sub.h 23.7 KB
Newer Older
Y
yangqingsheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SUB_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SUB_H_

#include <stdint.h>

#include <algorithm>
#include <limits>

#include "ruy/profiler/instrumentation.h"  // from @ruy
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/compatibility.h"
#include "tensorflow/lite/kernels/internal/types.h"

namespace tflite {

namespace reference_ops {

inline void SubNonBroadcast(const ArithmeticParams& params,
                            const RuntimeShape& input1_shape,
                            const float* input1_data,
                            const RuntimeShape& input2_shape,
                            const float* input2_data,
                            const RuntimeShape& output_shape,
                            float* output_data) {
  const int flat_size =
      MatchingElementsSize(input1_shape, input2_shape, output_shape);
  for (int i = 0; i < flat_size; ++i) {
    output_data[i] = ActivationFunctionWithMinMax(
        input1_data[i] - input2_data[i], params.float_activation_min,
        params.float_activation_max);
  }
}

inline void SubNonBroadcast(const ArithmeticParams& params,
                            const RuntimeShape& input1_shape,
                            const int32_t* input1_data,
                            const RuntimeShape& input2_shape,
                            const int32_t* input2_data,
                            const RuntimeShape& output_shape,
                            int32_t* output_data) {
  const int flat_size =
      MatchingElementsSize(input1_shape, input2_shape, output_shape);
  for (int i = 0; i < flat_size; ++i) {
    output_data[i] = ActivationFunctionWithMinMax(
        input1_data[i] - input2_data[i], params.quantized_activation_min,
        params.quantized_activation_max);
  }
}

// TODO(b/151345304): We can implement BroadcastSub on buffers of arbitrary
// dimensionality if the runtime code does a single loop over one dimension
// that handles broadcasting as the base case. The code generator would then
// generate max(D1, D2) nested for loops.
// TODO(b/151345101): BroadcastSub is intentionally duplicated from
// reference_ops.h. Once an optimized version is implemented and NdArrayDesc<T>
// is no longer referenced in this file, move NdArrayDesc<T> from types.h to
// reference_ops.h.
template <int N = 5>
inline void BroadcastSubSlow(const ArithmeticParams& params,
                             const RuntimeShape& input1_shape,
                             const float* input1_data,
                             const RuntimeShape& input2_shape,
                             const float* input2_data,
                             const RuntimeShape& output_shape,
                             float* output_data) {
  ruy::profiler::ScopeLabel label("BroadcastSubSlow/float");
  TFLITE_DCHECK_LE(input1_shape.DimensionsCount(), N);
  TFLITE_DCHECK_LE(input2_shape.DimensionsCount(), N);
  TFLITE_DCHECK_LE(output_shape.DimensionsCount(), N);
  NdArrayDesc<N> desc1;
  NdArrayDesc<N> desc2;
  NdArrayDesc<N> output_desc;
  NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
                                      &desc2);
  CopyDimsToDesc(RuntimeShape::ExtendedShape(N, output_shape), &output_desc);

  // In Tensorflow, the dimensions are canonically named (batch_number, row,
  // col, channel), with extents (batches, height, width, depth), with the
  // trailing dimension changing most rapidly (channels has the smallest stride,
  // typically 1 element).
  //
  // In generated C code, we store arrays with the dimensions reversed. The
  // first dimension has smallest stride.
  //
  // We name our variables by their Tensorflow convention, but generate C code
  // nesting loops such that the innermost loop has the smallest stride for the
  // best cache behavior.
  auto sub_func = [&](int indexes[N]) {
    output_data[SubscriptToIndex(output_desc, indexes)] =
        ActivationFunctionWithMinMax(
            input1_data[SubscriptToIndex(desc1, indexes)] -
                input2_data[SubscriptToIndex(desc2, indexes)],
            params.float_activation_min, params.float_activation_max);
  };
  NDOpsHelper<N>(output_desc, sub_func);
}

