model.py 103.5 KB
Newer Older
W
Waleed Abdulla 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
"""
Mask R-CNN
The main Mask R-CNN model implemenetation.

Copyright (c) 2017 Matterport, Inc.
Licensed under the MIT License (see LICENSE for details)
Written by Waleed Abdulla
"""

import os
import sys
import glob
import random
import math
import datetime
import itertools
import json
import re
import logging
from collections import OrderedDict
import numpy as np
import scipy.misc
import tensorflow as tf
import keras
import keras.backend as K
import keras.layers as KL
import keras.initializers as KI
import keras.engine as KE
import keras.models as KM

import utils

# Requires TensorFlow 1.3+ and Keras 2.0.8+.
from distutils.version import LooseVersion
assert LooseVersion(tf.__version__) >= LooseVersion("1.3")
assert LooseVersion(keras.__version__) >= LooseVersion('2.0.8')


############################################################
#  Utility Functions
############################################################

def log(text, array=None):
    """Prints a text message. And, optionally, if a Numpy array is provided it
    prints it's shape, min, and max values.
    """
    if array is not None:
        text = text.ljust(25)
        text += ("shape: {:20}  min: {:10.5f}  max: {:10.5f}".format(
            str(array.shape),
            array.min() if array.size else "",
            array.max() if array.size else ""))
    print(text)


class BatchNorm(KL.BatchNormalization):
    """Batch Normalization class. Subclasses the Keras BN class and
    hardcodes training=False so the BN layer doesn't update
    during training.

    Batch normalization has a negative effect on training if batches are small
    so we disable it here.
    """
    def call(self, inputs, training=None):
        return super(self.__class__, self).call(inputs, training=False)


############################################################
#  Resnet Graph
############################################################

# Code adopted from:
# https://github.com/fchollet/deep-learning-models/blob/master/resnet50.py

def identity_block(input_tensor, kernel_size, filters, stage, block,
                   use_bias=True):
    """The identity_block is the block that has no conv layer at shortcut
    # Arguments
        input_tensor: input tensor
        kernel_size: defualt 3, the kernel size of middle conv layer at main path
        filters: list of integers, the nb_filters of 3 conv layer at main path
        stage: integer, current stage label, used for generating layer names
        block: 'a','b'..., current block label, used for generating layer names
    """
    nb_filter1, nb_filter2, nb_filter3 = filters
    conv_name_base = 'res' + str(stage) + block + '_branch'
    bn_name_base = 'bn' + str(stage) + block + '_branch'

    x = KL.Conv2D(nb_filter1, (1, 1), name=conv_name_base + '2a',
                  use_bias=use_bias)(input_tensor)
    x = BatchNorm(axis=3, name=bn_name_base + '2a')(x)
    x = KL.Activation('relu')(x)

    x = KL.Conv2D(nb_filter2, (kernel_size, kernel_size), padding='same',
                  name=conv_name_base + '2b', use_bias=use_bias)(x)
    x = BatchNorm(axis=3, name=bn_name_base + '2b')(x)
    x = KL.Activation('relu')(x)

    x = KL.Conv2D(nb_filter3, (1, 1), name=conv_name_base + '2c',
                  use_bias=use_bias)(x)
    x = BatchNorm(axis=3, name=bn_name_base + '2c')(x)

    x = KL.Add()([x, input_tensor])
    x = KL.Activation('relu', name='res'+str(stage)+block+'_out')(x)
    return x


def conv_block(input_tensor, kernel_size, filters, stage, block, 
               strides=(2, 2), use_bias=True):
    """conv_block is the block that has a conv layer at shortcut
    # Arguments
        input_tensor: input tensor
        kernel_size: defualt 3, the kernel size of middle conv layer at main path
        filters: list of integers, the nb_filters of 3 conv layer at main path
        stage: integer, current stage label, used for generating layer names
        block: 'a','b'..., current block label, used for generating layer names
    Note that from stage 3, the first conv layer at main path is with subsample=(2,2)
    And the shortcut should have subsample=(2,2) as well
    """
    nb_filter1, nb_filter2, nb_filter3 = filters
    conv_name_base = 'res' + str(stage) + block + '_branch'
    bn_name_base = 'bn' + str(stage) + block + '_branch'

    x = KL.Conv2D(nb_filter1, (1, 1), strides=strides,
                  name=conv_name_base + '2a', use_bias=use_bias)(input_tensor)
    x = BatchNorm(axis=3, name=bn_name_base + '2a')(x)
    x = KL.Activation('relu')(x)

    x = KL.Conv2D(nb_filter2, (kernel_size, kernel_size), padding='same',
                  name=conv_name_base + '2b', use_bias=use_bias)(x)
    x = BatchNorm(axis=3, name=bn_name_base + '2b')(x)
    x = KL.Activation('relu')(x)

    x = KL.Conv2D(nb_filter3, (1, 1), name=conv_name_base + '2c', use_bias=use_bias)(x)
    x = BatchNorm(axis=3, name=bn_name_base + '2c')(x)

    shortcut = KL.Conv2D(nb_filter3, (1, 1), strides=strides,
                         name=conv_name_base + '1', use_bias=use_bias)(input_tensor)
    shortcut = BatchNorm(axis=3, name=bn_name_base + '1')(shortcut)

    x = KL.Add()([x, shortcut])
    x = KL.Activation('relu', name='res'+str(stage)+block+'_out')(x)
    return x


def resnet_graph(input_image, architecture, stage5=False):
    assert architecture in ["resnet50", "resnet101"]
    # Stage 1
    x = KL.ZeroPadding2D((3, 3))(input_image)
    x = KL.Conv2D(64, (7, 7), strides=(2, 2), name='conv1', use_bias=True)(x)
    x = BatchNorm(axis=3, name='bn_conv1')(x)
    x = KL.Activation('relu')(x)
    C1 = x = KL.MaxPooling2D((3, 3), strides=(2, 2), padding="same")(x)
    # Stage 2
    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
    C2 = x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
    # Stage 3
    x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
    C3 = x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
    # Stage 4
    x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
    block_count = {"resnet50": 5, "resnet101": 22}[architecture]
    for i in range(block_count):
        x = identity_block(x, 3, [256, 256, 1024], stage=4, block=chr(98+i))
    C4 = x
    # Stage 5
    if stage5:
        x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
        x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
        C5 = x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
    else:
        C5 = None
    return [C1, C2, C3, C4, C5]


