode for the frequency of peripheral clock. */
            i2s->I2SCLK |= (SPI_I2SCLK_I2SSLAVE_Msk | SPI_I2SCLK_I2SMODE_Msk);
            /* Enable TX function, RX function and I2S mode. */
            i2s->I2SCTL |= (SPI_I2SCTL_RXEN_Msk | SPI_I2SCTL_TXEN_Msk | SPI_I2SCTL_I2SEN_Msk);
        }
        else if((i2s == SPI1) || (i2s == SPI1_NS))
        {
            if(!(__PC() & NS_OFFSET))
            {
                /* Set the peripheral clock rate to equal APB clock rate */
                CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI1SEL_Msk)) | CLK_CLKSEL2_SPI1SEL_PCLK0;
                /* Return slave peripheral clock rate */
                u32RetValue = u32PCLK0Freq;
            }
            else
            {
                /* Check clock source of I2S */
                if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_HXT)
                {
                    u32RetValue = __HXT; /* Clock source is HXT */
                }
                else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PLL)
                {
                    u32RetValue = CLK_GetPLLClockFreq(); /* Clock source is PLL */
                }
                else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PCLK0)
                {
                    u32RetValue = CLK_GetPCLK0Freq(); /* Clock source is PCLK0 */
                }
                else
                {
                    u32RetValue = __HIRC; /* Clock source is HIRC */
                }
            }
            /* Enable I2S slave mode and I2S mode for the frequency of peripheral clock. */
            i2s->I2SCLK |= (SPI_I2SCLK_I2SSLAVE_Msk | SPI_I2SCLK_I2SMODE_Msk);
            /* Enable TX function, RX function and I2S mode. */
            i2s->I2SCTL |= (SPI_I2SCTL_RXEN_Msk | SPI_I2SCTL_TXEN_Msk | SPI_I2SCTL_I2SEN_Msk);
        }
        else if((i2s == SPI2) || (i2s == SPI2_NS))
        {
            if(!(__PC() & NS_OFFSET))
            {
                /* Set the peripheral clock rate to equal APB clock rate */
                CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI2SEL_Msk)) | CLK_CLKSEL2_SPI2SEL_PCLK1;
                /* Return slave peripheral clock rate */
                u32RetValue = u32PCLK1Freq;
            }
            else
            {
                /* Check clock source of I2S */
                if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_HXT)
                {
                    u32RetValue = __HXT; /* Clock source is HXT */
                }
                else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PLL)
                {
                    u32RetValue = CLK_GetPLLClockFreq(); /* Clock source is PLL */
                }
                else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PCLK1)
                {
                    u32RetValue = CLK_GetPCLK1Freq(); /* Clock source is PCLK1 */
                }
                else
                {
                    u32RetValue = __HIRC; /* Clock source is HIRC */
                }
            }
            /* Enable I2S slave mode and I2S mode for the frequency of peripheral clock. */
            i2s->I2SCLK |= (SPI_I2SCLK_I2SSLAVE_Msk | SPI_I2SCLK_I2SMODE_Msk);
            /* Enable TX function, RX function and I2S mode. */
            i2s->I2SCTL |= (SPI_I2SCTL_RXEN_Msk | SPI_I2SCTL_TXEN_Msk | SPI_I2SCTL_I2SEN_Msk);
        }
        else
        {
            if(!(__PC() & NS_OFFSET))
            {
                /* Set the peripheral clock rate to equal APB clock rate */
                CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI3SEL_Msk)) | CLK_CLKSEL2_SPI3SEL_PCLK0;
                /* Return slave peripheral clock rate */
                u32RetValue = u32PCLK0Freq;
            }
            else
            {
                /* Check clock source of I2S */
                if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_HXT)
                {
                    u32RetValue = __HXT; /* Clock source is HXT */
                }
                else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PLL)
                {
                    u32RetValue = CLK_GetPLLClockFreq(); /* Clock source is PLL */
                }
                else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PCLK0)
                {
                    u32RetValue = CLK_GetPCLK0Freq(); /* Clock source is PCLK0 */
                }
                else
                {
                    u32RetValue = __HIRC; /* Clock source is HIRC */
                }
            }
            /* Enable I2S slave mode and I2S mode for the frequency of peripheral clock. */
            i2s->I2SCLK |= (SPI_I2SCLK_I2SSLAVE_Msk | SPI_I2SCLK_I2SMODE_Msk);
            /* Enable TX function, RX function and I2S mode. */
            i2s->I2SCTL |= (SPI_I2SCTL_RXEN_Msk | SPI_I2SCTL_TXEN_Msk | SPI_I2SCTL_I2SEN_Msk);
        }
    }

    return u32RetValue;
}

/**
  * @brief  Disable I2S function.
  * @param[in]  i2s The pointer of the specified I2S module.
  * @return None
  * @details Disable I2S function.
  */
void SPII2S_Close(SPI_T *i2s)
{
    i2s->I2SCTL &= ~SPI_I2SCTL_I2SEN_Msk;
}

