arm_depthwise_conv_s8.c 12.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
/*
 * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/* ----------------------------------------------------------------------
 * Project:      CMSIS NN Library
 * Title:        arm_depthwise_conv_s8.c
 * Description:	 s8 version of depthwise convolution.
 *
 * $Date:        May 14, 2020
 * $Revision:    V.2.0.0
 *
 * Target Processor:  Cortex-M CPUs
 *
 * -------------------------------------------------------------------- */
#include "cmsis/CMSIS/DSP/Include/arm_math.h"
#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h"
#include "cmsis/CMSIS/NN/Include/arm_nnsupportfunctions.h"

/**
 *  @ingroup groupNN
 */

/**
 * @addtogroup NNConv
 * @{
 */

static void depthwise_conv_s8_mult_4(const int8_t *input,
                                     const int32_t input_x,
                                     const int32_t input_y,
                                     const int32_t input_ch,
                                     const int8_t *kernel,
                                     const int32_t output_ch,
                                     const int32_t ch_mult,
                                     const int32_t kernel_x,
                                     const int32_t kernel_y,
                                     const int32_t pad_x,
                                     const int32_t pad_y,
                                     const int32_t stride_x,
                                     const int32_t stride_y,
                                     const int32_t *bias,
                                     int8_t *output,
                                     const int32_t *output_shift,
                                     const int32_t *output_mult,
                                     const int32_t output_x,
                                     const int32_t output_y,
                                     const int32_t output_offset,
                                     const int32_t input_offset,
                                     const int32_t output_activation_min,
                                     const int32_t output_activation_max)
{
    for (int32_t in_h = -pad_y, out_h = 0, out_idx = 0; out_h < output_y; in_h += stride_y, ++out_h)
    {
        for (int32_t in_w = -pad_x, out_w = 0, ker_h_start = MAX(0, -in_h); out_w < output_x; in_w += stride_x, ++out_w)
        {
            for (int32_t in_ch = 0, out_ch = 0, ker_w_start = MAX(0, -in_w); out_ch < output_ch; ++in_ch, out_ch += ch_mult)
            {
                for (int mult_tile = 0; mult_tile < ch_mult; mult_tile += 4)
                {
                    int32_t out_buff[4];

                    out_buff[0] = bias[out_ch + 0 + mult_tile];
                    out_buff[1] = bias[out_ch + 1 + mult_tile];
                    out_buff[2] = bias[out_ch + 2 + mult_tile];
                    out_buff[3] = bias[out_ch + 3 + mult_tile];

                    for (int32_t ker_h = ker_h_start; ker_h < MIN(kernel_y, input_y - in_h); ++ker_h)
                    {
                        int32_t ker_idx = ker_h * (output_ch * kernel_x) + ker_w_start * output_ch + out_ch;
                        int32_t in_idx = (in_h + ker_h) * (input_ch * input_x) + in_w * input_ch + in_ch;

                        for (int32_t ker_w = ker_w_start; ker_w < MIN(kernel_x, input_x - in_w); ++ker_w, ker_idx += output_ch)
                        {
                            int32_t in_val = input[in_idx + ker_w * input_ch] + input_offset;
                            out_buff[0] += in_val * kernel[ker_idx + 0 + mult_tile];
                            out_buff[1] += in_val * kernel[ker_idx + 1 + mult_tile];
                            out_buff[2] += in_val * kernel[ker_idx + 2 + mult_tile];
                            out_buff[3] += in_val * kernel[ker_idx + 3 + mult_tile];
                        }
                    }
#if defined(ARM_MATH_MVEI)
                    (void)out_idx;
                    int32x4_t res = vldrwq_s32(out_buff);
                    res = arm_requantize_mve_32x4(res, vldrwq_s32(&output_mult[out_ch + mult_tile]), vldrwq_s32(&output_shift[out_ch + mult_tile]));
                    res = vaddq_n_s32(res, output_offset);

                    res = vmaxq_s32(res, vdupq_n_s32(output_activation_min));
                    res = vminq_s32(res, vdupq_n_s32(output_activation_max));
                    vstrbq_s32(output, res);
                    output += 4;
#else
                    out_buff[0] = arm_nn_requantize(out_buff[0], output_mult[out_ch + 0 + mult_tile], output_shift[out_ch + 0 + mult_tile]);
                    out_buff[1] = arm_nn_requantize(out_buff[1], output_mult[out_ch + 1 + mult_tile], output_shift[out_ch + 1 + mult_tile]);
                    out_buff[2] = arm_nn_requantize(out_buff[2], output_mult[out_ch + 2 + mult_tile], output_shift[out_ch + 2 + mult_tile]);
                    out_buff[3] = arm_nn_requantize(out_buff[3], output_mult[out_ch + 3 + mult_tile], output_shift[out_ch + 3 + mult_tile]);

                    out_buff[0] += output_offset;
                    out_buff[1] += output_offset;
                    out_buff[2] += output_offset;
                    out_buff[3] += output_offset;

                    out_buff[0] = MIN(MAX(out_buff[0], output_activation_min), output_activation_max);
                    out_buff[1] = MIN(MAX(out_buff[1], output_activation_min), output_activation_max);
                    out_buff[2] = MIN(MAX(out_buff[2], output_activation_min), output_activation_max);
                    out_buff[3] = MIN(MAX(out_buff[3], output_activation_min), output_activation_max);

                    output[out_idx++] = (int8_t)out_buff[0];
                    output[out_idx++] = (int8_t)out_buff[1];
                    output[out_idx++] = (int8_t)out_buff[2];
                    output[out_idx++] = (int8_t)out_buff[3];