############################################################
#  Proposal Layer
############################################################

def apply_box_deltas_graph(boxes, deltas):
    """Applies the given deltas to the given boxes.
    boxes: [N, 4] where each row is y1, x1, y2, x2
    deltas: [N, 4] where each row is [dy, dx, log(dh), log(dw)]
    """
    # Convert to y, x, h, w
    height = boxes[:, 2] - boxes[:, 0]
    width = boxes[:, 3] - boxes[:, 1]
    center_y = boxes[:, 0] + 0.5 * height
    center_x = boxes[:, 1] + 0.5 * width
    # Apply deltas
    center_y += deltas[:, 0] * height
    center_x += deltas[:, 1] * width
    height *= tf.exp(deltas[:, 2])
    width *= tf.exp(deltas[:, 3])
    # Convert back to y1, x1, y2, x2
    y1 = center_y - 0.5 * height
    x1 = center_x - 0.5 * width
    y2 = y1 + height
    x2 = x1 + width
    result = tf.stack([y1, x1, y2, x2], axis=1, name="apply_box_deltas_out")
    return result


def clip_boxes_graph(boxes, window):
    """
    boxes: [N, 4] each row is y1, x1, y2, x2
    window: [4] in the form y1, x1, y2, x2
    """
    # Split corners
    wy1, wx1, wy2, wx2 = tf.split(window, 4)
    y1, x1, y2, x2 = tf.split(boxes, 4, axis=1)
    # Clip
    y1 = tf.maximum(tf.minimum(y1, wy2), wy1)
    x1 = tf.maximum(tf.minimum(x1, wx2), wx1)
    y2 = tf.maximum(tf.minimum(y2, wy2), wy1)
    x2 = tf.maximum(tf.minimum(x2, wx2), wx1)
    clipped = tf.concat([y1, x1, y2, x2], axis=1, name="clipped_boxes")
    return clipped


class ProposalLayer(KE.Layer):
    """Receives anchor scores and selects a subset to pass as proposals
    to the second stage. Filtering is done based on anchor scores and
    non-max suppression to remove overlaps. It also applies bounding
    box refinment detals to anchors.

    Inputs:
        rpn_probs: [batch, anchors, (bg prob, fg prob)]
        rpn_bbox: [batch, anchors, (dy, dx, log(dh), log(dw))]

    Returns:
        Proposals in normalized coordinates [batch, rois, (y1, x1, y2, x2)]
    """
    def __init__(self, proposal_count, nms_threshold, anchors,
                 config=None, **kwargs):
        """
        anchors: [N, (y1, x1, y2, x2)] anchors defined in image coordinates
        """
        super(ProposalLayer, self).__init__(**kwargs)
        self.config = config
        self.proposal_count = proposal_count
        self.nms_threshold = nms_threshold
        self.anchors = anchors.astype(np.float32)

    def call(self, inputs):
        # Box Scores. Use the foreground class confidence. [Batch, num_rois, 1]
        scores = inputs[0][:, :, 1]
        # Box deltas [batch, num_rois, 4]
        deltas = inputs[1]
        deltas = deltas * np.reshape(self.config.RPN_BBOX_STD_DEV, [1, 1, 4])
        # Base anchors
        anchors = self.anchors

        # Improve performance by trimming to top anchors by score
        # and doing the rest on the smaller subset.
        pre_nms_limit = min(10000, self.anchors.shape[0])
        ix = tf.nn.top_k(scores, pre_nms_limit, sorted=True, name="top_anchors").indices
        scores = utils.batch_slice([scores, ix], lambda x, y: tf.gather(x, y),
                                    self.config.IMAGES_PER_GPU)
        deltas = utils.batch_slice([deltas, ix], lambda x, y: tf.gather(x, y),
                                    self.config.IMAGES_PER_GPU)
        anchors = utils.batch_slice(ix, lambda x: tf.gather(anchors, x), 
                                     self.config.IMAGES_PER_GPU,
                                     names=["pre_nms_anchors"])

        # Apply deltas to anchors to get refined anchors.
        # [batch, N, (y1, x1, y2, x2)]
        boxes = utils.batch_slice([anchors, deltas],
                                   lambda x, y: apply_box_deltas_graph(x, y),
                                   self.config.IMAGES_PER_GPU,
                                   names=["refined_anchors"])

        # Clip to image boundaries. [batch, N, (y1, x1, y2, x2)]
        height, width = self.config.IMAGE_SHAPE[:2]
        window = np.array([0, 0, height, width]).astype(np.float32)
        boxes = utils.batch_slice(boxes,
                                   lambda x: clip_boxes_graph(x, window),
                                   self.config.IMAGES_PER_GPU, 
                                   names=["refined_anchors_clipped"])

        # Filter out small boxes
        # According to Xinlei Chen's paper, this reduces detection accuracy
        # for small objects, so we're skipping it.

        # Normalize dimensions to range of 0 to 1.
        normalized_boxes = boxes / np.array([[height, width, height, width]])

        # Non-max suppression
        def nms(normalized_boxes, scores):
            indices = tf.image.non_max_suppression(
                normalized_boxes, scores, self.proposal_count,
                self.nms_threshold, name="rpn_non_max_suppression")
            proposals = tf.gather(normalized_boxes, indices)
            # Pad if needed
            padding = self.proposal_count - tf.shape(proposals)[0]
            proposals = tf.concat([proposals, tf.zeros([padding, 4])], 0)
            return proposals
        proposals = utils.batch_slice([normalized_boxes, scores], nms,
                                       self.config.IMAGES_PER_GPU)
        return proposals

    def compute_output_shape(self, input_shape):
        return (None, self.proposal_count, 4)


############################################################
#  ROIAlign Layer
############################################################

def log2_graph(x):
    """Implementatin of Log2. TF doesn't have a native implemenation."""
    return tf.log(x) / tf.log(2.0)


class PyramidROIAlign(KE.Layer):
    """Implements ROI Pooling on multiple levels of the feature pyramid.