template <int N = 5>
inline void BroadcastSubSlow(const ArithmeticParams& params,
                             const RuntimeShape& input1_shape,
                             const uint8_t* input1_data,
                             const RuntimeShape& input2_shape,
                             const uint8_t* input2_data,
                             const RuntimeShape& output_shape,
                             uint8_t* output_data) {
  ruy::profiler::ScopeLabel label("BroadcastSubSlow/uint8_t");
  TFLITE_DCHECK_LE(input1_shape.DimensionsCount(), N);
  TFLITE_DCHECK_LE(input2_shape.DimensionsCount(), N);
  TFLITE_DCHECK_LE(output_shape.DimensionsCount(), N);
  NdArrayDesc<N> desc1;
  NdArrayDesc<N> desc2;
  NdArrayDesc<N> output_desc;
  NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
                                      &desc2);
  CopyDimsToDesc(RuntimeShape::ExtendedShape(N, output_shape), &output_desc);

  // In Tensorflow, the dimensions are canonically named (batch_number, row,
  // col, channel), with extents (batches, height, width, depth), with the
  // trailing dimension changing most rapidly (channels has the smallest stride,
  // typically 1 element).
  //
  // In generated C code, we store arrays with the dimensions reversed. The
  // first dimension has smallest stride.
  //
  // We name our variables by their Tensorflow convention, but generate C code
  // nesting loops such that the innermost loop has the smallest stride for the
  // best cache behavior.
  auto sub_func = [&](int indexes[N]) {
    const int32_t input1_val =
        params.input1_offset + input1_data[SubscriptToIndex(desc1, indexes)];
    const int32_t input2_val =
        params.input2_offset + input2_data[SubscriptToIndex(desc2, indexes)];
    const int32_t shifted_input1_val = input1_val * (1 << params.left_shift);
    const int32_t shifted_input2_val = input2_val * (1 << params.left_shift);
    const int32_t scaled_input1_val =
        MultiplyByQuantizedMultiplierSmallerThanOneExp(
            shifted_input1_val, params.input1_multiplier, params.input1_shift);
    const int32_t scaled_input2_val =
        MultiplyByQuantizedMultiplierSmallerThanOneExp(
            shifted_input2_val, params.input2_multiplier, params.input2_shift);
    const int32_t raw_sub = scaled_input1_val - scaled_input2_val;
    const int32_t raw_output =
        MultiplyByQuantizedMultiplierSmallerThanOneExp(
            raw_sub, params.output_multiplier, params.output_shift) +
        params.output_offset;
    const int32_t clamped_output =
        std::min(params.quantized_activation_max,
                 std::max(params.quantized_activation_min, raw_output));
    output_data[SubscriptToIndex(output_desc, indexes)] =
        static_cast<uint8_t>(clamped_output);
  };
  NDOpsHelper<N>(output_desc, sub_func);
}

template <int N = 5>
inline void BroadcastSubSlow(const ArithmeticParams& params,
                             const RuntimeShape& input1_shape,
                             const int32_t* input1_data,
                             const RuntimeShape& input2_shape,
                             const int32_t* input2_data,
                             const RuntimeShape& output_shape,
                             int32_t* output_data) {
  ruy::profiler::ScopeLabel label("BroadcastSubSlow/int32_t");
  TFLITE_DCHECK_LE(input1_shape.DimensionsCount(), N);
  TFLITE_DCHECK_LE(input2_shape.DimensionsCount(), N);
  TFLITE_DCHECK_LE(output_shape.DimensionsCount(), N);
  NdArrayDesc<N> desc1;
  NdArrayDesc<N> desc2;
  NdArrayDesc<N> output_desc;
  NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
                                      &desc2);
  CopyDimsToDesc(RuntimeShape::ExtendedShape(N, output_shape), &output_desc);

