CmapCoverage.cpp 6.4 KB
Newer Older
R
Raph Levien 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
/*
 * Copyright (C) 2013 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// Determine coverage of font given its raw "cmap" OpenType table

#ifdef PRINTF_DEBUG
#include <stdio.h>
#endif

#include <vector>
using std::vector;

#include <minikin/SparseBitSet.h>
#include <minikin/CmapCoverage.h>

namespace android {

// These could perhaps be optimized to use __builtin_bswap16 and friends.
static uint32_t readU16(const uint8_t* data, size_t offset) {
    return data[offset] << 8 | data[offset + 1];
}

static uint32_t readU32(const uint8_t* data, size_t offset) {
    return data[offset] << 24 | data[offset + 1] << 16 | data[offset + 2] << 8 | data[offset + 3];
}

static void addRange(vector<uint32_t> &coverage, uint32_t start, uint32_t end) {
#ifdef PRINTF_DEBUG
    printf("adding range %d-%d\n", start, end);
#endif
    if (coverage.empty() || coverage.back() < start) {
        coverage.push_back(start);
        coverage.push_back(end);
    } else {
        coverage.back() = end;
    }
}

// Get the coverage information out of a Format 12 subtable, storing it in the coverage vector
static bool getCoverageFormat4(vector<uint32_t>& coverage, const uint8_t* data, size_t size) {
    const size_t kSegCountOffset = 6;
    const size_t kEndCountOffset = 14;
    const size_t kHeaderSize = 16;
    const size_t kSegmentSize = 8;  // total size of array elements for one segment
    if (kEndCountOffset > size) {
        return false;
    }
    size_t segCount = readU16(data, kSegCountOffset) >> 1;
    if (kHeaderSize + segCount * kSegmentSize > size) {
        return false;
    }
    for (size_t i = 0; i < segCount; i++) {
        int end = readU16(data, kEndCountOffset + 2 * i);
        int start = readU16(data, kHeaderSize + 2 * (segCount + i));
        int rangeOffset = readU16(data, kHeaderSize + 2 * (3 * segCount + i));
        if (rangeOffset == 0) {
            int delta = readU16(data, kHeaderSize + 2 * (2 * segCount + i));
            if (((end + delta) & 0xffff) > end - start) {
                addRange(coverage, start, end + 1);
            } else {
                for (int j = start; j < end + 1; j++) {
                    if (((j + delta) & 0xffff) != 0) {
                        addRange(coverage, j, j + 1);
                    }
                }
            }
        } else {
            for (int j = start; j < end + 1; j++) {
                uint32_t actualRangeOffset = kHeaderSize + 6 * segCount + rangeOffset +
                    (i + j - start) * 2;
                if (actualRangeOffset + 2 > size) {
                    return false;
                }
                int glyphId = readU16(data, actualRangeOffset);
                if (glyphId != 0) {
                    addRange(coverage, j, j + 1);
                }
            }
        }
    }
    return true;
}

// Get the coverage information out of a Format 12 subtable, storing it in the coverage vector
static bool getCoverageFormat12(vector<uint32_t>& coverage, const uint8_t* data, size_t size) {
    const size_t kNGroupsOffset = 12;
    const size_t kFirstGroupOffset = 16;
    const size_t kGroupSize = 12;
    const size_t kStartCharCodeOffset = 0;
    const size_t kEndCharCodeOffset = 4;
    if (kFirstGroupOffset > size) {
        return false;
    }
    uint32_t nGroups = readU32(data, kNGroupsOffset);
    if (kFirstGroupOffset + nGroups * kGroupSize > size) {
        return false;
    }
    for (uint32_t i = 0; i < nGroups; i++) {
        uint32_t groupOffset = kFirstGroupOffset + i * kGroupSize;
        uint32_t start = readU32(data, groupOffset + kStartCharCodeOffset);
        uint32_t end = readU32(data, groupOffset + kEndCharCodeOffset);
        addRange(coverage, start, end + 1);  // file is inclusive, vector is exclusive
    }
    return true;
}

bool CmapCoverage::getCoverage(SparseBitSet& coverage, const uint8_t* cmap_data, size_t cmap_size) {
    vector<uint32_t> coverageVec;
    const size_t kHeaderSize = 4;
    const size_t kNumTablesOffset = 2;
    const size_t kTableSize = 8;
    const size_t kPlatformIdOffset = 0;
    const size_t kEncodingIdOffset = 2;
    const size_t kOffsetOffset = 4;
    const int kMicrosoftPlatformId = 3;
    const int kUnicodeBmpEncodingId = 1;
    const int kUnicodeUcs4EncodingId = 10;
    if (kHeaderSize > cmap_size) {
        return false;
    }
    int numTables = readU16(cmap_data, kNumTablesOffset);
    if (kHeaderSize + numTables * kTableSize > cmap_size) {
        return false;
    }
    int bestTable = -1;
    for (int i = 0; i < numTables; i++) {
        uint16_t platformId = readU16(cmap_data, kHeaderSize + i * kTableSize + kPlatformIdOffset);
        uint16_t encodingId = readU16(cmap_data, kHeaderSize + i * kTableSize + kEncodingIdOffset);
        if (platformId == kMicrosoftPlatformId && encodingId == kUnicodeUcs4EncodingId) {
            bestTable = i;
            break;
        } else if (platformId == kMicrosoftPlatformId && encodingId == kUnicodeBmpEncodingId) {
            bestTable = i;
        }
    }
#ifdef PRINTF_DEBUG
    printf("best table = %d\n", bestTable);
#endif
    if (bestTable < 0) {
        return false;
    }
    uint32_t offset = readU32(cmap_data, kHeaderSize + bestTable * kTableSize + kOffsetOffset);
    if (offset + 2 > cmap_size) {
        return false;
    }
    uint16_t format = readU16(cmap_data, offset);
    bool success = false;
    const uint8_t* tableData = cmap_data + offset;
    const size_t tableSize = cmap_size - offset;
    if (format == 4) {
        success = getCoverageFormat4(coverageVec, tableData, tableSize);
    } else if (format == 12) {
        success = getCoverageFormat12(coverageVec, tableData, tableSize);
    }
    if (success) {
        coverage.initFromRanges(&coverageVec.front(), coverageVec.size() >> 1);
    }
#ifdef PRINTF_DEBUG
    for (int i = 0; i < coverageVec.size(); i += 2) {
        printf("%x:%x\n", coverageVec[i], coverageVec[i + 1]);
    }
#endif
    return success;
}

}  // namespace android