    Params:
    - pool_shape: [height, width] of the output pooled regions. Usually [7, 7]
    - image_shape: [height, width, chanells]. Shape of input image in pixels

    Inputs:
    - boxes: [batch, num_boxes, (y1, x1, y2, x2)] in normalized
             coordinates. Possibly padded with zeros if not enough
             boxes to fill the array.
    - Feature maps: List of feature maps from different levels of the pyramid.
                    Each is [batch, height, width, channels]

    Output:
    Pooled regions in the shape: [batch, num_boxes, height, width, channels].
    The width and height are those specific in the pool_shape in the layer
    constructor.
    """
    def __init__(self, pool_shape, image_shape, **kwargs):
        super(PyramidROIAlign, self).__init__(**kwargs)
        self.pool_shape = tuple(pool_shape)
        self.image_shape = tuple(image_shape)

    def call(self, inputs):
        # Crop boxes [batch, num_boxes, (y1, x1, y2, x2)] in normalized coords
        boxes = inputs[0]

        # Feature Maps. List of feature maps from different level of the
        # feature pyramid. Each is [batch, height, width, channels]
        feature_maps = inputs[1:]

        # Assign each ROI to a level in the pyramid based on the ROI area.
        y1, x1, y2, x2 = tf.split(boxes, 4, axis=2)
        h = y2 - y1
        w = x2 - x1
        # Equation 1 in the Feature Pyramid Networks paper. Account for
        # the fact that our coordinates are normalized here.
        # e.g. a 224x224 ROI (in pixels) maps to P4
        image_area = tf.cast(self.image_shape[0] * self.image_shape[1], tf.float32)
        roi_level = log2_graph(tf.sqrt(h*w) / (224.0/tf.sqrt(image_area)))
        roi_level = tf.minimum(5, tf.maximum(2, 4 + tf.cast(tf.round(roi_level), tf.int32)))
        roi_level = tf.squeeze(roi_level, 2)

        # Loop through levels and apply ROI pooling to each. P2 to P5.
        pooled = []
        box_to_level = []
        for i, level in enumerate(range(2, 6)):
            ix = tf.where(tf.equal(roi_level, level))
            level_boxes = tf.gather_nd(boxes, ix)

            # Box indicies for crop_and_resize.
            box_indices = tf.cast(ix[:, 0], tf.int32)

            # Keep track of which box is mapped to which level
            box_to_level.append(ix)

            # Stop gradient propogation to ROI proposals
            level_boxes = tf.stop_gradient(level_boxes)
            box_indices = tf.stop_gradient(box_indices)

            # Crop and Resize
            # From Mask R-CNN paper: "We sample four regular locations, so
            # that we can evaluate either max or average pooling. In fact,
            # interpolating only a single value at each bin center (without
            # pooling) is nearly as effective."
            #
            # Here we use the simplified approach of a single value per bin,
            # which is how it's done in tf.crop_and_resize()
            # Result: [batch * num_boxes, pool_height, pool_width, channels]
            pooled.append(tf.image.crop_and_resize(
                feature_maps[i], level_boxes, box_indices, self.pool_shape,
                method="bilinear"))

        # Pack pooled features into one tensor
        pooled = tf.concat(pooled, axis=0)

        # Pack box_to_level mapping into one array and add another
        # column representing the order of pooled boxes
        box_to_level = tf.concat(box_to_level, axis=0)
        box_range = tf.expand_dims(tf.range(tf.shape(box_to_level)[0]), 1)
        box_to_level = tf.concat([tf.cast(box_to_level, tf.int32), box_range],
                                 axis=1)

        # Rearrange pooled features to match the order of the original boxes
        # Sort box_to_level by batch then box index
        # TF doesn't have a way to sort by two columns, so merge them and sort.
        sorting_tensor = box_to_level[:, 0] * 100000 + box_to_level[:, 1]
        ix = tf.nn.top_k(sorting_tensor, k=tf.shape(box_to_level)[0]).indices[::-1]
        ix = tf.gather(box_to_level[:,2], ix)
        pooled = tf.gather(pooled, ix)

        # Re-add the batch dimension
        pooled = tf.expand_dims(pooled, 0)
        return pooled

    def compute_output_shape(self, input_shape):
        return input_shape[0][:2] + self.pool_shape + (input_shape[1][-1], )


############################################################
#  Detection Target Layer
############################################################

def detection_targets_graph(proposals, gt_boxes, gt_masks, config):
    """Generates detection targets for one image. Subsamples proposals and
    generates target class IDs, bounding box deltas, and masks for each.

    Inputs:
    proposals: [N, (y1, x1, y2, x2)] in normalized coordinates. Might
               be zero padded if there are not enough proposals.
    gt_boxes: [MAX_GT_INSTANCES, (y1, x1, y2, x2, class_id)] in
              normalized coordinates.
    gt_masks: [height, width, MAX_GT_INSTANCES] of boolean type.

    Returns: Target ROIs and corresponding class IDs, bounding box shifts,
    and masks.
    rois: [TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)] in normalized coordinates
    class_ids: [TRAIN_ROIS_PER_IMAGE]. Integer class IDs. Zero padded.
    deltas: [TRAIN_ROIS_PER_IMAGE, NUM_CLASSES, (dy, dx, log(dh), log(dw))]
            Class-specific bbox refinments.
    masks: [TRAIN_ROIS_PER_IMAGE, height, width). Masks cropped to bbox
           boundaries and resized to neural network output size.

    Note: Returned arrays might be zero padded if not enough target ROIs.
    """
    # Assertions
    asserts = [
        tf.Assert(tf.greater(tf.shape(proposals)[0], 0), [proposals],
                  name="roi_assertion"),
    ]
    with tf.control_dependencies(asserts):
        proposals = tf.identity(proposals)

    # Remove proposals zero padding
    non_zeros = tf.cast(tf.reduce_sum(tf.abs(proposals), axis=1), tf.bool)
    proposals = tf.boolean_mask(proposals, non_zeros)

    # TODO: Remove zero padding from gt_boxes and gt_masks

    # Compute overlaps matrix [rpn_rois, gt_boxes]
    # 1. Tile GT boxes and repeate ROIs tensor. This
    # allows us to compare every ROI against every GT box without loops.
    # TF doesn't have an equivalent to np.repeate() so simulate it
    # using tf.tile() and tf.reshape.
    rois = tf.reshape(tf.tile(tf.expand_dims(proposals, 1), 
                              [1, 1, tf.shape(gt_boxes)[0]]), [-1, 4])
    boxes = tf.tile(gt_boxes, [tf.shape(proposals)[0], 1])
    # 2. Compute intersections
    roi_y1, roi_x1, roi_y2, roi_x2 = tf.split(rois, 4, axis=1)
    box_y1, box_x1, box_y2, box_x2, class_ids = tf.split(boxes, 5, axis=1)
    y1 = tf.maximum(roi_y1, box_y1)
    x1 = tf.maximum(roi_x1, box_x1)
    y2 = tf.minimum(roi_y2, box_y2)
    x2 = tf.minimum(roi_x2, box_x2)
    intersection = tf.maximum(x2 - x1, 0) * tf.maximum(y2 - y1, 0)
    # 3. Compute unions
    roi_area = (roi_y2 - roi_y1) * (roi_x2 - roi_x1)
    box_area = (box_y2 - box_y1) * (box_x2 - box_x1)
    union = roi_area + box_area - intersection
    # 4. Compute IoU and reshape to [rois, boxes]
    iou = intersection / union
    overlaps = tf.reshape(iou, [tf.shape(proposals)[0], tf.shape(gt_boxes)[0]])