/**
  * @brief Enable interrupt function.
  * @param[in] i2s The pointer of the specified I2S module.
  * @param[in] u32Mask The combination of all related interrupt enable bits.
  *            Each bit corresponds to a interrupt source. Valid values are listed below.
  *            - \ref SPII2S_FIFO_TXTH_INT_MASK
  *            - \ref SPII2S_FIFO_RXTH_INT_MASK
  *            - \ref SPII2S_FIFO_RXOV_INT_MASK
  *            - \ref SPII2S_FIFO_RXTO_INT_MASK
  *            - \ref SPII2S_TXUF_INT_MASK
  *            - \ref SPII2S_RIGHT_ZC_INT_MASK
  *            - \ref SPII2S_LEFT_ZC_INT_MASK
  *            - \ref SPII2S_SLAVE_ERR_INT_MASK
  * @return None
  * @details This function enables the interrupt according to the u32Mask parameter.
  */
void SPII2S_EnableInt(SPI_T *i2s, uint32_t u32Mask)
{
    /* Enable TX threshold interrupt flag */
    if((u32Mask & SPII2S_FIFO_TXTH_INT_MASK) == SPII2S_FIFO_TXTH_INT_MASK)
    {
        i2s->FIFOCTL |= SPI_FIFOCTL_TXTHIEN_Msk;
    }

    /* Enable RX threshold interrupt flag */
    if((u32Mask & SPII2S_FIFO_RXTH_INT_MASK) == SPII2S_FIFO_RXTH_INT_MASK)
    {
        i2s->FIFOCTL |= SPI_FIFOCTL_RXTHIEN_Msk;
    }

    /* Enable RX overrun interrupt flag */
    if((u32Mask & SPII2S_FIFO_RXOV_INT_MASK) == SPII2S_FIFO_RXOV_INT_MASK)
    {
        i2s->FIFOCTL |= SPI_FIFOCTL_RXOVIEN_Msk;
    }

    /* Enable RX time-out interrupt flag */
    if((u32Mask & SPII2S_FIFO_RXTO_INT_MASK) == SPII2S_FIFO_RXTO_INT_MASK)
    {
        i2s->FIFOCTL |= SPI_FIFOCTL_RXTOIEN_Msk;
    }

    /* Enable TX underflow interrupt flag */
    if((u32Mask & SPII2S_TXUF_INT_MASK) == SPII2S_TXUF_INT_MASK)
    {
        i2s->FIFOCTL |= SPI_FIFOCTL_TXUFIEN_Msk;
    }

    /* Enable right channel zero cross interrupt flag */
    if((u32Mask & SPII2S_RIGHT_ZC_INT_MASK) == SPII2S_RIGHT_ZC_INT_MASK)
    {
        i2s->I2SCTL |= SPI_I2SCTL_RZCIEN_Msk;
    }

    /* Enable left channel zero cross interrupt flag */
    if((u32Mask & SPII2S_LEFT_ZC_INT_MASK) == SPII2S_LEFT_ZC_INT_MASK)
    {
        i2s->I2SCTL |= SPI_I2SCTL_LZCIEN_Msk;
    }

    /* Enable bit clock loss interrupt flag */
    if((u32Mask & SPII2S_SLAVE_ERR_INT_MASK) == SPII2S_SLAVE_ERR_INT_MASK)
    {
        i2s->I2SCTL |= SPI_I2SCTL_SLVERRIEN_Msk;
    }
}

/**
  * @brief Disable interrupt function.
  * @param[in] i2s The pointer of the specified I2S module.
  * @param[in] u32Mask The combination of all related interrupt enable bits.
  *            Each bit corresponds to a interrupt source. Valid values are listed below.
  *            - \ref SPII2S_FIFO_TXTH_INT_MASK
  *            - \ref SPII2S_FIFO_RXTH_INT_MASK
  *            - \ref SPII2S_FIFO_RXOV_INT_MASK
  *            - \ref SPII2S_FIFO_RXTO_INT_MASK
  *            - \ref SPII2S_TXUF_INT_MASK
  *            - \ref SPII2S_RIGHT_ZC_INT_MASK
  *            - \ref SPII2S_LEFT_ZC_INT_MASK
  *            - \ref SPII2S_SLAVE_ERR_INT_MASK
  * @return None
  * @details This function disables the interrupt according to the u32Mask parameter.
  */
void SPII2S_DisableInt(SPI_T *i2s, uint32_t u32Mask)
{
    /* Disable TX threshold interrupt flag */
    if((u32Mask & SPII2S_FIFO_TXTH_INT_MASK) == SPII2S_FIFO_TXTH_INT_MASK)
    {
        i2s->FIFOCTL &= ~SPI_FIFOCTL_TXTHIEN_Msk;
    }

    /* Disable RX threshold interrupt flag */
    if((u32Mask & SPII2S_FIFO_RXTH_INT_MASK) == SPII2S_FIFO_RXTH_INT_MASK)
    {
        i2s->FIFOCTL &= ~SPI_FIFOCTL_RXTHIEN_Msk;
    }

