提交 a3efcc06 编写于 作者: D dlorenc 提交者: Matt Rickard

Update to k8s v1.4.0

上级 b7523e44
此差异已折叠。
......@@ -23,7 +23,7 @@ minikube start
--insecure-registry stringSlice Insecure Docker registries to pass to the Docker daemon
--iso-url string Location of the minikube iso (default "https://storage.googleapis.com/minikube/minikube-0.7.iso")
--kubernetes-version string The kubernetes version that the minikube VM will (ex: v1.2.3)
OR a URI which contains a localkube binary (ex: https://storage.googleapis.com/minikube/k8sReleases/v1.3.0/localkube-linux-amd64) (default "v1.4.0-alpha.3")
OR a URI which contains a localkube binary (ex: https://storage.googleapis.com/minikube/k8sReleases/v1.3.0/localkube-linux-amd64) (default "v1.4.0")
--memory int Amount of RAM allocated to the minikube VM (default 1024)
--network-plugin string The name of the network plugin
--registry-mirror stringSlice Registry mirrors to pass to the Docker daemon
......
# Compiled Object files, Static and Dynamic libs (Shared Objects)
*.o
*.a
*.so
# Folders
_obj
_test
# Architecture specific extensions/prefixes
*.[568vq]
[568vq].out
*.cgo1.go
*.cgo2.c
_cgo_defun.c
_cgo_gotypes.go
_cgo_export.*
_testmain.go
*.exe
go-metrics
==========
This library provides a `metrics` package which can be used to instrument code,
expose application metrics, and profile runtime performance in a flexible manner.
Current API: [![GoDoc](https://godoc.org/github.com/armon/go-metrics?status.svg)](https://godoc.org/github.com/armon/go-metrics)
Sinks
=====
The `metrics` package makes use of a `MetricSink` interface to support delivery
to any type of backend. Currently the following sinks are provided:
* StatsiteSink : Sinks to a [statsite](https://github.com/armon/statsite/) instance (TCP)
* StatsdSink: Sinks to a [StatsD](https://github.com/etsy/statsd/) / statsite instance (UDP)
* PrometheusSink: Sinks to a [Prometheus](http://prometheus.io/) metrics endpoint (exposed via HTTP for scrapes)
* InmemSink : Provides in-memory aggregation, can be used to export stats
* FanoutSink : Sinks to multiple sinks. Enables writing to multiple statsite instances for example.
* BlackholeSink : Sinks to nowhere
In addition to the sinks, the `InmemSignal` can be used to catch a signal,
and dump a formatted output of recent metrics. For example, when a process gets
a SIGUSR1, it can dump to stderr recent performance metrics for debugging.
Examples
========
Here is an example of using the package:
func SlowMethod() {
// Profiling the runtime of a method
defer metrics.MeasureSince([]string{"SlowMethod"}, time.Now())
}
// Configure a statsite sink as the global metrics sink
sink, _ := metrics.NewStatsiteSink("statsite:8125")
metrics.NewGlobal(metrics.DefaultConfig("service-name"), sink)
// Emit a Key/Value pair
metrics.EmitKey([]string{"questions", "meaning of life"}, 42)
Here is an example of setting up an signal handler:
// Setup the inmem sink and signal handler
inm := metrics.NewInmemSink(10*time.Second, time.Minute)
sig := metrics.DefaultInmemSignal(inm)
metrics.NewGlobal(metrics.DefaultConfig("service-name"), inm)
// Run some code
inm.SetGauge([]string{"foo"}, 42)
inm.EmitKey([]string{"bar"}, 30)
inm.IncrCounter([]string{"baz"}, 42)
inm.IncrCounter([]string{"baz"}, 1)
inm.IncrCounter([]string{"baz"}, 80)
inm.AddSample([]string{"method", "wow"}, 42)
inm.AddSample([]string{"method", "wow"}, 100)
inm.AddSample([]string{"method", "wow"}, 22)
....
