提交 fd425e79 编写于 作者: D dzzxzz@gmail.com

re-format the coding style in spi.h

1, Tabs to Spaces
2, File Format(CR/LF) using UNIX style
3, maximum line length = 80

git-svn-id: https://rt-thread.googlecode.com/svn/trunk@2275 bbd45198-f89e-11dd-88c7-29a3b14d5316
上级 20de2ffa
#ifndef __SPI_H__
#define __SPI_H__
#include <rtthread.h>
#define RT_SPI_CPHA (1<<0) /* bit[0]:CPHA, clock phase */
#define RT_SPI_CPOL (1<<1) /* bit[1]:CPOL, clock polarity */
/**
* At CPOL=0 the base value of the clock is zero
* - For CPHA=0, data are captured on the clock's rising edge (lowhigh transition)
* and data are propagated on a falling edge (highlow clock transition).
* - For CPHA=1, data are captured on the clock's falling edge and data are
* propagated on a rising edge.
* At CPOL=1 the base value of the clock is one (inversion of CPOL=0)
* - For CPHA=0, data are captured on clock's falling edge and data are propagated
* on a rising edge.
* - For CPHA=1, data are captured on clock's rising edge and data are propagated
* on a falling edge.
*/
#define RT_SPI_LSB (0<<2) /* bit[2]: 0-LSB */
#define RT_SPI_MSB (1<<2) /* bit[2]: 1-MSB */
#define RT_SPI_MASTER (0<<3) /* SPI master device */
#define RT_SPI_SLAVE (1<<3) /* SPI slave device */
#define RT_SPI_MODE_0 (0 | 0) /* CPOL = 0, CPHA = 0 */
#define RT_SPI_MODE_1 (0 | RT_SPI_CPHA) /* CPOL = 0, CPHA = 1 */
#define RT_SPI_MODE_2 (RT_SPI_CPOL | 0) /* CPOL = 1, CPHA = 0 */
#define RT_SPI_MODE_3 (RT_SPI_CPOL | RT_SPI_CPHA) /* CPOL = 1, CPHA = 1 */
#define RT_SPI_MODE_MASK (RT_SPI_CPHA | RT_SPI_CPOL | RT_SPI_MSB)
/**
* SPI message structure
*/
struct rt_spi_message
{
const void* send_buf;
void* recv_buf;
rt_size_t length;
struct rt_spi_message* next;
unsigned cs_take:1;
unsigned cs_release:1;
};
/**
* SPI configuration structure
*/
struct rt_spi_configuration
{
rt_uint8_t mode;
rt_uint8_t data_width;
rt_uint16_t reserved;
rt_uint32_t max_hz;
};
struct rt_spi_ops;
struct rt_spi_bus
{
struct rt_device parent;
const struct rt_spi_ops *ops;
struct rt_mutex lock;
struct rt_spi_device* owner;
};
/**
* SPI operators
*/
struct rt_spi_ops
{
rt_err_t (*configure)(struct rt_spi_device* device, struct rt_spi_configuration* configuration);
rt_uint32_t (*xfer)(struct rt_spi_device* device, struct rt_spi_message* message);
};
/**
* SPI Virtual BUS, one device must connected to a virtual BUS
*/
struct rt_spi_device
{
struct rt_device parent;
struct rt_spi_bus *bus;
struct rt_spi_configuration config;
};
#define SPI_DEVICE(dev) ((struct rt_spi_device*)(dev))
/* register a SPI bus */
rt_err_t rt_spi_bus_register(struct rt_spi_bus* bus, const char* name,
const struct rt_spi_ops* ops);
/* attach a device on SPI bus */
rt_err_t rt_spi_bus_attach_device(struct rt_spi_device* device, const char* name,
const char* bus_name, void* user_data);
/**
* This function takes SPI bus.
*
* @param device the SPI device attached to SPI bus
*
* @return RT_EOK on taken SPI bus successfully. others on taken SPI bus failed.
*/
rt_err_t rt_spi_take_bus(struct rt_spi_device* device);
/**
* This function releases SPI bus.
*
* @param device the SPI device attached to SPI bus
*
* @return RT_EOK on release SPI bus successfully.
*/
rt_err_t rt_spi_release_bus(struct rt_spi_device* device);
/**
* This function take SPI device (takes CS of SPI device).
*
* @param device the SPI device attached to SPI bus
*
* @return RT_EOK on release SPI bus successfully. others on taken SPI bus failed.
*/
rt_err_t rt_spi_take(struct rt_spi_device* device);
/**
* This function releases SPI device (releases CS of SPI device).
*
* @param device the SPI device attached to SPI bus
*
* @return RT_EOK on release SPI device successfully.
