README.md

    scikit-opt

    PyPI Build Status codecov License Python Platform Downloads Join the chat at https://gitter.im/guofei9987/scikit-opt

    Swarm Intelligence in Python
    (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,Artificial Fish Swarm Algorithm in Python)

    install

    pip install scikit-opt

    For the current developer version:

    git clone git@github.com:guofei9987/scikit-opt.git
    cd scikit-opt
    pip install .

    Features

    Feature1: UDF

    UDF (user defined function) is available now!

    For example, you just worked out a new type of selection function.
    Now, your selection function is like this:
    -> Demo code: examples/demo_ga_udf.py#s1

    # step1: define your own operator:
    def selection_tournament(algorithm, tourn_size):
        FitV = algorithm.FitV
        sel_index = []
        for i in range(algorithm.size_pop):
            aspirants_index = np.random.choice(range(algorithm.size_pop), size=tourn_size)
            sel_index.append(max(aspirants_index, key=lambda i: FitV[i]))
        algorithm.Chrom = algorithm.Chrom[sel_index, :]  # next generation
        return algorithm.Chrom
    
    

    Import and build ga
    -> Demo code: examples/demo_ga_udf.py#s2

    import numpy as np
    from sko.GA import GA, GA_TSP
    
    demo_func = lambda x: x[0] ** 2 + (x[1] - 0.05) ** 2 + (x[2] - 0.5) ** 2
    ga = GA(func=demo_func, n_dim=3, size_pop=100, max_iter=500, lb=[-1, -10, -5], ub=[2, 10, 2],
            precision=[1e-7, 1e-7, 1])
    

    Regist your udf to GA
    -> Demo code: examples/demo_ga_udf.py#s3

    ga.register(operator_name='selection', operator=selection_tournament, tourn_size=3)

    scikit-opt also provide some operators
    -> Demo code: examples/demo_ga_udf.py#s4

    from sko.operators import ranking, selection, crossover, mutation
    
    ga.register(operator_name='ranking', operator=ranking.ranking). \
        register(operator_name='crossover', operator=crossover.crossover_2point). \
        register(operator_name='mutation', operator=mutation.mutation)

    Now do GA as usual
    -> Demo code: examples/demo_ga_udf.py#s5

    best_x, best_y = ga.run()
    print('best_x:', best_x, '\n', 'best_y:', best_y)

    Until Now, the udf surport crossover, mutation, selection, ranking of GA scikit-opt provide a dozen of operators, see here

    For advanced users:

    -> Demo code: examples/demo_ga_udf.py#s6

    class MyGA(GA):
        def selection(self, tourn_size=3):
            FitV = self.FitV
            sel_index = []
            for i in range(self.size_pop):
                aspirants_index = np.random.choice(range(self.size_pop), size=tourn_size)
                sel_index.append(max(aspirants_index, key=lambda i: FitV[i]))
            self.Chrom = self.Chrom[sel_index, :]  # next generation
            return self.Chrom
    
        ranking = ranking.ranking
    
    
    demo_func = lambda x: x[0] ** 2 + (x[1] - 0.05) ** 2 + (x[2] - 0.5) ** 2
    my_ga = MyGA(func=demo_func, n_dim=3, size_pop=100, max_iter=500, lb=[-1, -10, -5], ub=[2, 10, 2],
            precision=[1e-7, 1e-7, 1])
    best_x, best_y = my_ga.run()
    print('best_x:', best_x, '\n', 'best_y:', best_y)

    feature2: GPU computation

    We are developing GPU computation, which will be stable on version 1.0.0
    An example is already available: https://github.com/guofei9987/scikit-opt/blob/master/examples/demo_ga_gpu.py

    feature3: continue to run

    (New in version 0.3.6)
    Run an algorithm for 10 iterations, and then run another 20 iterations base on the 10 iterations before:

    from sko.GA import GA
    
    func = lambda x: x[0] ** 2
    ga = GA(func=func, n_dim=1)
    ga.run(10)
    ga.run(20)

    Quick start

    1. Differential Evolution

    Step1:define your problem
    -> Demo code: examples/demo_de.py#s1

    '''
    min f(x1, x2, x3) = x1^2 + x2^2 + x3^2
    s.t.
        x1*x2 >= 1
        x1*x2 <= 5
        x2 + x3 = 1
        0 <= x1, x2, x3 <= 5
    '''
    
    
    def obj_func(p):
        x1, x2, x3 = p
        return x1 ** 2 + x2 ** 2 + x3 ** 2
    
    
    constraint_eq = [
        lambda x: 1 - x[1] - x[2]
    ]
    
    constraint_ueq = [
        lambda x: 1 - x[0] * x[1],
        lambda x: x[0] * x[1] - 5
    ]
    

