arm_convolve_HWC_q7_basic_nonsquare.c 8.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
/*
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/* ----------------------------------------------------------------------
 * Project:      CMSIS NN Library
 * Title:        arm_convolve_HWC_q7_basic.c
 * Description:	 Q7 version of convolution
 *
 * $Date:        13. July 2018
 * $Revision:    V.1.0.0
 *
 * Target Processor:  Cortex-M cores
 *
 * -------------------------------------------------------------------- */
#include "cmsis/CMSIS/DSP/Include/arm_math.h"
#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h"

/**
 *  @ingroup groupNN
 */

/**
 * @addtogroup NNConv
 * @{
 */

  /**
   * @brief Basic Q7 convolution function (non-sqaure shape)
   * @param[in]       Im_in        pointer to input tensor
   * @param[in]       dim_im_in_x  input tensor dimention x
   * @param[in]       dim_im_in_y  input tensor dimention y
   * @param[in]       ch_im_in     number of input tensor channels
   * @param[in]       wt           pointer to kernel weights
   * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
   * @param[in]       dim_kernel_x filter kernel size x
   * @param[in]       dim_kernel_y filter kernel size y
   * @param[in]       padding_x    padding size x
   * @param[in]       padding_y    padding size y
   * @param[in]       stride_x     convolution stride x
   * @param[in]       stride_y     convolution stride y
   * @param[in]       bias         pointer to bias
   * @param[in]       bias_shift   amount of left-shift for bias
   * @param[in]       out_shift    amount of right-shift for output
   * @param[in,out]   Im_out       pointer to output tensor
   * @param[in]       dim_im_out_x output tensor dimension x
   * @param[in]       dim_im_out_y output tensor dimension y
   * @param[in,out]   bufferA      pointer to buffer space for input
   * @param[in,out]   bufferB      pointer to buffer space for output
   * @return     The function returns <code>ARM_MATH_SUCCESS</code>
   */

arm_status arm_convolve_HWC_q7_basic_nonsquare(const q7_t * Im_in,
                                               const uint16_t dim_im_in_x,
                                               const uint16_t dim_im_in_y,
                                               const uint16_t ch_im_in,
                                               const q7_t * wt,
                                               const uint16_t ch_im_out,
                                               const uint16_t dim_kernel_x,
                                               const uint16_t dim_kernel_y,
                                               const uint16_t padding_x,
                                               const uint16_t padding_y,
                                               const uint16_t stride_x,
                                               const uint16_t stride_y,
                                               const q7_t * bias,
                                               const uint16_t bias_shift,
                                               const uint16_t out_shift,
                                               q7_t * Im_out,
                                               const uint16_t dim_im_out_x,
                                               const uint16_t dim_im_out_y,
                                               q15_t * bufferA,
                                               q7_t * bufferB)
{
    (void)bufferB;
#if defined (ARM_MATH_DSP)
    /* Run the following code for Cortex-M4 and Cortex-M7 */

    int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x;

    /*
     *  Here we use bufferA as q15_t internally as computation are done with q15_t level
     *  im2col are done to output in q15_t format from q7_t input
     */
    q15_t    *pBuffer = bufferA;
    q7_t     *pOut = Im_out;

    /* This part implements the im2col function */
    for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++)
    {
        for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
        {
            for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; i_ker_y++)
            {
                for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; i_ker_x++)
                {
                    if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)
                    {
                        /* Filling 0 for out-of-bound paddings */
                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
                    } else
                    {
                        /* Copying the pixel data to column */
                        arm_q7_to_q15_no_shift((q7_t *)
                                               Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
                    }
                    pBuffer += ch_im_in;
                }
            }

            /* Computation is filed for every 2 columns */
            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_y * dim_kernel_x)
            {
                pOut =
                    arm_nn_mat_mult_kernel_q7_q15(wt, bufferA,
                                                  ch_im_out,
                                                  ch_im_in *
                                                  dim_kernel_y * dim_kernel_x, bias_shift, out_shift, bias, pOut);

                /* counter reset */
                pBuffer = bufferA;
            }
        }
    }

    /* left-over because odd number of output pixels */
    if (pBuffer != bufferA)
    {
        const q7_t *pA = wt;
        int       i;

        for (i = 0; i < ch_im_out; i++)
        {
            /* Load the accumulator with bias first */
            q31_t     sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);

            /* Point to the beging of the im2col buffer */
            const q15_t *pB = bufferA;

            /* Each time it process 4 entries */
            uint16_t  colCnt = ch_im_in * dim_kernel_y * dim_kernel_x >> 2;

            while (colCnt)
            {
                q31_t     inA1, inA2;
                q31_t     inB1, inB2;

                pA = read_and_pad(pA, &inA1, &inA2);

                inB1 = arm_nn_read_q15x2_ia(&pB);
                sum = __SMLAD(inA1, inB1, sum);
                inB2 = arm_nn_read_q15x2_ia(&pB);

                sum = __SMLAD(inA2, inB2, sum);

                colCnt--;
            }
            colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x3;
            while (colCnt)
            {
                q7_t      inA1 = *pA++;
                q15_t     inB1 = *pB++;
                sum += inA1 * inB1;
                colCnt--;
            }
            *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
        }
    }
#else
    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */

    int  i, j, k, l, m, n;
    int       conv_out;
    int in_row, in_col;

    for (i = 0; i < ch_im_out; i++)
    {
        for (j = 0; j < dim_im_out_y; j++)
        {
            for (k = 0; k < dim_im_out_x; k++)
            {
                conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
                for (m = 0; m < dim_kernel_y; m++)
                {
                    for (n = 0; n < dim_kernel_x; n++)
                    {
                        // if-for implementation
                        in_row = stride_y * j + m - padding_y;
                        in_col = stride_x * k + n - padding_x;
                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
                        {
                            for (l = 0; l < ch_im_in; l++)
                            {
                                conv_out +=
                                    Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] *
                                         wt[i * ch_im_in * dim_kernel_y * dim_kernel_x +
                                         (m * dim_kernel_x + n) * ch_im_in + l];
                            }
                        }
                    }
                }
                Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
            }
        }
    }

#endif                          /* ARM_MATH_DSP */

    /* Return to application */
    return ARM_MATH_SUCCESS;
}

/**
 * @} end of NNConv group
 */