When a signal comes in, output like the following will be dumped to stderr:
[2014-01-28 14:57:33.04 -0800 PST][G] 'foo': 42.000
[2014-01-28 14:57:33.04 -0800 PST][P] 'bar': 30.000
[2014-01-28 14:57:33.04 -0800 PST][C] 'baz': Count: 3 Min: 1.000 Mean: 41.000 Max: 80.000 Stddev: 39.509
[2014-01-28 14:57:33.04 -0800 PST][S] 'method.wow': Count: 3 Min: 22.000 Mean: 54.667 Max: 100.000 Stddev: 40.513
// +build !windows
package metrics
import (
"syscall"
)
const (
// DefaultSignal is used with DefaultInmemSignal
DefaultSignal = syscall.SIGUSR1
)
// +build windows
package metrics
import (
"syscall"
)
const (
// DefaultSignal is used with DefaultInmemSignal
// Windows has no SIGUSR1, use SIGBREAK
DefaultSignal = syscall.Signal(21)
)
package metrics
import (
"fmt"
"math"
"strings"
"sync"
"time"
)
// InmemSink provides a MetricSink that does in-memory aggregation
// without sending metrics over a network. It can be embedded within
// an application to provide profiling information.
type InmemSink struct {
// How long is each aggregation interval
interval time.Duration
// Retain controls how many metrics interval we keep
retain time.Duration
// maxIntervals is the maximum length of intervals.
// It is retain / interval.
maxIntervals int
// intervals is a slice of the retained intervals
intervals []*IntervalMetrics
intervalLock sync.RWMutex
}
// IntervalMetrics stores the aggregated metrics
// for a specific interval
type IntervalMetrics struct {
sync.RWMutex
// The start time of the interval
Interval time.Time
// Gauges maps the key to the last set value
Gauges map[string]float32
// Points maps the string to the list of emitted values
// from EmitKey
Points map[string][]float32
// Counters maps the string key to a sum of the counter
// values
Counters map[string]*AggregateSample
// Samples maps the key to an AggregateSample,
// which has the rolled up view of a sample
Samples map[string]*AggregateSample
}
// NewIntervalMetrics creates a new IntervalMetrics for a given interval
func NewIntervalMetrics(intv time.Time) *IntervalMetrics {
return &IntervalMetrics{
Interval: intv,
Gauges: make(map[string]float32),
Points: make(map[string][]float32),
Counters: make(map[string]*AggregateSample),
Samples: make(map[string]*AggregateSample),
}
}
// AggregateSample is used to hold aggregate metrics
// about a sample
type AggregateSample struct {
Count int // The count of emitted pairs
Sum float64 // The sum of values
SumSq float64 // The sum of squared values
Min float64 // Minimum value
Max float64 // Maximum value
LastUpdated time.Time // When value was last updated
}
// Computes a Stddev of the values
func (a *AggregateSample) Stddev() float64 {
num := (float64(a.Count) * a.SumSq) - math.Pow(a.Sum, 2)
div := float64(a.Count * (a.Count - 1))
if div == 0 {
return 0
}
return math.Sqrt(num / div)
}
// Computes a mean of the values
func (a *AggregateSample) Mean() float64 {
if a.Count == 0 {
return 0
}
return a.Sum / float64(a.Count)
}
// Ingest is used to update a sample
func (a *AggregateSample) Ingest(v float64) {
a.Count++
a.Sum += v
a.SumSq += (v * v)
if v < a.Min || a.Count == 1 {
a.Min = v
}
if v > a.Max || a.Count == 1 {
a.Max = v
}
a.LastUpdated = time.Now()
}
func (a *AggregateSample) String() string {
if a.Count == 0 {
return "Count: 0"
} else if a.Stddev() == 0 {
return fmt.Sprintf("Count: %d Sum: %0.3f LastUpdated: %s", a.Count, a.Sum, a.LastUpdated)
} else {
return fmt.Sprintf("Count: %d Min: %0.3f Mean: %0.3f Max: %0.3f Stddev: %0.3f Sum: %0.3f LastUpdated: %s",
a.Count, a.Min, a.Mean(), a.Max, a.Stddev(), a.Sum, a.LastUpdated)
}
}
// NewInmemSink is used to construct a new in-memory sink.
