fsl_clock.c 27.4 KB
Newer Older
T
tanek liang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
/*
 * Copyright 2017 NXP
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * o Redistributions of source code must retain the above copyright notice, this list
 *   of conditions and the following disclaimer.
 *
 * o Redistributions in binary form must reproduce the above copyright notice, this
 *   list of conditions and the following disclaimer in the documentation and/or
 *   other materials provided with the distribution.
 *
 * o Neither the name of the copyright holder nor the names of its
 *   contributors may be used to endorse or promote products derived from this
 *   software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "fsl_common.h"
#include "fsl_clock.h"

/*******************************************************************************
 * Definitions
 ******************************************************************************/

/*******************************************************************************
 * Variables
 ******************************************************************************/

/* External XTAL (OSC) clock frequency. */
uint32_t g_xtalFreq;
/* External RTC XTAL clock frequency. */
uint32_t g_rtcXtalFreq;

/*******************************************************************************
 * Prototypes
 ******************************************************************************/

/*******************************************************************************
 * Code
 ******************************************************************************/
static uint32_t CLOCK_GetPeriphClkFreq(void)
{
    uint32_t freq;

    /* Periph_clk2_clk ---> Periph_clk */
    if (CCM->CBCDR & CCM_CBCDR_PERIPH_CLK_SEL_MASK)
    {
        switch (CCM->CBCMR & CCM_CBCMR_PERIPH_CLK2_SEL_MASK)
        {
            /* Pll3_sw_clk ---> Periph_clk2_clk ---> Periph_clk */
            case CCM_CBCMR_PERIPH_CLK2_SEL(0U):
                freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1);
                break;

            /* Osc_clk ---> Periph_clk2_clk ---> Periph_clk */
            case CCM_CBCMR_PERIPH_CLK2_SEL(1U):
                freq = CLOCK_GetOscFreq();
                break;

            case CCM_CBCMR_PERIPH_CLK2_SEL(2U):
            case CCM_CBCMR_PERIPH_CLK2_SEL(3U):
            default:
                freq = 0U;
                break;
        }

        freq /= (((CCM->CBCDR & CCM_CBCDR_PERIPH_CLK2_PODF_MASK) >> CCM_CBCDR_PERIPH_CLK2_PODF_SHIFT) + 1U);
    }
    /* Pre_Periph_clk ---> Periph_clk */
    else
    {
        switch (CCM->CBCMR & CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK)
        {
            /* PLL2 ---> Pre_Periph_clk ---> Periph_clk */
            case CCM_CBCMR_PRE_PERIPH_CLK_SEL(0U):
                freq = CLOCK_GetPllFreq(kCLOCK_PllSys);
                break;

            /* PLL2 PFD2 ---> Pre_Periph_clk ---> Periph_clk */
            case CCM_CBCMR_PRE_PERIPH_CLK_SEL(1U):
                freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd2);
                break;

            /* PLL2 PFD0 ---> Pre_Periph_clk ---> Periph_clk */
            case CCM_CBCMR_PRE_PERIPH_CLK_SEL(2U):
                freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd0);
                break;

            /* PLL1 divided(/2) ---> Pre_Periph_clk ---> Periph_clk */
            case CCM_CBCMR_PRE_PERIPH_CLK_SEL(3U):
                freq = CLOCK_GetPllFreq(kCLOCK_PllArm) / (((CCM->CACRR & CCM_CACRR_ARM_PODF_MASK) >> CCM_CACRR_ARM_PODF_SHIFT) + 1U);
                break;

            default:
                freq = 0U;
                break;
        }
    }

    return freq;
}

void CLOCK_InitExternalClk(bool bypassXtalOsc)
{
    /* This device does not support bypass XTAL OSC. */
    assert(!bypassXtalOsc);