  // In Tensorflow, the dimensions are canonically named (batch_number, row,
  // col, channel), with extents (batches, height, width, depth), with the
  // trailing dimension changing most rapidly (channels has the smallest stride,
  // typically 1 element).
  //
  // In generated C code, we store arrays with the dimensions reversed. The
  // first dimension has smallest stride.
  //
  // We name our variables by their Tensorflow convention, but generate C code
  // nesting loops such that the innermost loop has the smallest stride for the
  // best cache behavior.
  auto sub_func = [&](int indexes[N]) {
    output_data[SubscriptToIndex(output_desc, indexes)] =
        ActivationFunctionWithMinMax(
            input1_data[SubscriptToIndex(desc1, indexes)] -
                input2_data[SubscriptToIndex(desc2, indexes)],
            params.quantized_activation_min, params.quantized_activation_max);
  };
  NDOpsHelper<N>(output_desc, sub_func);
}

template <int N = 5>
inline void BroadcastSubSlow(const ArithmeticParams& params,
                             const RuntimeShape& input1_shape,
                             const int8_t* input1_data,
                             const RuntimeShape& input2_shape,
                             const int8_t* input2_data,
                             const RuntimeShape& output_shape,
                             int8_t* output_data) {
  ruy::profiler::ScopeLabel label("BroadcastSubSlow/int8_t");
  NdArrayDesc<N> desc1;
  NdArrayDesc<N> desc2;
  NdArrayDesc<N> output_desc;
  NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
                                      &desc2);
  CopyDimsToDesc(RuntimeShape::ExtendedShape(N, output_shape), &output_desc);

  // In Tensorflow, the dimensions are canonically named (batch_number, row,
  // col, channel), with extents (batches, height, width, depth), with the
  // trailing dimension changing most rapidly (channels has the smallest stride,
  // typically 1 element).
  //
  // In generated C code, we store arrays with the dimensions reversed. The
  // first dimension has smallest stride.
  //
  // We name our variables by their Tensorflow convention, but generate C code
  // nesting loops such that the innermost loop has the smallest stride for the
  // best cache behavior.
  auto sub_func = [&](int indexes[N]) {
    const int32_t input1_val =
        params.input1_offset + input1_data[SubscriptToIndex(desc1, indexes)];
    const int32_t input2_val =
        params.input2_offset + input2_data[SubscriptToIndex(desc2, indexes)];
    const int32_t shifted_input1_val = input1_val * (1 << params.left_shift);
    const int32_t shifted_input2_val = input2_val * (1 << params.left_shift);
    const int32_t scaled_input1_val =
        MultiplyByQuantizedMultiplierSmallerThanOneExp(
            shifted_input1_val, params.input1_multiplier, params.input1_shift);
    const int32_t scaled_input2_val =
        MultiplyByQuantizedMultiplierSmallerThanOneExp(
            shifted_input2_val, params.input2_multiplier, params.input2_shift);
    const int32_t raw_sub = scaled_input1_val - scaled_input2_val;
    const int32_t raw_output =
        MultiplyByQuantizedMultiplierSmallerThanOneExp(
            raw_sub, params.output_multiplier, params.output_shift) +
        params.output_offset;
    const int32_t clamped_output =
        std::min(params.quantized_activation_max,
                 std::max(params.quantized_activation_min, raw_output));
    output_data[SubscriptToIndex(output_desc, indexes)] =
        static_cast<int8_t>(clamped_output);
  };
  NDOpsHelper<N>(output_desc, sub_func);
}

template <int N = 5>
void BroadcastSubSlow(const ArithmeticParams& params,
                      const RuntimeShape& input1_shape,
                      const int64_t* input1_data,
                      const RuntimeShape& input2_shape,
                      const int64_t* input2_data,
                      const RuntimeShape& output_shape, int64_t* output_data) {
  ruy::profiler::ScopeLabel label("BroadcastSubSlow/int64_t");
  TFLITE_DCHECK_LE(input1_shape.DimensionsCount(), N);
  TFLITE_DCHECK_LE(input2_shape.DimensionsCount(), N);
  TFLITE_DCHECK_LE(output_shape.DimensionsCount(), N);
  NdArrayDesc<N> desc1;
  NdArrayDesc<N> desc2;
  NdArrayDesc<N> output_desc;
  NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
                                      &desc2);
  CopyDimsToDesc(RuntimeShape::ExtendedShape(N, output_shape), &output_desc);