    /* Disable RX overrun interrupt flag */
    if((u32Mask & SPII2S_FIFO_RXOV_INT_MASK) == SPII2S_FIFO_RXOV_INT_MASK)
    {
        i2s->FIFOCTL &= ~SPI_FIFOCTL_RXOVIEN_Msk;
    }

    /* Disable RX time-out interrupt flag */
    if((u32Mask & SPII2S_FIFO_RXTO_INT_MASK) == SPII2S_FIFO_RXTO_INT_MASK)
    {
        i2s->FIFOCTL &= ~SPI_FIFOCTL_RXTOIEN_Msk;
    }

    /* Disable TX underflow interrupt flag */
    if((u32Mask & SPII2S_TXUF_INT_MASK) == SPII2S_TXUF_INT_MASK)
    {
        i2s->FIFOCTL &= ~SPI_FIFOCTL_TXUFIEN_Msk;
    }

    /* Disable right channel zero cross interrupt flag */
    if((u32Mask & SPII2S_RIGHT_ZC_INT_MASK) == SPII2S_RIGHT_ZC_INT_MASK)
    {
        i2s->I2SCTL &= ~SPI_I2SCTL_RZCIEN_Msk;
    }

    /* Disable left channel zero cross interrupt flag */
    if((u32Mask & SPII2S_LEFT_ZC_INT_MASK) == SPII2S_LEFT_ZC_INT_MASK)
    {
        i2s->I2SCTL &= ~SPI_I2SCTL_LZCIEN_Msk;
    }

    /* Disable bit clock loss interrupt flag */
    if((u32Mask & SPII2S_SLAVE_ERR_INT_MASK) == SPII2S_SLAVE_ERR_INT_MASK)
    {
        i2s->I2SCTL &= ~SPI_I2SCTL_SLVERRIEN_Msk;
    }
}

/**
  * @brief  Enable master clock (MCLK).
  * @param[in] i2s The pointer of the specified I2S module.
  * @param[in] u32BusClock The target MCLK clock rate.
  * @return Actual MCLK clock rate
  * @details Set the master clock rate according to u32BusClock parameter and enable master clock output.
  *          The actual master clock rate may be different from the target master clock rate. The real master clock rate will be returned for reference.
  */
uint32_t SPII2S_EnableMCLK(SPI_T *i2s, uint32_t u32BusClock)
{
    uint32_t u32Divider;
    uint32_t u32SrcClk, u32RetValue;

    u32SrcClk = SPII2S_GetSourceClockFreq(i2s);
    if(u32BusClock == u32SrcClk)
    {
        u32Divider = 0UL;
    }
    else
    {
        u32Divider = (u32SrcClk / u32BusClock) >> 1UL;
        /* MCLKDIV is a 7-bit width configuration. The maximum value is 0x7F. */
        if(u32Divider > 0x7FUL)
        {
            u32Divider = 0x7FUL;
        }
    }

    /* Write u32Divider to MCLKDIV (SPI_I2SCLK[6:0]) */
    i2s->I2SCLK = (i2s->I2SCLK & ~SPI_I2SCLK_MCLKDIV_Msk) | (u32Divider << SPI_I2SCLK_MCLKDIV_Pos);

    /* Enable MCLK output */
    i2s->I2SCTL |= SPI_I2SCTL_MCLKEN_Msk;

    if(u32Divider == 0UL)
    {
        u32RetValue = u32SrcClk; /* If MCLKDIV=0, master clock rate is equal to the source clock rate. */
    }
    else
    {
        u32RetValue = ((u32SrcClk >> 1UL) / u32Divider); /* If MCLKDIV>0, master clock rate = source clock rate / (MCLKDIV * 2) */
    }

    return u32RetValue;
}

/**
  * @brief  Disable master clock (MCLK).
  * @param[in] i2s The pointer of the specified I2S module.
  * @return None
  * @details Clear MCLKEN bit of SPI_I2SCTL register to disable master clock output.
  */
void SPII2S_DisableMCLK(SPI_T *i2s)
{
    i2s->I2SCTL &= ~SPI_I2SCTL_MCLKEN_Msk;
}

/**
  * @brief  Configure FIFO threshold setting.
  * @param[in]  i2s The pointer of the specified I2S module.
  * @param[in]  u32TxThreshold Decides the TX FIFO threshold. It could be 0 ~ 3.
  * @param[in]  u32RxThreshold Decides the RX FIFO threshold. It could be 0 ~ 3.
  * @return None
  * @details Set TX FIFO threshold and RX FIFO threshold configurations.
  */
void SPII2S_SetFIFO(SPI_T *i2s, uint32_t u32TxThreshold, uint32_t u32RxThreshold)
{
    i2s->FIFOCTL = (i2s->FIFOCTL & ~(SPI_FIFOCTL_TXTH_Msk | SPI_FIFOCTL_RXTH_Msk)) |
                   (u32TxThreshold << SPI_FIFOCTL_TXTH_Pos) |
                   (u32RxThreshold << SPI_FIFOCTL_RXTH_Pos);
}

/**@}*/ /* end of group SPI_EXPORTED_FUNCTIONS */

/**@}*/ /* end of group SPI_Driver */

/**@}*/ /* end of group Standard_Driver */