    CCM_ANALOG->MISC0_CLR = CCM_ANALOG_MISC0_XTAL_24M_PWD_MASK; /* Power up */
    while ((XTALOSC24M->LOWPWR_CTRL & XTALOSC24M_LOWPWR_CTRL_XTALOSC_PWRUP_STAT_MASK) == 0)
    {
    }
    CCM_ANALOG->MISC0_SET = CCM_ANALOG_MISC0_OSC_XTALOK_EN_MASK; /* detect freq */
    while ((CCM_ANALOG->MISC0 & CCM_ANALOG_MISC0_OSC_XTALOK_MASK) == 0)
    {
    }
    CCM_ANALOG->MISC0_CLR = CCM_ANALOG_MISC0_OSC_XTALOK_EN_MASK;
}

void CLOCK_DeinitExternalClk(void)
{
    CCM_ANALOG->MISC0_SET = CCM_ANALOG_MISC0_XTAL_24M_PWD_MASK; /* Power down */
}

void CLOCK_SwitchOsc(clock_osc_t osc)
{
    if (osc == kCLOCK_RcOsc)
        XTALOSC24M->LOWPWR_CTRL_SET = XTALOSC24M_LOWPWR_CTRL_SET_OSC_SEL_MASK;
    else
        XTALOSC24M->LOWPWR_CTRL_CLR = XTALOSC24M_LOWPWR_CTRL_CLR_OSC_SEL_MASK;
}

void CLOCK_InitRcOsc24M(void)
{
    XTALOSC24M->LOWPWR_CTRL |= XTALOSC24M_LOWPWR_CTRL_RC_OSC_EN_MASK;
}

void CLOCK_DeinitRcOsc24M(void)
{
    XTALOSC24M->LOWPWR_CTRL &= ~XTALOSC24M_LOWPWR_CTRL_RC_OSC_EN_MASK;
}

uint32_t CLOCK_GetFreq(clock_name_t name)
{
    uint32_t freq;

    switch (name)
    {
        case kCLOCK_CpuClk:
            /* Periph_clk ---> AHB Clock */
        case kCLOCK_AhbClk:
            /* Periph_clk ---> AHB Clock */
            freq = CLOCK_GetPeriphClkFreq() / (((CCM->CBCDR & CCM_CBCDR_AHB_PODF_MASK) >> CCM_CBCDR_AHB_PODF_SHIFT) + 1U);
            break;

        case kCLOCK_SemcClk:
            /* SEMC alternative clock ---> SEMC Clock */
            if (CCM->CBCDR & CCM_CBCDR_SEMC_CLK_SEL_MASK)
            {
                /* PLL3 PFD1 ---> SEMC alternative clock ---> SEMC Clock */
                if (CCM->CBCDR & CCM_CBCDR_SEMC_ALT_CLK_SEL_MASK)
                {
                    freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd1);
                }
                /* PLL2 PFD2 ---> SEMC alternative clock ---> SEMC Clock */
                else
                {
                    freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd2);
                }
            }
            /* Periph_clk ---> SEMC Clock */
            else
            {
                freq = CLOCK_GetPeriphClkFreq();
            }

            freq /= (((CCM->CBCDR & CCM_CBCDR_SEMC_PODF_MASK) >> CCM_CBCDR_SEMC_PODF_SHIFT) + 1U);
            break;

        case kCLOCK_IpgClk:
            /* Periph_clk ---> AHB Clock ---> IPG Clock */
            freq = CLOCK_GetPeriphClkFreq() / (((CCM->CBCDR & CCM_CBCDR_AHB_PODF_MASK) >> CCM_CBCDR_AHB_PODF_SHIFT) + 1U);
            freq /= (((CCM->CBCDR & CCM_CBCDR_IPG_PODF_MASK) >> CCM_CBCDR_IPG_PODF_SHIFT) + 1U);
            break;