*/
rt_err_t rt_spi_release(struct rt_spi_device* device);
/* set configuration on SPI device */
rt_err_t rt_spi_configure(struct rt_spi_device* device, struct rt_spi_configuration* cfg);
/* send data then receive data from SPI device */
rt_err_t rt_spi_send_then_recv(struct rt_spi_device* device, const void *send_buf, rt_size_t send_length,
void* recv_buf, rt_size_t recv_length);
rt_err_t rt_spi_send_then_send(struct rt_spi_device* device, const void *send_buf1, rt_size_t send_length1,
const void* send_buf2, rt_size_t send_length2);
/**
* This function transmits data to SPI device.
*
* @param device the SPI device attached to SPI bus
* @param send_buf the buffer to be transmitted to SPI device.
* @param recv_buf the buffer to save received data from SPI device.
* @param length the length of transmitted data.
*
* @return the actual length of transmitted.
*/
rt_size_t rt_spi_transfer(struct rt_spi_device* device, const void *send_buf,
void* recv_buf, rt_size_t length);
/**
* This function transfers a message list to the SPI device.
*
* @param device the SPI device attached to SPI bus
* @param message the message list to be transmitted to SPI device
*
* @return RT_NULL if transmits message list successfully,
* SPI message which be transmitted failed.
*/
struct rt_spi_message *rt_spi_transfer_message(struct rt_spi_device* device,
struct rt_spi_message *message);
rt_inline rt_size_t rt_spi_recv(struct rt_spi_device* device, void* recv_buf, rt_size_t length)
{
return rt_spi_transfer(device, RT_NULL, recv_buf, length);
}
rt_inline rt_size_t rt_spi_send(struct rt_spi_device* device, const void* send_buf, rt_size_t length)
{
return rt_spi_transfer(device, send_buf, RT_NULL, length);
}
rt_inline rt_uint8_t rt_spi_sendrecv8(struct rt_spi_device* device, rt_uint8_t data)
{
rt_uint8_t value;
rt_spi_send_then_recv(device, &data, 1, &value, 1);
return value;
}
rt_inline rt_uint16_t rt_spi_sendrecv16(struct rt_spi_device* device, rt_uint16_t data)
{
rt_uint16_t value;
rt_spi_send_then_recv(device, &data, 2, &value, 2);
return value;
}
/**
* This function appends a message to the SPI message list.
*
* @param list the SPI message list header.
* @param message the message pointer to be appended to the message list.
*/
rt_inline void rt_spi_message_append(struct rt_spi_message* list, struct rt_spi_message* message)
{
RT_ASSERT(list != RT_NULL);
if (message == RT_NULL) return; /* not append */
while (list->next != RT_NULL)
{
list = list->next;
}
list->next = message;
message->next = RT_NULL;
}
#endif
/*
* File : spi.h
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006 - 2012, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
*/
#ifndef __SPI_H__
#define __SPI_H__
#include <rtthread.h>
#define RT_SPI_CPHA (1<<0) /* bit[0]:CPHA, clock phase */
#define RT_SPI_CPOL (1<<1) /* bit[1]:CPOL, clock polarity */
/**
* At CPOL=0 the base value of the clock is zero
* - For CPHA=0, data are captured on the clock's rising edge (lowhigh transition)
* and data are propagated on a falling edge (highlow clock transition).
* - For CPHA=1, data are captured on the clock's falling edge and data are
* propagated on a rising edge.
* At CPOL=1 the base value of the clock is one (inversion of CPOL=0)
* - For CPHA=0, data are captured on clock's falling edge and data are propagated
* on a rising edge.
* - For CPHA=1, data are captured on clock's rising edge and data are propagated
* on a falling edge.
*/
#define RT_SPI_LSB (0<<2) /* bit[2]: 0-LSB */
#define RT_SPI_MSB (1<<2) /* bit[2]: 1-MSB */
#define RT_SPI_MASTER (0<<3) /* SPI master device */
#define RT_SPI_SLAVE (1<<3) /* SPI slave device */
#define RT_SPI_MODE_0 (0 | 0) /* CPOL = 0, CPHA = 0 */
#define RT_SPI_MODE_1 (0 | RT_SPI_CPHA) /* CPOL = 0, CPHA = 1 */
#define RT_SPI_MODE_2 (RT_SPI_CPOL | 0) /* CPOL = 1, CPHA = 0 */
#define RT_SPI_MODE_3 (RT_SPI_CPOL | RT_SPI_CPHA) /* CPOL = 1, CPHA = 1 */
#define RT_SPI_MODE_MASK (RT_SPI_CPHA | RT_SPI_CPOL | RT_SPI_MSB)
/**
* SPI message structure
*/
struct rt_spi_message
{
const void *send_buf;
void *recv_buf;
rt_size_t length;
struct rt_spi_message *next;
unsigned cs_take : 1;
unsigned cs_release : 1;
};
/**
* SPI configuration structure
*/
struct rt_spi_configuration
{
rt_uint8_t mode;
rt_uint8_t data_width;
rt_uint16_t reserved;
rt_uint32_t max_hz;
};
struct rt_spi_ops;
struct rt_spi_bus
{
struct rt_device parent;
const struct rt_spi_ops *ops;
struct rt_mutex lock;
struct rt_spi_device *owner;
};
/**
* SPI operators
*/
struct rt_spi_ops
{
rt_err_t (*configure)(struct rt_spi_device *device, struct rt_spi_configuration *configuration);
rt_uint32_t (*xfer)(struct rt_spi_device *device, struct rt_spi_message *message);
};
/**
* SPI Virtual BUS, one device must connected to a virtual BUS
*/
struct rt_spi_device
{
struct rt_device parent;
struct rt_spi_bus *bus;
struct rt_spi_configuration config;
};
#define SPI_DEVICE(dev) ((struct rt_spi_device *)(dev))
/* register a SPI bus */
rt_err_t rt_spi_bus_register(struct rt_spi_bus *bus,
const char *name,
const struct rt_spi_ops *ops);
/* attach a device on SPI bus */
rt_err_t rt_spi_bus_attach_device(struct rt_spi_device *device,
const char *name,
const char *bus_name,
void *user_data);
/**
* This function takes SPI bus.