    Step2: do Differential Evolution
    -> Demo code: examples/demo_de.py#s2

    from sko.DE import DE
    
    de = DE(func=obj_func, n_dim=3, size_pop=50, max_iter=800, lb=[0, 0, 0], ub=[5, 5, 5],
            constraint_eq=constraint_eq, constraint_ueq=constraint_ueq)
    
    best_x, best_y = de.run()
    print('best_x:', best_x, '\n', 'best_y:', best_y)
    

    2. Genetic Algorithm

    Step1:define your problem
    -> Demo code: examples/demo_ga.py#s1

    import numpy as np
    
    
    def schaffer(p):
        '''
        This function has plenty of local minimum, with strong shocks
        global minimum at (0,0) with value 0
        '''
        x1, x2 = p
        x = np.square(x1) + np.square(x2)
        return 0.5 + (np.sin(x) - 0.5) / np.square(1 + 0.001 * x)
    
    

    Step2: do Genetic Algorithm
    -> Demo code: examples/demo_ga.py#s2

    from sko.GA import GA
    
    ga = GA(func=schaffer, n_dim=2, size_pop=50, max_iter=800, lb=[-1, -1], ub=[1, 1], precision=1e-7)
    best_x, best_y = ga.run()
    print('best_x:', best_x, '\n', 'best_y:', best_y)
    

    Step3: plot the result
    -> Demo code: examples/demo_ga.py#s3

    import pandas as pd
    import matplotlib.pyplot as plt
    
    Y_history = pd.DataFrame(ga.all_history_Y)
    fig, ax = plt.subplots(2, 1)
    ax[0].plot(Y_history.index, Y_history.values, '.', color='red')
    Y_history.min(axis=1).cummin().plot(kind='line')
    plt.show()

    Figure_1-1

    2.2 Genetic Algorithm for TSP(Travelling Salesman Problem)

    Just import the GA_TSP, it overloads the crossover, mutation to solve the TSP

    Step1: define your problem. Prepare your points coordinate and the distance matrix.
    Here I generate the data randomly as a demo:
    -> Demo code: examples/demo_ga_tsp.py#s1

    import numpy as np
    from scipy import spatial
    import matplotlib.pyplot as plt
    
    num_points = 50
    
    points_coordinate = np.random.rand(num_points, 2)  # generate coordinate of points
    distance_matrix = spatial.distance.cdist(points_coordinate, points_coordinate, metric='euclidean')
    
    
    def cal_total_distance(routine):
        '''The objective function. input routine, return total distance.
        cal_total_distance(np.arange(num_points))
        '''
        num_points, = routine.shape
        return sum([distance_matrix[routine[i % num_points], routine[(i + 1) % num_points]] for i in range(num_points)])
    
    

    Step2: do GA
    -> Demo code: examples/demo_ga_tsp.py#s2

    
    from sko.GA import GA_TSP
    
    ga_tsp = GA_TSP(func=cal_total_distance, n_dim=num_points, size_pop=50, max_iter=500, prob_mut=1)
    best_points, best_distance = ga_tsp.run()
    

    Step3: Plot the result:
    -> Demo code: examples/demo_ga_tsp.py#s3

    fig, ax = plt.subplots(1, 2)
    best_points_ = np.concatenate([best_points, [best_points[0]]])
    best_points_coordinate = points_coordinate[best_points_, :]
    ax[0].plot(best_points_coordinate[:, 0], best_points_coordinate[:, 1], 'o-r')
    ax[1].plot(ga_tsp.generation_best_Y)
    plt.show()

    GA_TPS

    3. PSO(Particle swarm optimization)

    3.1 PSO with constraint

    Step1: define your problem:
    -> Demo code: examples/demo_pso.py#s1

    def demo_func(x):
        x1, x2, x3 = x
        return x1 ** 2 + (x2 - 0.05) ** 2 + x3 ** 2
    
    

    Step2: do PSO
    -> Demo code: examples/demo_pso.py#s2

    from sko.PSO import PSO
    
    pso = PSO(func=demo_func, dim=3, pop=40, max_iter=150, lb=[0, -1, 0.5], ub=[1, 1, 1], w=0.8, c1=0.5, c2=0.5)
    pso.run()
    print('best_x is ', pso.gbest_x, 'best_y is', pso.gbest_y)
    

    Step3: Plot the result
    -> Demo code: examples/demo_pso.py#s3

    import matplotlib.pyplot as plt
    
    plt.plot(pso.gbest_y_hist)
    plt.show()
    