        case kCLOCK_OscClk:
            freq = CLOCK_GetOscFreq();
            break;
        case kCLOCK_RtcClk:
            freq = CLOCK_GetRtcFreq();
            break;
        case kCLOCK_ArmPllClk:
            freq = CLOCK_GetPllFreq(kCLOCK_PllArm);
            break;
        case kCLOCK_Usb1PllClk:
            freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1);
            break;
        case kCLOCK_Usb1PllPfd0Clk:
            freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd0);
            break;
        case kCLOCK_Usb1PllPfd1Clk:
            freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd1);
            break;
        case kCLOCK_Usb1PllPfd2Clk:
            freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd2);
            break;
        case kCLOCK_Usb1PllPfd3Clk:
            freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd3);
            break;
        case kCLOCK_Usb2PllClk:
            freq = CLOCK_GetPllFreq(kCLOCK_PllUsb2);
            break;
        case kCLOCK_SysPllClk:
            freq = CLOCK_GetPllFreq(kCLOCK_PllSys);
            break;
        case kCLOCK_SysPllPfd0Clk:
            freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd0);
            break;
        case kCLOCK_SysPllPfd1Clk:
            freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd1);
            break;
        case kCLOCK_SysPllPfd2Clk:
            freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd2);
            break;
        case kCLOCK_SysPllPfd3Clk:
            freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd3);
            break;
        case kCLOCK_EnetPll0Clk:
            freq = CLOCK_GetPllFreq(kCLOCK_PllEnet0);
            break;
        case kCLOCK_EnetPll1Clk:
            freq = CLOCK_GetPllFreq(kCLOCK_PllEnet1);
            break;
        case kCLOCK_EnetPll2Clk:
            freq = CLOCK_GetPllFreq(kCLOCK_PllEnet2);
            break;
        case kCLOCK_AudioPllClk:
            freq = CLOCK_GetPllFreq(kCLOCK_PllAudio);
            break;
        case kCLOCK_VideoPllClk:
            freq = CLOCK_GetPllFreq(kCLOCK_PllVideo);
            break;
        default:
            freq = 0U;
            break;
    }

    return freq;
}

void CLOCK_InitArmPll(const clock_arm_pll_config_t *config)
{
    CCM_ANALOG->PLL_ARM = CCM_ANALOG_PLL_ARM_ENABLE_MASK |
                          CCM_ANALOG_PLL_ARM_DIV_SELECT(config->loopDivider);

    while ((CCM_ANALOG->PLL_ARM & CCM_ANALOG_PLL_ARM_LOCK_MASK) == 0)
    {
    }
}

void CLOCK_DeinitArmPll(void)
{
    CCM_ANALOG->PLL_ARM = CCM_ANALOG_PLL_ARM_POWERDOWN_MASK;
}

void CLOCK_InitSysPll(const clock_sys_pll_config_t *config)
{
    CCM_ANALOG->PLL_SYS = CCM_ANALOG_PLL_SYS_ENABLE_MASK |
                          CCM_ANALOG_PLL_SYS_DIV_SELECT(config->loopDivider);

    while ((CCM_ANALOG->PLL_SYS & CCM_ANALOG_PLL_SYS_LOCK_MASK) == 0)
    {
    }
}

void CLOCK_DeinitSysPll(void)
{
    CCM_ANALOG->PLL_SYS = CCM_ANALOG_PLL_SYS_POWERDOWN_MASK;
}

void CLOCK_InitUsb1Pll(const clock_usb_pll_config_t *config)
{
    CCM_ANALOG->PLL_USB1 = CCM_ANALOG_PLL_USB1_ENABLE_MASK      |
                           CCM_ANALOG_PLL_USB1_POWER_MASK       |
                           CCM_ANALOG_PLL_USB1_EN_USB_CLKS_MASK |
                           CCM_ANALOG_PLL_USB1_DIV_SELECT(config->loopDivider);

    while ((CCM_ANALOG->PLL_USB1 & CCM_ANALOG_PLL_USB1_LOCK_MASK) == 0)
    {
    }
}

void CLOCK_DeinitUsb1Pll(void)
{
    CCM_ANALOG->PLL_USB1 = 0U;
}

void CLOCK_InitUsb2Pll(const clock_usb_pll_config_t *config)
{
    CCM_ANALOG->PLL_USB2 = CCM_ANALOG_PLL_USB2_ENABLE_MASK      |
                           CCM_ANALOG_PLL_USB2_POWER_MASK       |
                           CCM_ANALOG_PLL_USB2_EN_USB_CLKS_MASK |
                           CCM_ANALOG_PLL_USB2_DIV_SELECT(config->loopDivider);

    while ((CCM_ANALOG->PLL_USB2 & CCM_ANALOG_PLL_USB2_LOCK_MASK) == 0)
    {
    }
}

void CLOCK_DeinitUsb2Pll(void)
{
    CCM_ANALOG->PLL_USB2 = 0U;
}

void CLOCK_InitAudioPll(const clock_audio_pll_config_t *config)
{
    uint32_t pllAudio;
    uint32_t misc2 = 0;

