Fri Apr 14 09:35:00 UTC 2023 inscode

上级 457f92e4
print('欢迎来到 InsCode')
import os
print(os.path.dirname('./'))
import numpy
print(numpy.__version__)
import
\ No newline at end of file
import numpy as np
# 生成一个10x10的随机矩阵
rand_mat = np.random.rand(10, 10)
# 输出矩阵的形状和数据类型
print(rand_mat)
print("Matrix shape:", rand_mat.shape)
print("Matrix data type:", rand_mat.dtype)
# 计算矩阵的平均值、最小值、最大值和总和
mean = np.mean(rand_mat)
min_val = np.min(rand_mat)
max_val = np.max(rand_mat)
sum_val = np.sum(rand_mat)
# 输出计算结果
print("Mean value:", mean)
print("Minimum value:", min_val)
print("Maximum value:", max_val)
print("Sum value:", sum_val)
{
"$schema": "https://www.quickapi.cloud/schema.json",
"pipeline": [
{
"name": "redis",
"action": "get",
"key": "user_${param.session_id}",
"output": "user",
"json": true,
"property": "common_redis"
},
{
"name": "pipeline",
"uri": "/test",
......@@ -33,5 +25,32 @@
}
]
}
],
"response_code": [
{
"name": "success",
"code": 200,
"message": "success"
},
{
"name": "fail",
"code": 500,
"message": "fail"
}
],
"property": {
"common_redis": {
"url": "redis://127.0.0.1:6379"
},
"db_interview": {
"driver": "com.mysql.jdbc.Driver",
"url": "jdbc:mysql://localhost:3306/xxx?useUnicode=true&characterEncoding=utf8",
"user_name": "root",
"password": "123456"
}
},
"include": [
"config/db.json",
"http://localhost:8081/api/b/v1/t_config?app=test"
]
}
\ No newline at end of file
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score
# 加载新闻数据集
news_data = fetch_20newsgroups(subset='all', categories=['alt.atheism', 'talk.religion.misc'])
print(news_data.data[0])
# 将数据集分为训练集和测试集
train_data = fetch_20newsgroups(subset='train', categories=['alt.atheism', 'talk.religion.misc'])
test_data = fetch_20newsgroups(subset='test', categories=['alt.atheism', 'talk.religion.misc'])
print('---------------')
print(test_data.data[0])
print('---------a-------a-------')
print(test_data.target[0])
# 将文本转换为特征向量
vectorizer = CountVectorizer()
train_features = vectorizer.fit_transform(train_data.data)
test_features = vectorizer.transform(test_data.data)
# 训练朴素贝叶斯分类器
clf = MultinomialNB()
clf.fit(train_features, train_data.target)
# 预测测试集并计算准确率
pred = clf.predict(test_features)
accuracy = accuracy_score(test_data.target, pred)
print("Accuracy:", accuracy)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册