  // In Tensorflow, the dimensions are canonically named (batch_number, row,
  // col, channel), with extents (batches, height, width, depth), with the
  // trailing dimension changing most rapidly (channels has the smallest stride,
  // typically 1 element).
  //
  // In generated C code, we store arrays with the dimensions reversed. The
  // first dimension has smallest stride.
  //
  // We name our variables by their Tensorflow convention, but generate C code
  // nesting loops such that the innermost loop has the smallest stride for the
  // best cache behavior.
  auto sub_func = [&](int indexes[N]) {
    output_data[SubscriptToIndex(output_desc, indexes)] =
        ActivationFunctionWithMinMax(
            input1_data[SubscriptToIndex(desc1, indexes)] -
                input2_data[SubscriptToIndex(desc2, indexes)],
            params.int64_activation_min, params.int64_activation_max);
  };
  NDOpsHelper<N>(output_desc, sub_func);
}

template <typename T, int N = 5>
void BroadcastSubSlow(const ArithmeticParams& params,
                      const RuntimeShape& input1_shape, const T* input1_data,
                      const RuntimeShape& input2_shape, const T* input2_data,
                      const RuntimeShape& output_shape, T* output_data) {
  ruy::profiler::ScopeLabel label("BroadcastSubSlow/templated");
  TFLITE_DCHECK_LE(input1_shape.DimensionsCount(), N);
  TFLITE_DCHECK_LE(input2_shape.DimensionsCount(), N);
  TFLITE_DCHECK_LE(output_shape.DimensionsCount(), N);
  NdArrayDesc<N> desc1;
  NdArrayDesc<N> desc2;
  NdArrayDesc<N> output_desc;
  NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
                                      &desc2);
  CopyDimsToDesc(RuntimeShape::ExtendedShape(N, output_shape), &output_desc);

  // In Tensorflow, the dimensions are canonically named (batch_number, row,
  // col, channel), with extents (batches, height, width, depth), with the
  // trailing dimension changing most rapidly (channels has the smallest stride,
  // typically 1 element).
  //
  // In generated C code, we store arrays with the dimensions reversed. The
  // first dimension has smallest stride.
  //
  // We name our variables by their Tensorflow convention, but generate C code
  // nesting loops such that the innermost loop has the smallest stride for the
  // best cache behavior.
  auto sub_func = [&](int indexes[N]) {
    output_data[SubscriptToIndex(output_desc, indexes)] =
        ActivationFunctionWithMinMax(
            input1_data[SubscriptToIndex(desc1, indexes)] -
                input2_data[SubscriptToIndex(desc2, indexes)],
            params.quantized_activation_min, params.quantized_activation_max);
  };
  NDOpsHelper<N>(output_desc, sub_func);
}

// Element-wise Sub that can often be used for inner loop of broadcast sub as
// well as the non-broadcast sub.
inline void SubElementwise(int size, const ArithmeticParams& params,
                           const uint8_t* input1_data,
                           const uint8_t* input2_data, uint8_t* output_data) {
  TFLITE_DCHECK_GT(params.input1_offset, -256);
  TFLITE_DCHECK_GT(params.input2_offset, -256);
  TFLITE_DCHECK_LT(params.input1_offset, 256);
  TFLITE_DCHECK_LT(params.input2_offset, 256);