    CCM_ANALOG->PLL_AUDIO_NUM = CCM_ANALOG_PLL_AUDIO_NUM_A(config->numerator);
    CCM_ANALOG->PLL_AUDIO_DENOM = CCM_ANALOG_PLL_AUDIO_DENOM_B(config->denominator);

    /*
     * Set post divider:
     *
     * ------------------------------------------------------------------------
     * | config->postDivider | PLL_AUDIO[POST_DIV_SELECT]  | MISC2[AUDIO_DIV] |
     * ------------------------------------------------------------------------
     * |         1           |            2                |        0         |
     * ------------------------------------------------------------------------
     * |         2           |            1                |        0         |
     * ------------------------------------------------------------------------
     * |         4           |            2                |        3         |
     * ------------------------------------------------------------------------
     * |         8           |            1                |        3         |
     * ------------------------------------------------------------------------
     * |         16          |            0                |        3         |
     * ------------------------------------------------------------------------
     */
    pllAudio = CCM_ANALOG_PLL_AUDIO_ENABLE_MASK | CCM_ANALOG_PLL_AUDIO_DIV_SELECT(config->loopDivider);

    switch (config->postDivider)
    {
        case 16:
            pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(0);
            misc2 = CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK;
            break;

        case 8:
            pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(1);
            misc2 = CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK;
            break;

        case 4:
            pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(2);
            misc2 = CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK;
            break;

        case 2:
            pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(1);
            break;

        default:
            pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(2);
            break;
    }

    CCM_ANALOG->MISC2 = (CCM_ANALOG->MISC2 & ~(CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK))
                      | misc2;

    CCM_ANALOG->PLL_AUDIO = pllAudio;

    while ((CCM_ANALOG->PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_LOCK_MASK) == 0)
    {
    }
}

void CLOCK_DeinitAudioPll(void)
{
    CCM_ANALOG->PLL_AUDIO = CCM_ANALOG_PLL_AUDIO_POWERDOWN_MASK;
}

void CLOCK_InitVideoPll(const clock_video_pll_config_t *config)
{
    uint32_t pllVideo;
    uint32_t misc2 = 0;

    CCM_ANALOG->PLL_VIDEO_NUM = CCM_ANALOG_PLL_VIDEO_NUM_A(config->numerator);
    CCM_ANALOG->PLL_VIDEO_DENOM = CCM_ANALOG_PLL_VIDEO_DENOM_B(config->denominator);

    /*
     * Set post divider:
     *
     * ------------------------------------------------------------------------
     * | config->postDivider | PLL_VIDEO[POST_DIV_SELECT]  | MISC2[VIDEO_DIV] |
     * ------------------------------------------------------------------------
     * |         1           |            2                |        0         |
     * ------------------------------------------------------------------------
     * |         2           |            1                |        0         |
     * ------------------------------------------------------------------------
     * |         4           |            2                |        3         |
     * ------------------------------------------------------------------------
     * |         8           |            1                |        3         |
     * ------------------------------------------------------------------------
     * |         16          |            0                |        3         |
     * ------------------------------------------------------------------------
     */
    pllVideo = CCM_ANALOG_PLL_VIDEO_ENABLE_MASK | CCM_ANALOG_PLL_VIDEO_DIV_SELECT(config->loopDivider);

    switch (config->postDivider)
    {
        case 16:
            pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(0);
            misc2 = CCM_ANALOG_MISC2_VIDEO_DIV(3);
            break;

        case 8:
            pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(1);
            misc2 = CCM_ANALOG_MISC2_VIDEO_DIV(3);
            break;

        case 4:
            pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(2);
            misc2 = CCM_ANALOG_MISC2_VIDEO_DIV(3);
            break;

        case 2:
            pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(1);
            break;

        default:
            pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(2);
            break;
    }