    PSO_TPS

    pso_ani
    see examples/demo_pso_ani.py

    3.2 PSO without constraint

    -> Demo code: examples/demo_pso.py#s4

    pso = PSO(func=demo_func, dim=3)
    fitness = pso.run()
    print('best_x is ', pso.gbest_x, 'best_y is', pso.gbest_y)

    4. SA(Simulated Annealing)

    4.1 SA for multiple function

    Step1: define your problem
    -> Demo code: examples/demo_sa.py#s1

    demo_func = lambda x: x[0] ** 2 + (x[1] - 0.05) ** 2 + x[2] ** 2
    

    Step2: do SA
    -> Demo code: examples/demo_sa.py#s2

    from sko.SA import SA
    
    sa = SA(func=demo_func, x0=[1, 1, 1], T_max=1, T_min=1e-9, L=300, max_stay_counter=150)
    best_x, best_y = sa.run()
    print('best_x:', best_x, 'best_y', best_y)
    

    Step3: Plot the result
    -> Demo code: examples/demo_sa.py#s3

    import matplotlib.pyplot as plt
    import pandas as pd
    
    plt.plot(pd.DataFrame(sa.best_y_history).cummin(axis=0))
    plt.show()
    

    sa

    Moreover, scikit-opt provide 3 types of Simulated Annealing: Fast, Boltzmann, Cauchy. See more sa

    4.2 SA for TSP

    Step1: oh, yes, define your problems. To boring to copy this step.

    Step2: DO SA for TSP
    -> Demo code: examples/demo_sa_tsp.py#s2

    from sko.SA import SA_TSP
    
    sa_tsp = SA_TSP(func=cal_total_distance, x0=range(num_points), T_max=100, T_min=1, L=10 * num_points)
    
    best_points, best_distance = sa_tsp.run()
    print(best_points, best_distance, cal_total_distance(best_points))

    Step3: plot the result
    -> Demo code: examples/demo_sa_tsp.py#s3

    from matplotlib.ticker import FormatStrFormatter
    
    fig, ax = plt.subplots(1, 2)
    
    best_points_ = np.concatenate([best_points, [best_points[0]]])
    best_points_coordinate = points_coordinate[best_points_, :]
    ax[0].plot(sa_tsp.best_y_history)
    ax[0].set_xlabel("Iteration")
    ax[0].set_ylabel("Distance")
    ax[1].plot(best_points_coordinate[:, 0], best_points_coordinate[:, 1],
               marker='o', markerfacecolor='b', color='c', linestyle='-')
    ax[1].xaxis.set_major_formatter(FormatStrFormatter('%.3f'))
    ax[1].yaxis.set_major_formatter(FormatStrFormatter('%.3f'))
    ax[1].set_xlabel("Longitude")
    ax[1].set_ylabel("Latitude")
    plt.show()
    

    sa

    More: Plot the animation:

    sa
    see examples/demo_sa_tsp.py

    5. ACA (Ant Colony Algorithm) for tsp

    -> Demo code: examples/demo_aca_tsp.py#s2

    from sko.ACA import ACA_TSP
    
    aca = ACA_TSP(func=cal_total_distance, n_dim=num_points,
                  size_pop=50, max_iter=200,
                  distance_matrix=distance_matrix)
    
    best_x, best_y = aca.run()
    

    ACA

    6. immune algorithm (IA)

    -> Demo code: examples/demo_ia.py#s2

    
    from sko.IA import IA_TSP
    
    ia_tsp = IA_TSP(func=cal_total_distance, n_dim=num_points, size_pop=500, max_iter=800, prob_mut=0.2,
                    T=0.7, alpha=0.95)
    best_points, best_distance = ia_tsp.run()
    print('best routine:', best_points, 'best_distance:', best_distance)
    

    IA

    7. Artificial Fish Swarm Algorithm (AFSA)

    -> Demo code: examples/demo_afsa.py#s1

    def func(x):
        x1, x2 = x
        return 1 / x1 ** 2 + x1 ** 2 + 1 / x2 ** 2 + x2 ** 2
    
    
    from sko.AFSA import AFSA
    
    afsa = AFSA(func, n_dim=2, size_pop=50, max_iter=300,
                max_try_num=100, step=0.5, visual=0.3,
                q=0.98, delta=0.5)
    best_x, best_y = afsa.run()
    print(best_x, best_y)

    项目简介

    Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

    🚀 Github 镜像仓库 🚀

    源项目地址

    https://github.com/zhangxiao123qqq/scikit-opt

    发行版本

    当前项目没有发行版本

    贡献者 6

    guofei9987 @guofei99871
    Z zhangxiao123qqq @zhangxiao123qqq
    T Tim Hatch @Tim Hatch
    T The Gitter Badger @The Gitter Badger

    开发语言

    • Python 100.0 %