// Uses an aggregation interval and maximum retention period.
func NewInmemSink(interval, retain time.Duration) *InmemSink {
i := &InmemSink{
interval: interval,
retain: retain,
maxIntervals: int(retain / interval),
}
i.intervals = make([]*IntervalMetrics, 0, i.maxIntervals)
return i
}
func (i *InmemSink) SetGauge(key []string, val float32) {
k := i.flattenKey(key)
intv := i.getInterval()
intv.Lock()
defer intv.Unlock()
intv.Gauges[k] = val
}
func (i *InmemSink) EmitKey(key []string, val float32) {
k := i.flattenKey(key)
intv := i.getInterval()
intv.Lock()
defer intv.Unlock()
vals := intv.Points[k]
intv.Points[k] = append(vals, val)
}
func (i *InmemSink) IncrCounter(key []string, val float32) {
k := i.flattenKey(key)
intv := i.getInterval()
intv.Lock()
defer intv.Unlock()
agg := intv.Counters[k]
if agg == nil {
agg = &AggregateSample{}
intv.Counters[k] = agg
}
agg.Ingest(float64(val))
}
func (i *InmemSink) AddSample(key []string, val float32) {
k := i.flattenKey(key)
intv := i.getInterval()
intv.Lock()
defer intv.Unlock()
agg := intv.Samples[k]
if agg == nil {
agg = &AggregateSample{}
intv.Samples[k] = agg
}
agg.Ingest(float64(val))
}
// Data is used to retrieve all the aggregated metrics
// Intervals may be in use, and a read lock should be acquired
func (i *InmemSink) Data() []*IntervalMetrics {
// Get the current interval, forces creation
i.getInterval()
i.intervalLock.RLock()
defer i.intervalLock.RUnlock()
intervals := make([]*IntervalMetrics, len(i.intervals))
copy(intervals, i.intervals)
return intervals
}
func (i *InmemSink) getExistingInterval(intv time.Time) *IntervalMetrics {
i.intervalLock.RLock()
defer i.intervalLock.RUnlock()
n := len(i.intervals)
if n > 0 && i.intervals[n-1].Interval == intv {
return i.intervals[n-1]
}
return nil
}
func (i *InmemSink) createInterval(intv time.Time) *IntervalMetrics {
i.intervalLock.Lock()
defer i.intervalLock.Unlock()
// Check for an existing interval
n := len(i.intervals)
if n > 0 && i.intervals[n-1].Interval == intv {
return i.intervals[n-1]
}
// Add the current interval
current := NewIntervalMetrics(intv)
i.intervals = append(i.intervals, current)
n++
// Truncate the intervals if they are too long
if n >= i.maxIntervals {
copy(i.intervals[0:], i.intervals[n-i.maxIntervals:])
i.intervals = i.intervals[:i.maxIntervals]
}
return current
}
// getInterval returns the current interval to write to
func (i *InmemSink) getInterval() *IntervalMetrics {
intv := time.Now().Truncate(i.interval)
if m := i.getExistingInterval(intv); m != nil {
return m
}
return i.createInterval(intv)
}
// Flattens the key for formatting, removes spaces
func (i *InmemSink) flattenKey(parts []string) string {
joined := strings.Join(parts, ".")
return strings.Replace(joined, " ", "_", -1)
}
package metrics
import (
"bytes"
"fmt"
"io"
"os"
"os/signal"
"sync"
"syscall"
)
// InmemSignal is used to listen for a given signal, and when received,
// to dump the current metrics from the InmemSink to an io.Writer
type InmemSignal struct {
signal syscall.Signal
inm *InmemSink
w io.Writer
sigCh chan os.Signal
stop bool
stopCh chan struct{}
stopLock sync.Mutex
}
// NewInmemSignal creates a new InmemSignal which listens for a given signal,
// and dumps the current metrics out to a writer
func NewInmemSignal(inmem *InmemSink, sig syscall.Signal, w io.Writer) *InmemSignal {
i := &InmemSignal{
signal: sig,
inm: inmem,
w: w,
sigCh: make(chan os.Signal, 1),
stopCh: make(chan struct{}),
}
signal.Notify(i.sigCh, sig)
go i.run()
return i
}
// DefaultInmemSignal returns a new InmemSignal that responds to SIGUSR1
// and writes output to stderr. Windows uses SIGBREAK
func DefaultInmemSignal(inmem *InmemSink) *InmemSignal {