*
* @param device the SPI device attached to SPI bus
*
* @return RT_EOK on taken SPI bus successfully. others on taken SPI bus failed.
*/
rt_err_t rt_spi_take_bus(struct rt_spi_device *device);
/**
* This function releases SPI bus.
*
* @param device the SPI device attached to SPI bus
*
* @return RT_EOK on release SPI bus successfully.
*/
rt_err_t rt_spi_release_bus(struct rt_spi_device *device);
/**
* This function take SPI device (takes CS of SPI device).
*
* @param device the SPI device attached to SPI bus
*
* @return RT_EOK on release SPI bus successfully. others on taken SPI bus failed.
*/
rt_err_t rt_spi_take(struct rt_spi_device *device);
/**
* This function releases SPI device (releases CS of SPI device).
*
* @param device the SPI device attached to SPI bus
*
* @return RT_EOK on release SPI device successfully.
*/
rt_err_t rt_spi_release(struct rt_spi_device *device);
/* set configuration on SPI device */
rt_err_t rt_spi_configure(struct rt_spi_device *device,
struct rt_spi_configuration *cfg);
/* send data then receive data from SPI device */
rt_err_t rt_spi_send_then_recv(struct rt_spi_device *device,
const void *send_buf,
rt_size_t send_length,
void *recv_buf,
rt_size_t recv_length);
rt_err_t rt_spi_send_then_send(struct rt_spi_device *device,
const void *send_buf1,
rt_size_t send_length1,
const void *send_buf2,
rt_size_t send_length2);
/**
* This function transmits data to SPI device.
*
* @param device the SPI device attached to SPI bus
* @param send_buf the buffer to be transmitted to SPI device.
* @param recv_buf the buffer to save received data from SPI device.
* @param length the length of transmitted data.
*
* @return the actual length of transmitted.
*/
rt_size_t rt_spi_transfer(struct rt_spi_device *device,
const void *send_buf,
void *recv_buf,
rt_size_t length);
/**
* This function transfers a message list to the SPI device.
*
* @param device the SPI device attached to SPI bus
* @param message the message list to be transmitted to SPI device
*
* @return RT_NULL if transmits message list successfully,
* SPI message which be transmitted failed.
*/
struct rt_spi_message *rt_spi_transfer_message(struct rt_spi_device *device,
struct rt_spi_message *message);
rt_inline rt_size_t rt_spi_recv(struct rt_spi_device *device,
void *recv_buf,
rt_size_t length)
{
return rt_spi_transfer(device, RT_NULL, recv_buf, length);
}
rt_inline rt_size_t rt_spi_send(struct rt_spi_device *device,
const void *send_buf,
rt_size_t length)
{
return rt_spi_transfer(device, send_buf, RT_NULL, length);
}
rt_inline rt_uint8_t rt_spi_sendrecv8(struct rt_spi_device *device,
rt_uint8_t data)
{
rt_uint8_t value;
rt_spi_send_then_recv(device, &data, 1, &value, 1);
return value;
}
rt_inline rt_uint16_t rt_spi_sendrecv16(struct rt_spi_device *device,
rt_uint16_t data)
{
rt_uint16_t value;
rt_spi_send_then_recv(device, &data, 2, &value, 2);
return value;
}
/**
* This function appends a message to the SPI message list.
*
* @param list the SPI message list header.
* @param message the message pointer to be appended to the message list.
*/
rt_inline void rt_spi_message_append(struct rt_spi_message *list,
struct rt_spi_message *message)
{
RT_ASSERT(list != RT_NULL);
if (message == RT_NULL)
return; /* not append */
while (list->next != RT_NULL)
{
list = list->next;
}
list->next = message;
message->next = RT_NULL;
}
#endif
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册