    # Determine postive and negative ROIs
    roi_iou_max = tf.reduce_max(overlaps, axis=1)
    # 1. Positive ROIs are those with >= 0.5 IoU with a GT box
    positive_roi_bool = (roi_iou_max >= 0.5)
    positive_indices = tf.where(positive_roi_bool)[:, 0]
    # 2. Negative ROIs are those with < 0.5 with every GT box
    negative_indices = tf.where(roi_iou_max < 0.5)[:, 0]

    # Subsample ROIs. Aim for 33% positive
    # Positive ROIs
    positive_count = int(config.TRAIN_ROIS_PER_IMAGE * config.ROI_POSITIVE_RATIO)
    positive_indices = tf.random_shuffle(positive_indices)[:positive_count]
    # Negative ROIs. Fill the rest of the batch.
    negative_count = config.TRAIN_ROIS_PER_IMAGE - tf.shape(positive_indices)[0]
    negative_indices = tf.random_shuffle(negative_indices)[:negative_count]
    # Gather selected ROIs
    positive_rois = tf.gather(proposals, positive_indices)
    negative_rois = tf.gather(proposals, negative_indices)

    # Assign positive ROIs to GT boxes.
    positive_overlaps = tf.gather(overlaps, positive_indices)
    roi_gt_box_assignment = tf.argmax(positive_overlaps, axis=1)
    roi_gt_boxes = tf.gather(gt_boxes, roi_gt_box_assignment)

    # Compute bbox refinement for positive ROIs
    deltas = utils.box_refinement_graph(positive_rois, roi_gt_boxes[:,:4])
    deltas /= config.BBOX_STD_DEV

    # Assign positive ROIs to GT masks
    # Permute masks to [N, height, width, 1]
    transposed_masks = tf.expand_dims(tf.transpose(gt_masks, [2, 0, 1]), -1)
    # Pick the right mask for each ROI
    roi_masks = tf.gather(transposed_masks, roi_gt_box_assignment)

    # Compute mask targets
    boxes = positive_rois
    if config.USE_MINI_MASK:
        # Transform ROI corrdinates from normalized image space
        # to normalized mini-mask space.
        y1, x1, y2, x2 = tf.split(positive_rois, 4, axis=1)
        gt_y1, gt_x1, gt_y2, gt_x2, _ = tf.split(roi_gt_boxes, 5, axis=1)
        gt_h = gt_y2 - gt_y1
        gt_w = gt_x2 - gt_x1
        y1 = (y1 - gt_y1) / gt_h
        x1 = (x1 - gt_x1) / gt_w
        y2 = (y2 - gt_y1) / gt_h
        x2 = (x2 - gt_x1) / gt_w
        boxes = tf.concat([y1, x1, y2, x2], 1)
    box_ids = tf.range(0, tf.shape(roi_masks)[0])
    masks = tf.image.crop_and_resize(tf.cast(roi_masks, tf.float32), boxes,
                                     box_ids,
                                     config.MASK_SHAPE)
    # Remove the extra dimension from masks.
    masks = tf.squeeze(masks, axis=3)

    # Threshold mask pixels at 0.5 to have GT masks be 0 or 1 to use with
    # binary cross entropy loss.
    masks = tf.round(masks)

    # Append negative ROIs and pad bbox deltas and masks that
    # are not used for negative ROIs with zeros.
    rois = tf.concat([positive_rois, negative_rois], axis=0)
    N = tf.shape(negative_rois)[0]
    P = tf.maximum(config.TRAIN_ROIS_PER_IMAGE - tf.shape(rois)[0], 0)
    rois = tf.pad(rois, [(0, P), (0, 0)])
    roi_gt_boxes = tf.pad(roi_gt_boxes, [(0, N+P), (0, 0)])
    deltas = tf.pad(deltas, [(0, N+P), (0, 0)])
    masks = tf.pad(masks, [[0, N+P], (0, 0), (0, 0)])

    return rois, roi_gt_boxes[:, 4], deltas, masks


class DetectionTargetLayer(KE.Layer):
    """Subsamples proposals and generates target box refinment, class_ids,
    and masks for each.

    Inputs:
    proposals: [batch, N, (y1, x1, y2, x2)] in normalized coordinates. Might
               be zero padded if there are not enough proposals.
    gt_boxes: [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2, class_id)] in
              normalized coordinates.
    gt_masks: [batch, height, width, MAX_GT_INSTANCES] of boolean type

    Returns: Target ROIs and corresponding class IDs, bounding box shifts,
    and masks.
    rois: [batch, TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)] in normalized
          coordinates
    target_class_ids: [batch, TRAIN_ROIS_PER_IMAGE]. Integer class IDs.
    target_deltas: [batch, TRAIN_ROIS_PER_IMAGE, NUM_CLASSES, 
                    (dy, dx, log(dh), log(dw), class_id)]
                   Class-specific bbox refinments.
    target_mask: [batch, TRAIN_ROIS_PER_IMAGE, height, width)
                 Masks cropped to bbox boundaries and resized to neural
                 network output size.

    Note: Returned arrays might be zero padded if not enough target ROIs.
    """
    def __init__(self, config, **kwargs):
        super(DetectionTargetLayer, self).__init__(**kwargs)
        self.config = config

    def call(self, inputs):
        proposals = inputs[0]
        gt_boxes = inputs[1]
        gt_masks = inputs[2]

        # Slice the batch and run a graph for each slice
        # TODO: Optimize by supporting batch > 1
        # TODO: Rename target_bbox to target_deltas for clarity
        names = ["rois", "target_class_ids", "target_bbox", "target_mask"]
        outputs = utils.batch_slice(
            [proposals, gt_boxes, gt_masks],
            lambda x, y, z: detection_targets_graph(x, y, z, self.config),
            self.config.IMAGES_PER_GPU, names=names)
        return outputs

    def compute_output_shape(self, input_shape):
        return [
            (None, self.config.TRAIN_ROIS_PER_IMAGE, 4),  # rois
            (None, 1),  # class_ids
            (None, self.config.TRAIN_ROIS_PER_IMAGE, 4),  # deltas
            (None, self.config.TRAIN_ROIS_PER_IMAGE, self.config.MASK_SHAPE[0],
             self.config.MASK_SHAPE[1])  # masks
        ]

    def compute_mask(self, inputs, mask=None):
        return [None, None, None, None]


############################################################
#  Detection Layer
############################################################

def clip_to_window(window, boxes):
    """
    window: (y1, x1, y2, x2). The window in the image we want to clip to.
    boxes: [N, (y1, x1, y2, x2)]
    """
    boxes[:, 0] = np.maximum(np.minimum(boxes[:, 0], window[2]), window[0])
    boxes[:, 1] = np.maximum(np.minimum(boxes[:, 1], window[3]), window[1])
    boxes[:, 2] = np.maximum(np.minimum(boxes[:, 2], window[2]), window[0])
    boxes[:, 3] = np.maximum(np.minimum(boxes[:, 3], window[3]), window[1])
    return boxes


def refine_detections(rois, probs, deltas, window, config):
    """Refine classified proposals and filter overlaps and return final
    detections.