return NewInmemSignal(inmem, DefaultSignal, os.Stderr)
}
// Stop is used to stop the InmemSignal from listening
func (i *InmemSignal) Stop() {
i.stopLock.Lock()
defer i.stopLock.Unlock()
if i.stop {
return
}
i.stop = true
close(i.stopCh)
signal.Stop(i.sigCh)
}
// run is a long running routine that handles signals
func (i *InmemSignal) run() {
for {
select {
case <-i.sigCh:
i.dumpStats()
case <-i.stopCh:
return
}
}
}
// dumpStats is used to dump the data to output writer
func (i *InmemSignal) dumpStats() {
buf := bytes.NewBuffer(nil)
data := i.inm.Data()
// Skip the last period which is still being aggregated
for i := 0; i < len(data)-1; i++ {
intv := data[i]
intv.RLock()
for name, val := range intv.Gauges {
fmt.Fprintf(buf, "[%v][G] '%s': %0.3f\n", intv.Interval, name, val)
}
for name, vals := range intv.Points {
for _, val := range vals {
fmt.Fprintf(buf, "[%v][P] '%s': %0.3f\n", intv.Interval, name, val)
}
}
for name, agg := range intv.Counters {
fmt.Fprintf(buf, "[%v][C] '%s': %s\n", intv.Interval, name, agg)
}
for name, agg := range intv.Samples {
fmt.Fprintf(buf, "[%v][S] '%s': %s\n", intv.Interval, name, agg)
}
intv.RUnlock()
}
// Write out the bytes
i.w.Write(buf.Bytes())
}
package metrics
import (
"runtime"
"time"
)
func (m *Metrics) SetGauge(key []string, val float32) {
if m.HostName != "" && m.EnableHostname {
key = insert(0, m.HostName, key)
}
if m.EnableTypePrefix {
key = insert(0, "gauge", key)
}
if m.ServiceName != "" {
key = insert(0, m.ServiceName, key)
}
m.sink.SetGauge(key, val)
}
func (m *Metrics) EmitKey(key []string, val float32) {
if m.EnableTypePrefix {
key = insert(0, "kv", key)
}
if m.ServiceName != "" {
key = insert(0, m.ServiceName, key)
}
m.sink.EmitKey(key, val)
}
func (m *Metrics) IncrCounter(key []string, val float32) {
if m.EnableTypePrefix {
key = insert(0, "counter", key)
}
if m.ServiceName != "" {
key = insert(0, m.ServiceName, key)
}
m.sink.IncrCounter(key, val)
}
func (m *Metrics) AddSample(key []string, val float32) {
if m.EnableTypePrefix {
key = insert(0, "sample", key)
}
if m.ServiceName != "" {
key = insert(0, m.ServiceName, key)
}
m.sink.AddSample(key, val)
}
func (m *Metrics) MeasureSince(key []string, start time.Time) {
if m.EnableTypePrefix {
key = insert(0, "timer", key)
}
if m.ServiceName != "" {
key = insert(0, m.ServiceName, key)
}
now := time.Now()
elapsed := now.Sub(start)
msec := float32(elapsed.Nanoseconds()) / float32(m.TimerGranularity)
m.sink.AddSample(key, msec)
}
// Periodically collects runtime stats to publish
func (m *Metrics) collectStats() {
for {
time.Sleep(m.ProfileInterval)
m.emitRuntimeStats()
}
}
// Emits various runtime statsitics
func (m *Metrics) emitRuntimeStats() {
// Export number of Goroutines
numRoutines := runtime.NumGoroutine()
m.SetGauge([]string{"runtime", "num_goroutines"}, float32(numRoutines))
// Export memory stats
var stats runtime.MemStats
runtime.ReadMemStats(&stats)
m.SetGauge([]string{"runtime", "alloc_bytes"}, float32(stats.Alloc))
m.SetGauge([]string{"runtime", "sys_bytes"}, float32(stats.Sys))
m.SetGauge([]string{"runtime", "malloc_count"}, float32(stats.Mallocs))
m.SetGauge([]string{"runtime", "free_count"}, float32(stats.Frees))
m.SetGauge([]string{"runtime", "heap_objects"}, float32(stats.HeapObjects))
m.SetGauge([]string{"runtime", "total_gc_pause_ns"}, float32(stats.PauseTotalNs))
m.SetGauge([]string{"runtime", "total_gc_runs"}, float32(stats.NumGC))
// Export info about the last few GC runs
num := stats.NumGC
// Handle wrap around
if num < m.lastNumGC {
m.lastNumGC = 0
}
// Ensure we don't scan more than 256
if num-m.lastNumGC >= 256 {
m.lastNumGC = num - 255
}
for i := m.lastNumGC; i < num; i++ {
pause := stats.PauseNs[i%256]