    CCM_ANALOG->MISC2 = (CCM_ANALOG->MISC2 & ~CCM_ANALOG_MISC2_VIDEO_DIV_MASK) | misc2;

    CCM_ANALOG->PLL_VIDEO = pllVideo;

    while ((CCM_ANALOG->PLL_VIDEO & CCM_ANALOG_PLL_VIDEO_LOCK_MASK) == 0)
    {
    }
}

void CLOCK_DeinitVideoPll(void)
{
    CCM_ANALOG->PLL_VIDEO = CCM_ANALOG_PLL_VIDEO_POWERDOWN_MASK;
}

void CLOCK_InitEnetPll(const clock_enet_pll_config_t *config)
{
    uint32_t enet_pll = CCM_ANALOG_PLL_ENET_ENET1_DIV_SELECT(config->loopDivider1) |
                        CCM_ANALOG_PLL_ENET_ENET0_DIV_SELECT(config->loopDivider0);

    if (config->enableClkOutput0)
    {
        enet_pll |= CCM_ANALOG_PLL_ENET_ENET1_125M_EN_MASK;
    }

    if (config->enableClkOutput1)
    {
        enet_pll |= CCM_ANALOG_PLL_ENET_ENET2_125M_EN_MASK;
    }

    if (config->enableClkOutput2)
    {
        enet_pll |= CCM_ANALOG_PLL_ENET_ENET_25M_REF_EN_MASK;
    }

    CCM_ANALOG->PLL_ENET = enet_pll;

    /* Wait for stable */
    while ((CCM_ANALOG->PLL_ENET & CCM_ANALOG_PLL_ENET_LOCK_MASK) == 0)
    {
    }
}

void CLOCK_DeinitEnetPll(void)
{
    CCM_ANALOG->PLL_ENET = CCM_ANALOG_PLL_ENET_POWERDOWN_MASK;
}

uint32_t CLOCK_GetPllFreq(clock_pll_t pll)
{
    uint32_t freq;
    uint32_t divSelect;
    uint64_t freqTmp;

    const uint32_t enetRefClkFreq[] = {
        25000000U, /* 25M */
        50000000U, /* 50M */
        100000000U, /* 100M */
        125000000U /* 125M */
    };

    switch (pll)
    {
        case kCLOCK_PllArm:
            freq = ((CLOCK_GetOscFreq() * ((CCM_ANALOG->PLL_ARM & CCM_ANALOG_PLL_ARM_DIV_SELECT_MASK) >>
                                         CCM_ANALOG_PLL_ARM_DIV_SELECT_SHIFT)) >> 1U);
            break;

        case kCLOCK_PllSys:
            freq = CLOCK_GetOscFreq();

            /* PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM). */
            freqTmp = ((uint64_t)freq * ((uint64_t)(CCM_ANALOG->PLL_SYS_NUM))) / ((uint64_t)(CCM_ANALOG->PLL_SYS_DENOM));

            if (CCM_ANALOG->PLL_SYS & CCM_ANALOG_PLL_SYS_DIV_SELECT_MASK)
            {
                freq *= 22U;
            }
            else
            {
                freq *= 20U;
            }

            freq += (uint32_t)freqTmp;
            break;

        case kCLOCK_PllUsb1:
            freq = (CLOCK_GetOscFreq() * ((CCM_ANALOG->PLL_USB1 & CCM_ANALOG_PLL_USB1_DIV_SELECT_MASK) ? 22U : 20U));
            break;

        case kCLOCK_PllAudio:
            freq = CLOCK_GetOscFreq();