  for (int i = 0; i < size; ++i) {
    const int32_t input1_val = params.input1_offset + input1_data[i];
    const int32_t input2_val = params.input2_offset + input2_data[i];
    const int32_t shifted_input1_val = input1_val * (1 << params.left_shift);
    const int32_t shifted_input2_val = input2_val * (1 << params.left_shift);
    const int32_t scaled_input1_val =
        MultiplyByQuantizedMultiplierSmallerThanOneExp(
            shifted_input1_val, params.input1_multiplier, params.input1_shift);
    const int32_t scaled_input2_val =
        MultiplyByQuantizedMultiplierSmallerThanOneExp(
            shifted_input2_val, params.input2_multiplier, params.input2_shift);
    const int32_t raw_sub = scaled_input1_val - scaled_input2_val;
    const int32_t raw_output =
        MultiplyByQuantizedMultiplierSmallerThanOneExp(
            raw_sub, params.output_multiplier, params.output_shift) +
        params.output_offset;
    const int32_t clamped_output =
        std::min(params.quantized_activation_max,
                 std::max(params.quantized_activation_min, raw_output));
    output_data[i] = static_cast<uint8_t>(clamped_output);
  }
}

// Element-wise add that can often be used for inner loop of broadcast add as
// well as the non-broadcast add.
inline void SubElementwise(int size, const ArithmeticParams& params,
                           const int8_t* input1_data, const int8_t* input2_data,
                           int8_t* output_data) {
  const int32_t int8_max_value = std::numeric_limits<int8_t>::max();
  TFLITE_DCHECK_GE(params.input1_offset, -1 * int8_max_value);
  TFLITE_DCHECK_GE(params.input2_offset, -1 * int8_max_value);
  TFLITE_DCHECK_LE(params.input1_offset, int8_max_value);
  TFLITE_DCHECK_LE(params.input2_offset, int8_max_value);

  for (int i = 0; i < size; ++i) {
    const int32_t input1_val = params.input1_offset + input1_data[i];
    const int32_t input2_val = params.input2_offset + input2_data[i];
    const int32_t shifted_input1_val = input1_val * (1 << params.left_shift);
    const int32_t shifted_input2_val = input2_val * (1 << params.left_shift);
    const int32_t scaled_input1_val =
        MultiplyByQuantizedMultiplierSmallerThanOneExp(
            shifted_input1_val, params.input1_multiplier, params.input1_shift);
    const int32_t scaled_input2_val =
        MultiplyByQuantizedMultiplierSmallerThanOneExp(
            shifted_input2_val, params.input2_multiplier, params.input2_shift);
    const int32_t raw_sub = scaled_input1_val - scaled_input2_val;
    const int32_t raw_output =
        MultiplyByQuantizedMultiplierSmallerThanOneExp(
            raw_sub, params.output_multiplier, params.output_shift) +
        params.output_offset;
    const int32_t clamped_output =
        std::min(params.quantized_activation_max,
                 std::max(params.quantized_activation_min, raw_output));
    output_data[i] = static_cast<int8_t>(clamped_output);
  }
}

inline void Sub(const ArithmeticParams& params,
                const RuntimeShape& input1_shape, const uint8_t* input1_data,
                const RuntimeShape& input2_shape, const uint8_t* input2_data,
                const RuntimeShape& output_shape, uint8_t* output_data) {
  TFLITE_DCHECK_LE(params.quantized_activation_min,
                   params.quantized_activation_max);
  const int flat_size =
      MatchingElementsSize(input1_shape, input2_shape, output_shape);