    Inputs:
        rois: [N, (y1, x1, y2, x2)] in normalized coordinates
        probs: [N, num_classes]. Class probabilities.
        deltas: [N, num_classes, (dy, dx, log(dh), log(dw))]. Class-specific
                bounding box deltas.
        window: (y1, x1, y2, x2) in image coordinates. The part of the image
            that contains the image excluding the padding.

    Returns detections shaped: [N, (y1, x1, y2, x2, class_id, score)]
    """
    # Class IDs per ROI
    class_ids = np.argmax(probs, axis=1)
    # Class probability of the top class of each ROI
    class_scores = probs[np.arange(class_ids.shape[0]), class_ids]
    # Class-specific bounding box deltas
    deltas_specific = deltas[np.arange(deltas.shape[0]), class_ids]
    # Apply bounding box deltas
    # Shape: [boxes, (y1, x1, y2, x2)] in normalized coordinates
    refined_rois = utils.apply_box_deltas(
        rois, deltas_specific * config.BBOX_STD_DEV)
    # Convert coordiates to image domain
    # TODO: better to keep them normalized until later
    height, width = config.IMAGE_SHAPE[:2]
    refined_rois *= np.array([height, width, height, width])
    # Clip boxes to image window
    refined_rois = clip_to_window(window, refined_rois)
    # Round and cast to int since we're deadling with pixels now
    refined_rois = np.rint(refined_rois).astype(np.int32)

    # TODO: Filter out boxes with zero area

    # Filter out background boxes
    keep = np.where(class_ids > 0)[0]
    # Filter out low confidence boxes
    if config.DETECTION_MIN_CONFIDENCE:
        keep = np.intersect1d(
            keep, np.where(class_scores >= config.DETECTION_MIN_CONFIDENCE)[0])

    # Apply per-class NMS
    pre_nms_class_ids = class_ids[keep]
    pre_nms_scores = class_scores[keep]
    pre_nms_rois = refined_rois[keep]
    nms_keep = []
    for class_id in np.unique(pre_nms_class_ids):
        # Pick detections of this class
        ixs = np.where(pre_nms_class_ids == class_id)[0]
        # Apply NMS
        class_keep = utils.non_max_suppression(
            pre_nms_rois[ixs], pre_nms_scores[ixs],
            config.DETECTION_NMS_THRESHOLD)
        # Map indicies
        class_keep = keep[ixs[class_keep]]
        nms_keep = np.union1d(nms_keep, class_keep)
    keep = np.intersect1d(keep, nms_keep).astype(np.int32)

    # Keep top detections
    roi_count = config.DETECTION_MAX_INSTANCES
    top_ids = np.argsort(class_scores[keep])[::-1][:roi_count]
    keep = keep[top_ids]

    # Arrange output as [N, (y1, x1, y2, x2, class_id, score)]
    # Coordinates are in image domain.
    result = np.hstack((refined_rois[keep],
                        class_ids[keep][..., np.newaxis], 
                        class_scores[keep][..., np.newaxis]))
    return result


class DetectionLayer(KE.Layer):
    """Takes classified proposal boxes and their bounding box deltas and
    returns the final detection boxes.

    # TODO: Add support for batch_size > 1

    Returns:
    [batch, num_detections, (y1, x1, y2, x2, class_score)] in pixels
    """
    def __init__(self, config=None, **kwargs):
        super(DetectionLayer, self).__init__(**kwargs)
        self.config = config

    def call(self, inputs):
        def wrapper(rois, mrcnn_class, mrcnn_bbox, image_meta):
            # currently supports one image per batch
            b = 0
            _, _, window, _ = parse_image_meta(image_meta)
            detections = refine_detections(
                rois[b], mrcnn_class[b], mrcnn_bbox[b], window[b], self.config)
            # Pad with zeros if detections < DETECTION_MAX_INSTANCES
            gap = self.config.DETECTION_MAX_INSTANCES - detections.shape[0]
            assert gap >= 0
            if gap > 0:
                detections = np.pad(detections, [(0, gap), (0, 0)],
                                    'constant', constant_values=0)

            # Cast to float32
            # TODO: track where float64 is introduced
            detections = detections.astype(np.float32)

            # Reshape output
            # [batch, num_detections, (y1, x1, y2, x2, class_score)] in pixels
            return np.reshape(detections,
                              [1, self.config.DETECTION_MAX_INSTANCES, 6])

        # Return wrapped function
        return tf.py_func(wrapper, inputs, tf.float32)

    def compute_output_shape(self, input_shape):
        return (None, self.config.DETECTION_MAX_INSTANCES, 6)


# Region Proposal Network (RPN)

def rpn_graph(feature_map, anchors_per_location, anchor_stride):
    """Builds the computation graph of Region Proposal Network.

    feature_map: backbone features [batch, height, width, depth]
    anchors_per_location: number of anchors per pixel in the feature map
    anchor_stride: Controls the density of anchors. Typically 1 (anchors for
                   every pixel in the feature map), or 2 (every other pixel).