m.AddSample([]string{"runtime", "gc_pause_ns"}, float32(pause))
}
m.lastNumGC = num
}
// Inserts a string value at an index into the slice
func insert(i int, v string, s []string) []string {
s = append(s, "")
copy(s[i+1:], s[i:])
s[i] = v
return s
}
package metrics
// The MetricSink interface is used to transmit metrics information
// to an external system
type MetricSink interface {
// A Gauge should retain the last value it is set to
SetGauge(key []string, val float32)
// Should emit a Key/Value pair for each call
EmitKey(key []string, val float32)
// Counters should accumulate values
IncrCounter(key []string, val float32)
// Samples are for timing information, where quantiles are used
AddSample(key []string, val float32)
}
// BlackholeSink is used to just blackhole messages
type BlackholeSink struct{}
func (*BlackholeSink) SetGauge(key []string, val float32) {}
func (*BlackholeSink) EmitKey(key []string, val float32) {}
func (*BlackholeSink) IncrCounter(key []string, val float32) {}
func (*BlackholeSink) AddSample(key []string, val float32) {}
// FanoutSink is used to sink to fanout values to multiple sinks
type FanoutSink []MetricSink
func (fh FanoutSink) SetGauge(key []string, val float32) {
for _, s := range fh {
s.SetGauge(key, val)
}
}
func (fh FanoutSink) EmitKey(key []string, val float32) {
for _, s := range fh {
s.EmitKey(key, val)
}
}
func (fh FanoutSink) IncrCounter(key []string, val float32) {
for _, s := range fh {
s.IncrCounter(key, val)
}
}
func (fh FanoutSink) AddSample(key []string, val float32) {
for _, s := range fh {
s.AddSample(key, val)
}
}
此差异已折叠。
此差异已折叠。
......@@ -89,8 +89,11 @@ func RegisterHandlers(mux httpmux.Mux, containerManager manager.Manager, httpAut
return nil
}
func RegisterPrometheusHandler(mux httpmux.Mux, containerManager manager.Manager, prometheusEndpoint string, containerNameToLabelsFunc metrics.ContainerNameToLabelsFunc) {
collector := metrics.NewPrometheusCollector(containerManager, containerNameToLabelsFunc)
// RegisterPrometheusHandler creates a new PrometheusCollector, registers it
// on the global registry and configures the provided HTTP mux to handle the
// given Prometheus endpoint.
func RegisterPrometheusHandler(mux httpmux.Mux, containerManager manager.Manager, prometheusEndpoint string, f metrics.ContainerLabelsFunc) {
collector := metrics.NewPrometheusCollector(containerManager, f)
prometheus.MustRegister(collector)
mux.Handle(prometheusEndpoint, prometheus.Handler())
}
......
Copyright (c) 2012, 2013 Ugorji Nwoke.
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of the author nor the names of its contributors may be used
to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
raft-boltdb
===========
This repository provides the `raftboltdb` package. The package exports the
`BoltStore` which is an implementation of both a `LogStore` and `StableStore`.
It is meant to be used as a backend for the `raft` [package
here](https://github.com/hashicorp/raft).
This implementation uses [BoltDB](https://github.com/boltdb/bolt). BoltDB is
a simple key/value store implemented in pure Go, and inspired by LMDB.
# Compiled Object files, Static and Dynamic libs (Shared Objects)
*.o
*.a
*.so
# Folders
_obj
_test
# Architecture specific extensions/prefixes
*.[568vq]
[568vq].out
*.cgo1.go
*.cgo2.c
_cgo_defun.c
_cgo_gotypes.go
_cgo_export.*
_testmain.go
*.exe
*.test
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
The MIT License (MIT)
Copyright (c) 2013 Armon Dadgar
Copyright (c) 2013-2016 Errplane Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
/*
Package tsdb implements a durable time series database.
*/
package tsdb
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册