            /* PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM). */
            divSelect = (CCM_ANALOG->PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_DIV_SELECT_MASK) >> CCM_ANALOG_PLL_AUDIO_DIV_SELECT_SHIFT;

            freqTmp = ((uint64_t)freq * ((uint64_t)(CCM_ANALOG->PLL_AUDIO_NUM))) / ((uint64_t)(CCM_ANALOG->PLL_AUDIO_DENOM));

            freq = freq * divSelect + (uint32_t)freqTmp;

            /* AUDIO PLL output = PLL output frequency / POSTDIV. */

            /*
             * Post divider:
             *
             * PLL_AUDIO[POST_DIV_SELECT]:
             * 0x00: 4
             * 0x01: 2
             * 0x02: 1
             *
             * MISC2[AUDO_DIV]:
             * 0x00: 1
             * 0x01: 2
             * 0x02: 1
             * 0x03: 4
             */
            switch (CCM_ANALOG->PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT_MASK)
            {
                case CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(0U):
                    freq = freq >> 2U;
                    break;

                case CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(1U):
                    freq = freq >> 1U;
                    break;

                default:
                    break;
            }

            switch (CCM_ANALOG->MISC2 & (CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK))
            {
                case CCM_ANALOG_MISC2_AUDIO_DIV_MSB(1) | CCM_ANALOG_MISC2_AUDIO_DIV_LSB(1):
                    freq >>= 2U;
                    break;

                case CCM_ANALOG_MISC2_AUDIO_DIV_MSB(0) | CCM_ANALOG_MISC2_AUDIO_DIV_LSB(1):
                    freq >>= 1U;
                    break;

                default:
                    break;
            }
            break;

        case kCLOCK_PllVideo:
            freq = CLOCK_GetOscFreq();

            /* PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM). */
            divSelect = (CCM_ANALOG->PLL_VIDEO & CCM_ANALOG_PLL_VIDEO_DIV_SELECT_MASK) >> CCM_ANALOG_PLL_VIDEO_DIV_SELECT_SHIFT;

            freqTmp = ((uint64_t)freq * ((uint64_t)(CCM_ANALOG->PLL_VIDEO_NUM))) / ((uint64_t)(CCM_ANALOG->PLL_VIDEO_DENOM));

            freq = freq * divSelect + (uint32_t)freqTmp;

            /* VIDEO PLL output = PLL output frequency / POSTDIV. */

            /*
             * Post divider:
             *
             * PLL_VIDEO[POST_DIV_SELECT]:
             * 0x00: 4
             * 0x01: 2
             * 0x02: 1
             *
             * MISC2[VIDEO_DIV]:
             * 0x00: 1
             * 0x01: 2
             * 0x02: 1
             * 0x03: 4
             */
            switch (CCM_ANALOG->PLL_VIDEO & CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT_MASK)
            {
                case CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(0U):
                    freq = freq >> 2U;
                    break;

                case CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(1U):
                    freq = freq >> 1U;
                    break;

                default:
                    break;
            }

            switch (CCM_ANALOG->MISC2 & CCM_ANALOG_MISC2_VIDEO_DIV_MASK)
            {
                case CCM_ANALOG_MISC2_VIDEO_DIV(3):
                    freq >>= 2U;
                    break;

                case CCM_ANALOG_MISC2_VIDEO_DIV(1):
                    freq >>= 1U;
                    break;

                default:
                    break;
            }
            break;

        case kCLOCK_PllEnet0:
            divSelect = (CCM_ANALOG->PLL_ENET & CCM_ANALOG_PLL_ENET_ENET0_DIV_SELECT_MASK)
                      >> CCM_ANALOG_PLL_ENET_ENET0_DIV_SELECT_SHIFT;
            freq = enetRefClkFreq[divSelect];
            break;

        case kCLOCK_PllEnet1:
            divSelect = (CCM_ANALOG->PLL_ENET & CCM_ANALOG_PLL_ENET_ENET1_DIV_SELECT_MASK)
                      >> CCM_ANALOG_PLL_ENET_ENET1_DIV_SELECT_SHIFT;
            freq = enetRefClkFreq[divSelect];
            break;

        case kCLOCK_PllEnet2:
            /* ref_enetpll2 if fixed at 25MHz. */
            freq = 25000000UL;
            break;