    Returns:
        rpn_logits: [batch, H, W, 2] Anchor classifier logits (before softmax)
        rpn_probs: [batch, W, W, 2] Anchor classifier probabilities.
        rpn_bbox: [batch, H, W, (dy, dx, log(dh), log(dw))] Deltas to be
                  applied to anchors.
    """
    # TODO: check if stride of 2 causes alignment issues if the featuremap
    #       is not even.
    # Shared convolutional base of the RPN
    shared = KL.Conv2D(512, (3, 3), padding='same', activation='relu',
                       strides=anchor_stride,
                       name='rpn_conv_shared')(feature_map)

    # Anchor Score. [batch, height, width, anchors per location * 2].
    x = KL.Conv2D(2 * anchors_per_location, (1, 1), padding='valid',
                  activation='linear', name='rpn_class_raw')(shared)

    # Reshape to [batch, anchors, 2]
    rpn_class_logits = KL.Lambda(
        lambda t: tf.reshape(t, [tf.shape(t)[0], -1, 2]))(x)

    # Softmax on last dimension of BG/FG.
    rpn_probs = KL.Activation("softmax", name="rpn_class_xxx")(rpn_class_logits)

    # Bounding box refinement. [batch, H, W, anchors per location, depth]
    # where depth is [x, y, log(w), log(h)]
    x = KL.Conv2D(anchors_per_location*4, (1, 1), padding="valid", 
                  activation='linear', name='rpn_bbox_pred')(shared)

    # Reshape to [batch, anchors, 4]
    rpn_bbox = KL.Lambda(lambda t: tf.reshape(t, [tf.shape(t)[0], -1, 4]))(x)

    return [rpn_class_logits, rpn_probs, rpn_bbox]


def build_rpn_model(anchor_stride, anchors_per_location, depth):
    """Builds a Keras model of the Region Proposal Network.
    It wraps the RPN graph so it can be used multiple times with shared
    weights.

    anchors_per_location: number of anchors per pixel in the feature map
    anchor_stride: Controls the density of anchors. Typically 1 (anchors for
                   every pixel in the feature map), or 2 (every other pixel).
    depth: Depth of the backbone feature map.

    Returns a Keras Model object. The model outputs, when called, are:
    rpn_logits: [batch, H, W, 2] Anchor classifier logits (before softmax)
    rpn_probs: [batch, W, W, 2] Anchor classifier probabilities.
    rpn_bbox: [batch, H, W, (dy, dx, log(dh), log(dw))] Deltas to be
                applied to anchors.
    """
    input_feature_map = KL.Input(shape=[None, None, depth],
                                 name="input_rpn_feature_map")
    outputs = rpn_graph(input_feature_map, anchors_per_location, anchor_stride)
    return KM.Model([input_feature_map], outputs, name="rpn_model")


############################################################
#  Feature Pyramid Network Heads
############################################################

def fpn_classifier_graph(rois, feature_maps,
                         image_shape, pool_size, num_classes):
    """Builds the computation graph of the feature pyramid network classifier
    and regressor heads.

    rois: [batch, num_rois, (y1, x1, y2, x2)] Proposal boxes in normalized
          coordinates.
    feature_maps: List of feature maps from diffent layers of the pyramid,
                  [P2, P3, P4, P5]. Each has a different resolution.
    image_shape: [height, width, depth]
    pool_size: The width of the square feature map generated from ROI Pooling.
    num_classes: number of classes, which determines the depth of the results

    Returns:
        logits: [N, NUM_CLASSES] classifier logits (before softmax)
        probs: [N, NUM_CLASSES] classifier probabilities
        bbox_deltas: [N, (dy, dx, log(dh), log(dw))] Deltas to apply to 
                     proposal boxes
    """
    # ROI Pooling
    # Shape: [batch, num_boxes, pool_height, pool_width, channels]
    x = PyramidROIAlign([pool_size, pool_size], image_shape,
                        name="roi_align_classifier")([rois] + feature_maps)
    # Two 1024 FC layers (implemented with Conv2D for consistency)
    x = KL.TimeDistributed(KL.Conv2D(1024, (pool_size, pool_size), padding="valid"),
                           name="mrcnn_class_conv1")(x)
    x = KL.TimeDistributed(BatchNorm(axis=3), name='mrcnn_class_bn1')(x)
    x = KL.Activation('relu')(x)
    x = KL.Dropout(0.5)(x)
    x = KL.TimeDistributed(KL.Conv2D(1024, (1, 1)),
                           name="mrcnn_class_conv2")(x)
    x = KL.TimeDistributed(BatchNorm(axis=3),
                           name='mrcnn_class_bn2')(x)
    x = KL.Activation('relu')(x)

    shared = KL.Lambda(lambda x: K.squeeze(K.squeeze(x, 3), 2),
                       name="pool_squeeze")(x)

    # Classifier head
    mrcnn_class_logits = KL.TimeDistributed(KL.Dense(num_classes),
                                            name='mrcnn_class_logits')(shared)
    mrcnn_probs = KL.TimeDistributed(KL.Activation("softmax"),
                                     name="mrcnn_class")(mrcnn_class_logits)

    # BBox head
    # [batch, boxes, num_classes * (dy, dx, log(dh), log(dw))]
    x = KL.TimeDistributed(KL.Dense(num_classes*4, activation='linear'),
                           name='mrcnn_bbox_fc')(shared)
    # Reshape to [batch, boxes, num_classes, (dy, dx, log(dh), log(dw))]
    s = K.int_shape(x)
    mrcnn_bbox = KL.Reshape((s[1], num_classes, 4), name="mrcnn_bbox")(x)

    return mrcnn_class_logits, mrcnn_probs, mrcnn_bbox


def build_fpn_mask_graph(rois, feature_maps,
                         image_shape, pool_size, num_classes):
    """Builds the computation graph of the mask head of Feature Pyramid Network.

    rois: [batch, num_rois, (y1, x1, y2, x2)] Proposal boxes in normalized
          coordinates.
    feature_maps: List of feature maps from diffent layers of the pyramid,
                  [P2, P3, P4, P5]. Each has a different resolution.
    image_shape: [height, width, depth]
    pool_size: The width of the square feature map generated from ROI Pooling.
    num_classes: number of classes, which determines the depth of the results

    Returns: Masks [batch, roi_count, height, width, num_classes]
    """
    # ROI Pooling
    # Shape: [batch, boxes, pool_height, pool_width, channels]
    x = PyramidROIAlign([pool_size, pool_size], image_shape,
                        name="roi_align_mask")([rois] + feature_maps)

    # Conv layers
    x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
                           name="mrcnn_mask_conv1")(x)
    x = KL.TimeDistributed(BatchNorm(axis=3),
                           name='mrcnn_mask_bn1')(x)
    x = KL.Activation('relu')(x)

    x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
                           name="mrcnn_mask_conv2")(x)
    x = KL.TimeDistributed(BatchNorm(axis=3),
                           name='mrcnn_mask_bn2')(x)
    x = KL.Activation('relu')(x)

    x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
                           name="mrcnn_mask_conv3")(x)
    x = KL.TimeDistributed(BatchNorm(axis=3),
                           name='mrcnn_mask_bn3')(x)
    x = KL.Activation('relu')(x)

    x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
                           name="mrcnn_mask_conv4")(x)
    x = KL.TimeDistributed(BatchNorm(axis=3),
                           name='mrcnn_mask_bn4')(x)
    x = KL.Activation('relu')(x)

    x = KL.TimeDistributed(KL.Conv2DTranspose(256, (2,2), strides=2, activation="relu"),
                           name="mrcnn_mask_deconv")(x)
    x = KL.TimeDistributed(KL.Conv2D(num_classes, (1, 1), strides=1, activation="sigmoid"),
                           name="mrcnn_mask")(x)
    return x