#endif
                }
            }
        }
    }
}

static void depthwise_conv_s8_generic(const q7_t *input,
                                      const uint16_t input_x,
                                      const uint16_t input_y,
                                      const uint16_t input_ch,
                                      const q7_t *kernel,
                                      const uint16_t output_ch,
                                      const uint16_t ch_mult,
                                      const uint16_t kernel_x,
                                      const uint16_t kernel_y,
                                      const uint16_t pad_x,
                                      const uint16_t pad_y,
                                      const uint16_t stride_x,
                                      const uint16_t stride_y,
                                      const int32_t *bias,
                                      q7_t *output,
                                      const int32_t *output_shift,
                                      const int32_t *output_mult,
                                      const uint16_t output_x,
                                      const uint16_t output_y,
                                      const int32_t output_offset,
                                      const int32_t input_offset,
                                      const int32_t output_activation_min,
                                      const int32_t output_activation_max)
{
    (void)output_ch;
    int i_out = 0;
    for (int i_out_y = 0; i_out_y < output_y; i_out_y++)
    {
        const int16_t base_idx_y = (i_out_y * stride_y) - pad_y;
        for (int i_out_x = 0; i_out_x < output_x; i_out_x++)
        {
            const int16_t base_idx_x = (i_out_x * stride_x) - pad_x;
            for (int i_input_ch = 0; i_input_ch < input_ch; i_input_ch++)
            {
                for (int i_ch_mult = 0; i_ch_mult < ch_mult; i_ch_mult++)
                {
                    const int idx_out_ch = i_ch_mult + i_input_ch * ch_mult;
                    int32_t acc_0;
                    /* Condition for kernel start dimension: (base_idx_<x,y> + ker_<x,y>_start) >= 0 */
                    const int ker_y_start = MAX(0, -base_idx_y);
                    const int ker_x_start = MAX(0, -base_idx_x);
                    /* Condition for kernel end dimension: (base_idx_<x,y> + ker_<x,y>_end) < input_<x,y> */
                    const int ker_y_end = MIN(kernel_y, input_y - base_idx_y);
                    const int ker_x_end = MIN(kernel_x, input_x - base_idx_x);
                    acc_0 = bias[idx_out_ch];

                    for (int i_ker_y = ker_y_start; i_ker_y < ker_y_end; i_ker_y++)
                    {
                        const int32_t idx_y = base_idx_y + i_ker_y;
                        for (int i_ker_x = ker_x_start; i_ker_x < ker_x_end; i_ker_x++)
                        {
                            const int32_t idx_x = base_idx_x + i_ker_x;
                            int32_t idx_0 = (idx_y * input_x + idx_x) * input_ch + i_input_ch;
                            int32_t ker_idx_0 = (i_ker_y * kernel_x + i_ker_x) * (input_ch * ch_mult) + idx_out_ch;

                            acc_0 += (input[idx_0] + input_offset) * kernel[ker_idx_0];
                        }
                    }

                    /* Requantize and clamp output to provided range */
                    acc_0 = arm_nn_requantize(acc_0, output_mult[idx_out_ch], output_shift[idx_out_ch]);
                    acc_0 += output_offset;
                    acc_0 = MAX(acc_0, output_activation_min);
                    acc_0 = MIN(acc_0, output_activation_max);

                    output[i_out++] = acc_0;
                }
            }
        }
    }
}

/*
   *  Basic s8 depthwise convolution function.
   *
   *  Refer header file for details.
   *  Optimization using DSP extension is not available for the generic case where channel multiplier is > 1.
   *
   */
arm_status arm_depthwise_conv_s8(const cmsis_nn_context *ctx,
                                 const cmsis_nn_dw_conv_params *dw_conv_params,
                                 const cmsis_nn_per_channel_quant_params *quant_params,
                                 const cmsis_nn_dims *input_dims,
                                 const q7_t *input,
                                 const cmsis_nn_dims *filter_dims,
                                 const q7_t *kernel,
                                 const cmsis_nn_dims *bias_dims,
                                 const int32_t *bias,
                                 const cmsis_nn_dims *output_dims,
                                 q7_t *output)
{
    (void)dw_conv_params->dilation;
    (void)ctx;

    if (dw_conv_params->ch_mult % 4 == 0)
    {
        depthwise_conv_s8_mult_4(input, input_dims->w, input_dims->h, input_dims->c, kernel, output_dims->c, dw_conv_params->ch_mult, filter_dims->w, filter_dims->h,
                                 dw_conv_params->padding.w, dw_conv_params->padding.h, dw_conv_params->stride.w, dw_conv_params->stride.h, bias, output,
                                 quant_params->shift, quant_params->multiplier, output_dims->w, output_dims->h, dw_conv_params->output_offset,
                                 dw_conv_params->input_offset, dw_conv_params->activation.min, dw_conv_params->activation.max);
    }
    else
    {
        depthwise_conv_s8_generic(input, input_dims->w, input_dims->h, input_dims->c, kernel, output_dims->c, dw_conv_params->ch_mult, filter_dims->w, filter_dims->h,
                                  dw_conv_params->padding.w, dw_conv_params->padding.h, dw_conv_params->stride.w, dw_conv_params->stride.h, bias, output,
                                  quant_params->shift, quant_params->multiplier, output_dims->w, output_dims->h, dw_conv_params->output_offset,
                                  dw_conv_params->input_offset, dw_conv_params->activation.min, dw_conv_params->activation.max);
    }

    /* Return to application */
    return ARM_MATH_SUCCESS;
}

/**
 * @} end of NNConv group
 */