        case kCLOCK_PllUsb2:
            freq = (CLOCK_GetOscFreq() * ((CCM_ANALOG->PLL_USB2 & CCM_ANALOG_PLL_USB2_DIV_SELECT_MASK) ? 22U : 20U));
            break;

        default:
            freq = 0U;
            break;
    }

    return freq;
}

void CLOCK_InitSysPfd(clock_pfd_t pfd, uint8_t pfdFrac)
{
    uint32_t pfdIndex = (uint32_t)pfd;
    uint32_t pfd528;

    pfd528 = CCM_ANALOG->PFD_528 & ~((CCM_ANALOG_PFD_528_PFD0_CLKGATE_MASK | CCM_ANALOG_PFD_528_PFD0_FRAC_MASK) << (8 * pfdIndex));

    /* Disable the clock output first. */
    CCM_ANALOG->PFD_528 = pfd528 | (CCM_ANALOG_PFD_528_PFD0_CLKGATE_MASK << (8 * pfdIndex));

    /* Set the new value and enable output. */
    CCM_ANALOG->PFD_528 = pfd528 | (CCM_ANALOG_PFD_528_PFD0_FRAC(pfdFrac) << (8 * pfdIndex));
}

void CLOCK_DeinitSysPfd(clock_pfd_t pfd)
{
    CCM_ANALOG->PFD_528 |= CCM_ANALOG_PFD_528_PFD0_CLKGATE_MASK << (8 * pfd);
}

void CLOCK_InitUsb1Pfd(clock_pfd_t pfd, uint8_t pfdFrac)
{
    uint32_t pfdIndex = (uint32_t)pfd;
    uint32_t pfd480;

    pfd480 = CCM_ANALOG->PFD_480 & ~((CCM_ANALOG_PFD_480_PFD0_CLKGATE_MASK | CCM_ANALOG_PFD_480_PFD0_FRAC_MASK) << (8 * pfdIndex));

    /* Disable the clock output first. */
    CCM_ANALOG->PFD_480 = pfd480 | (CCM_ANALOG_PFD_480_PFD0_CLKGATE_MASK << (8 * pfdIndex));

    /* Set the new value and enable output. */
    CCM_ANALOG->PFD_480 = pfd480 | (CCM_ANALOG_PFD_480_PFD0_FRAC(pfdFrac) << (8 * pfdIndex));
}

void CLOCK_DeinitUsb1Pfd(clock_pfd_t pfd)
{
    CCM_ANALOG->PFD_480 |= CCM_ANALOG_PFD_480_PFD0_CLKGATE_MASK << (8 * pfd);
}

uint32_t CLOCK_GetSysPfdFreq(clock_pfd_t pfd)
{
    uint32_t freq = CLOCK_GetPllFreq(kCLOCK_PllSys);

    switch (pfd)
    {
        case kCLOCK_Pfd0:
            freq /= ((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD0_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD0_FRAC_SHIFT);
            break;

        case kCLOCK_Pfd1:
            freq /= ((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD1_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD1_FRAC_SHIFT);
            break;

        case kCLOCK_Pfd2:
            freq /= ((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD2_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD2_FRAC_SHIFT);
            break;

        case kCLOCK_Pfd3:
            freq /= ((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD3_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD3_FRAC_SHIFT);
            break;

        default:
            freq = 0U;
            break;
    }
    freq *= 18U;

    return freq;
}

uint32_t CLOCK_GetUsb1PfdFreq(clock_pfd_t pfd)
{
    uint32_t freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1);

    switch (pfd)
    {
        case kCLOCK_Pfd0:
            freq /= ((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD0_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD0_FRAC_SHIFT);
            break;

        case kCLOCK_Pfd1:
            freq /= ((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD1_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD1_FRAC_SHIFT);
            break;

        case kCLOCK_Pfd2:
            freq /= ((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD2_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD2_FRAC_SHIFT);
            break;

        case kCLOCK_Pfd3:
            freq /= ((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD3_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD3_FRAC_SHIFT);
            break;