############################################################
#  Loss Functions
############################################################

def smooth_l1_loss(y_true, y_pred):
    """Implements Smooth-L1 loss.
    y_true and y_pred are typicallly: [N, 4], but could be any shape.
    """
    diff = K.abs(y_true - y_pred)
    less_than_one = K.cast(K.less(diff, 1.0), "float32")
    loss = (less_than_one * 0.5 * diff**2) + (1-less_than_one) * (diff - 0.5)
    return loss


def rpn_class_loss_graph(rpn_match, rpn_class_logits):
    """RPN anchor classifier loss.

    rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive,
               -1=negative, 0=neutral anchor.
    rpn_class_logits: [batch, anchors, 2]. RPN classifier logits for FG/BG.
    """
    # Squeeze last dim to simplify
    rpn_match = tf.squeeze(rpn_match, -1)
    # Get anchor classes. Convert the -1/+1 match to 0/1 values.
    anchor_class = K.cast(K.equal(rpn_match, 1), tf.int32)
    # Positive and Negative anchors contribute to the loss,
    # but neutral anchors (match value = 0) don't.
    indices = tf.where(K.not_equal(rpn_match, 0))
    # Pick rows that contribute to the loss and filter out the rest.
    rpn_class_logits = tf.gather_nd(rpn_class_logits, indices)
    anchor_class = tf.gather_nd(anchor_class, indices)
    # Crossentropy loss
    loss = K.sparse_categorical_crossentropy(target=anchor_class, 
                                             output=rpn_class_logits, 
                                             from_logits=True)
    loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0))
    return loss


def rpn_bbox_loss_graph(config, target_bbox, rpn_match, rpn_bbox):
    """Return the RPN bounding box loss graph.

    config: the model config object.
    target_bbox: [batch, max positive anchors, (dy, dx, log(dh), log(dw))].
        Uses 0 padding to fill in unsed bbox deltas.
    rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive,
               -1=negative, 0=neutral anchor.
    rpn_bbox: [batch, anchors, (dy, dx, log(dh), log(dw))]
    """
    # Positive anchors contribute to the loss, but negative and
    # neutral anchors (match value of 0 or -1) don't.
    rpn_match = K.squeeze(rpn_match, -1)
    indices = tf.where(K.equal(rpn_match, 1))

    # Pick bbox deltas that contribute to the loss
    rpn_bbox = tf.gather_nd(rpn_bbox, indices)

    # Trim target bounding box deltas to the same length as rpn_bbox.
    batch_counts = K.sum(K.cast(K.equal(rpn_match, 1), tf.int32), axis=1)
    target_bbox = batch_pack_graph(target_bbox, batch_counts,
                                   config.IMAGES_PER_GPU)

    # TODO: use smooth_l1_loss() rather than reimplementing here
    #       to reduce code duplication
    diff = K.abs(target_bbox - rpn_bbox)
    less_than_one = K.cast(K.less(diff, 1.0), "float32")
    loss = (less_than_one * 0.5 * diff**2) + (1-less_than_one) * (diff - 0.5)

    loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0))
    return loss


def mrcnn_class_loss_graph(target_class_ids, pred_class_logits,
                           active_class_ids):
    """Loss for the classifier head of Mask RCNN.

    target_class_ids: [batch, num_rois]. Integer class IDs. Uses zero
        padding to fill in the array.
    pred_class_logits: [batch, num_rois, num_classes]
    active_class_ids: [batch, num_classes]. Has a value of 1 for
        classes that are in the dataset of the image, and 0
        for classes that are not in the dataset.
    """
    target_class_ids = tf.cast(target_class_ids, 'int64')

    # Find predictions of classes that are not in the dataset.
    pred_class_ids = tf.argmax(pred_class_logits, axis=2)
    # TODO: Update this line to work with batch > 1. Right now it assumes all
    #       images in a batch have the same active_class_ids
    pred_active = tf.gather(active_class_ids[0], pred_class_ids)

    # Loss
    loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
        labels=target_class_ids, logits=pred_class_logits)

    # Erase losses of predictions of classes that are not in the active
    # classes of the image.
    loss = loss * pred_active

    # Computer loss mean. Use only predictions that contribute
    # to the loss to get a correct mean.
    loss = tf.reduce_sum(loss) / tf.reduce_sum(pred_active)
    return loss


def mrcnn_bbox_loss_graph(target_bbox, target_class_ids, pred_bbox):
    """Loss for Mask R-CNN bounding box refinement.

    target_bbox: [batch, num_rois, (dy, dx, log(dh), log(dw))]
    target_class_ids: [batch, num_rois]. Integer class IDs.
    pred_bbox: [batch, num_rois, num_classes, (dy, dx, log(dh), log(dw))]
    """
    # Reshape to merge batch and roi dimensions for simplicity.
    target_class_ids = K.reshape(target_class_ids, (-1,))
    target_bbox = K.reshape(target_bbox, (-1, 4))
    pred_bbox = K.reshape(pred_bbox, (-1, K.int_shape(pred_bbox)[2], 4))

    # Only positive ROIs contribute to the loss. And only
    # the right class_id of each ROI. Get their indicies.
    positive_roi_ix = tf.where(target_class_ids > 0)[:, 0]
    positive_roi_class_ids = tf.cast(tf.gather(target_class_ids, positive_roi_ix), tf.int64)
    indices = tf.stack([positive_roi_ix, positive_roi_class_ids], axis=1)

    # Gather the deltas (predicted and true) that contribute to loss
    target_bbox = tf.gather(target_bbox, positive_roi_ix)
    pred_bbox = tf.gather_nd(pred_bbox, indices)

    # Smooth-L1 Loss
    loss = K.switch(tf.size(target_bbox) > 0,
                    smooth_l1_loss(y_true=target_bbox, y_pred=pred_bbox),
                    tf.constant(0.0))
    loss = K.mean(loss)
    loss = K.reshape(loss, [1, 1])
    return loss


def mrcnn_mask_loss_graph(target_masks, target_class_ids, pred_masks):
    """Mask binary cross-entropy loss for the masks head.