  TFLITE_DCHECK_GT(params.input1_offset, -256);
  TFLITE_DCHECK_GT(params.input2_offset, -256);
  TFLITE_DCHECK_LT(params.input1_offset, 256);
  TFLITE_DCHECK_LT(params.input2_offset, 256);
  SubElementwise(flat_size, params, input1_data, input2_data, output_data);
}

inline void Sub(const ArithmeticParams& params,
                const RuntimeShape& input1_shape, const int8_t* input1_data,
                const RuntimeShape& input2_shape, const int8_t* input2_data,
                const RuntimeShape& output_shape, int8_t* output_data) {
  TFLITE_DCHECK_LE(params.quantized_activation_min,
                   params.quantized_activation_max);

  const int flat_size =
      MatchingElementsSize(input1_shape, input2_shape, output_shape);

  const int32_t int8_max_value = std::numeric_limits<int8_t>::max();
  TFLITE_DCHECK_GE(params.input1_offset, -1 * int8_max_value);
  TFLITE_DCHECK_GE(params.input2_offset, -1 * int8_max_value);
  TFLITE_DCHECK_LE(params.input1_offset, int8_max_value);
  TFLITE_DCHECK_LE(params.input2_offset, int8_max_value);
  SubElementwise(flat_size, params, input1_data, input2_data, output_data);
}

template <typename T>
void Sub(const ArithmeticParams& params, const RuntimeShape& input1_shape,
         const T* input1_data, const RuntimeShape& input2_shape,
         const T* input2_data, const RuntimeShape& output_shape,
         T* output_data) {
  NdArrayDesc<4> desc1;
  NdArrayDesc<4> desc2;
  NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
                                      &desc2);
  const RuntimeShape extended_output_shape =
      RuntimeShape::ExtendedShape(4, output_shape);

  // In Tensorflow, the dimensions are canonically named (batch_number, row,
  // col, channel), with extents (batches, height, width, depth), with the
  // trailing dimension changing most rapidly (channels has the smallest stride,
  // typically 1 element).
  //
  // In generated C code, we store arrays with the dimensions reversed. The
  // first dimension has smallest stride.
  //
  // We name our variables by their Tensorflow convention, but generate C code
  // nesting loops such that the innermost loop has the smallest stride for the
  // best cache behavior.
  for (int b = 0; b < extended_output_shape.Dims(0); ++b) {
    for (int y = 0; y < extended_output_shape.Dims(1); ++y) {
      for (int x = 0; x < extended_output_shape.Dims(2); ++x) {
        for (int c = 0; c < extended_output_shape.Dims(3); ++c) {
          output_data[Offset(extended_output_shape, b, y, x, c)] =
              input1_data[SubscriptToIndex(desc1, b, y, x, c)] -
              input2_data[SubscriptToIndex(desc2, b, y, x, c)];
        }
      }
    }
  }
}

inline void SetActivationMinMax(const ArithmeticParams& params,
                                int32_t* activation_min,
                                int32_t* activation_max) {
  *activation_min = params.quantized_activation_min;
  *activation_max = params.quantized_activation_max;
}

inline void SetActivationMinMax(const ArithmeticParams& params,
                                float* activation_min, float* activation_max) {
  *activation_min = params.float_activation_min;
  *activation_max = params.float_activation_max;
}

inline void SetActivationMinMax(const ArithmeticParams& params,
                                int64_t* activation_min,
                                int64_t* activation_max) {
  *activation_min = params.int64_activation_min;
  *activation_max = params.int64_activation_max;
}

template <typename T>
inline void SubWithActivation(
    const ArithmeticParams& params, const RuntimeShape& input1_shape,
    const T* input1_data, const RuntimeShape& input2_shape,
    const T* input2_data, const RuntimeShape& output_shape, T* output_data) {
  ruy::profiler::ScopeLabel label("SubWithActivation");
  const int flat_size =
      MatchingElementsSize(input1_shape, input2_shape, output_shape);
  T activation_min, activation_max;
  SetActivationMinMax(params, &activation_min, &activation_max);

  for (int i = 0; i < flat_size; ++i) {
    output_data[i] = ActivationFunctionWithMinMax(
        input1_data[i] - input2_data[i], activation_min, activation_max);
  }
}

}  // namespace reference_ops
}  // namespace tflite

#endif  // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SUB_H_