        default:
            freq = 0U;
		    break;
    }
    freq *= 18U;

    return freq;
}

bool CLOCK_EnableUsbhs0Clock(clock_usb_src_t src, uint32_t freq)
{
    CCM->CCGR6 |= CCM_CCGR6_CG0_MASK ;
    USB1->USBCMD |= USBHS_USBCMD_RST_MASK;
    for (volatile uint32_t i = 0; i < 400000; i++)    /* Add a delay between RST and RS so make sure there is a DP pullup sequence*/
    {
        __ASM("nop");
    }
    PMU->REG_3P0 = (PMU->REG_3P0 & (~PMU_REG_3P0_OUTPUT_TRG_MASK)) | (PMU_REG_3P0_OUTPUT_TRG(0x17) | PMU_REG_3P0_ENABLE_LINREG_MASK);
    return true;
}


bool CLOCK_EnableUsbhs1Clock(clock_usb_src_t src, uint32_t freq)
{
    CCM->CCGR6 |= CCM_CCGR6_CG0_MASK ;
    USB2->USBCMD |= USBHS_USBCMD_RST_MASK;
    for (volatile uint32_t i = 0; i < 400000; i++)    /* Add a delay between RST and RS so make sure there is a DP pullup sequence*/
    {
        __ASM("nop");
    }
    PMU->REG_3P0 = (PMU->REG_3P0 & (~PMU_REG_3P0_OUTPUT_TRG_MASK)) | (PMU_REG_3P0_OUTPUT_TRG(0x17) | PMU_REG_3P0_ENABLE_LINREG_MASK);
    return true;
}


bool CLOCK_EnableUsbhs0PhyPllClock(clock_usb_phy_src_t src, uint32_t freq)
{
    const clock_usb_pll_config_t g_ccmConfigUsbPll  = {.loopDivider = 0U};
    CLOCK_InitUsb1Pll(&g_ccmConfigUsbPll);
    USBPHY1->CTRL &= ~USBPHY_CTRL_SFTRST_MASK;         /* release PHY from reset */
    USBPHY1->CTRL &= ~USBPHY_CTRL_CLKGATE_MASK;

    USBPHY1->PWD  = 0;
    USBPHY1->CTRL |=
    USBPHY_CTRL_ENAUTOCLR_PHY_PWD_MASK |
    USBPHY_CTRL_ENAUTOCLR_CLKGATE_MASK |
    USBPHY_CTRL_ENUTMILEVEL2_MASK |
    USBPHY_CTRL_ENUTMILEVEL3_MASK;
    return true;
}
bool CLOCK_EnableUsbhs1PhyPllClock(clock_usb_phy_src_t src, uint32_t freq)
{
    const clock_usb_pll_config_t g_ccmConfigUsbPll  = {.loopDivider = 0U};
    CLOCK_InitUsb2Pll(&g_ccmConfigUsbPll);
    USBPHY2->CTRL &= ~USBPHY_CTRL_SFTRST_MASK;         /* release PHY from reset */
    USBPHY2->CTRL &= ~USBPHY_CTRL_CLKGATE_MASK;

    USBPHY2->PWD  = 0;
    USBPHY2->CTRL |=
            USBPHY_CTRL_ENAUTOCLR_PHY_PWD_MASK |
            USBPHY_CTRL_ENAUTOCLR_CLKGATE_MASK |
            USBPHY_CTRL_ENUTMILEVEL2_MASK |
            USBPHY_CTRL_ENUTMILEVEL3_MASK;

    return true;
}
void CLOCK_DisableUsbhs0PhyPllClock(void)
{
    CLOCK_DeinitUsb1Pll();
    USBPHY1->CTRL |= USBPHY_CTRL_CLKGATE_MASK;          /* Set to 1U to gate clocks */

}
void CLOCK_DisableUsbhs1PhyPllClock(void)
{
    CLOCK_DeinitUsb2Pll();
    USBPHY2->CTRL |= USBPHY_CTRL_CLKGATE_MASK;          /* Set to 1U to gate clocks */
}