    target_masks: [batch, num_rois, height, width].
        A float32 tensor of values 0 or 1. Uses zero padding to fill array.
    target_class_ids: [batch, num_rois]. Integer class IDs. Zero padded.
    pred_masks: [batch, proposals, height, width, num_classes] float32 tensor
                with values from 0 to 1.
    """
    # Reshape for simplicity. Merge first two dimensions into one.
    target_class_ids = K.reshape(target_class_ids, (-1,))
    mask_shape = tf.shape(target_masks)
    target_masks = K.reshape(target_masks, (-1, mask_shape[2], mask_shape[3]))
    pred_shape = tf.shape(pred_masks)
    pred_masks = K.reshape(pred_masks, 
                           (-1, pred_shape[2], pred_shape[3], pred_shape[4]))
    # Permute predicted masks to [N, num_classes, height, width]
    pred_masks = tf.transpose(pred_masks, [0, 3, 1, 2])

    # Only positive ROIs contribute to the loss. And only
    # the class specific mask of each ROI.
    positive_ix = tf.where(target_class_ids > 0)[:, 0]
    positive_class_ids = tf.cast(tf.gather(target_class_ids, positive_ix), tf.int64)
    indices = tf.stack([positive_ix, positive_class_ids], axis=1)

    # Gather the masks (predicted and true) that contribute to loss
    y_true = tf.gather(target_masks, positive_ix)
    y_pred = tf.gather_nd(pred_masks, indices)

    # Compute binary cross entropy. If no positive ROIs, then return 0.
    # shape: [batch, roi, num_classes]
    loss = K.switch(tf.size(y_true) > 0,
                    K.binary_crossentropy(target=y_true, output=y_pred),
                    tf.constant(0.0))
    loss = K.mean(loss)
    loss = K.reshape(loss, [1, 1])
    return loss


############################################################
#  Data Generator
############################################################

def load_image_gt(dataset, config, image_id, augment=False,
                  use_mini_mask=False):
    """Load and return ground truth data for an image (image, mask, bounding boxes).

    augment: If true, apply random image augmentation. Currently, only
        horizontal flipping is offered.
    use_mini_mask: If False, returns full-size masks that are the same height
        and width as the original image. These can be big, for example
        1024x1024x100 (for 100 instances). Mini masks are smaller, typically,
        224x224 and are generated by extracting the bounding box of the
        object and resizing it to MINI_MASK_SHAPE.

    Returns:
    image: [height, width, 3]
    shape: the original shape of the image before resizing and cropping.
    bbox: [instance_count, (y1, x1, y2, x2, class_id)]
    mask: [height, width, instance_count]. The height and width are those
        of the image unless use_mini_mask is True, in which case they are
        defined in MINI_MASK_SHAPE.
    """
    # Load image and mask
    image = dataset.load_image(image_id)
    mask, class_ids = dataset.load_mask(image_id)
    shape = image.shape
    image, window, scale, padding = utils.resize_image(
        image, 
        min_dim=config.IMAGE_MIN_DIM, 
        max_dim=config.IMAGE_MAX_DIM,
        padding=config.IMAGE_PADDING)
    mask = utils.resize_mask(mask, scale, padding)

    # Random horizontal flips.
    if augment:
        if random.randint(0, 1):
            image = np.fliplr(image)
            mask = np.fliplr(mask)

    # Bounding boxes. Note that some boxes might be all zeros
    # if the corresponding mask got cropped out.
    # bbox: [num_instances, (y1, x1, y2, x2)]
    bbox = utils.extract_bboxes(mask)

    # Add class_id as the last value in bbox
    bbox = np.hstack([bbox, class_ids[:, np.newaxis]])

    # Active classes
    # Different datasets have different classes, so track the
    # classes supported in the dataset of this image.
    active_class_ids = np.zeros([dataset.num_classes], dtype=np.int32)
    class_ids = dataset.source_class_ids[dataset.image_info[image_id]["source"]]
    active_class_ids[class_ids] = 1

    # Resize masks to smaller size to reduce memory usage
    if use_mini_mask:
        mask = utils.minimize_mask(bbox, mask, config.MINI_MASK_SHAPE)

    # Image meta data
    image_meta = compose_image_meta(image_id, shape, window, active_class_ids)

    return image, image_meta, bbox, mask


def build_detection_targets(rpn_rois, gt_boxes, gt_masks, config):
    """Generate targets for training Stage 2 classifier and mask heads.

    Inputs:
    rpn_rois: [N, (y1, x1, y2, x2)] proposal boxes.
    gt_boxes: [instance count, (y1, x1, y2, x2, class_id)]
    gt_masks: [height, width, instance count] Grund truth masks. Can be full
              size or mini-masks.

    Returns:
    rois: [TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)]
    class_ids: [TRAIN_ROIS_PER_IMAGE]. Int class IDs.
    bboxes: [TRAIN_ROIS_PER_IMAGE, NUM_CLASSES, 5]. Rows are class-specific 
            bbox refinments [y, x, log(h), log(w), weight].
    masks: [TRAIN_ROIS_PER_IMAGE, height, width, NUM_CLASSES). Class specific masks cropped
           to bbox boundaries and resized to neural network output size.
    """
    assert rpn_rois.shape[0] > 0
    assert gt_boxes.dtype == np.int32, "Expected int but got {}".format(gt_boxes.dtype)
    assert gt_masks.dtype == np.bool_, "Expected bool but got {}".format(gt_masks.dtype)

    # It's common to add GT Boxes to ROIs but we don't do that here because
    # according to XinLei Chen's paper, it doesn't help.

    # Trim empty padding in gt_boxes and gt_masks parts
    instance_ids = np.where(gt_boxes[:, 4] > 0)[0]
    assert instance_ids.shape[0] > 0, "Image must contain instances."
    gt_boxes = gt_boxes[instance_ids]
    gt_masks = gt_masks[:, :, instance_ids]

    # Compute areas of ROIs and ground truth boxes.
    rpn_roi_area = (rpn_rois[:, 2] - rpn_rois[:, 0]) * (rpn_rois[:, 3] - rpn_rois[:, 1])
    gt_box_area = (gt_boxes[:, 2] - gt_boxes[:, 0]) * (gt_boxes[:, 3] - gt_boxes[:, 1])

    # Compute overlaps [rpn_rois, gt_boxes]
    overlaps = np.zeros((rpn_rois.shape[0], gt_boxes.shape[0]))
    for i in range(overlaps.shape[1]):
        gt = gt_boxes[i][:4]
        overlaps[:,i] = utils.compute_iou(gt, rpn_rois, gt_box_area[i], rpn_roi_area)

    # Assign ROIs to GT boxes
    rpn_roi_iou_argmax = np.argmax(overlaps, axis=1)
    rpn_roi_iou_max = overlaps[np.arange(overlaps.shape[0]), rpn_roi_iou_argmax]
    rpn_roi_gt_boxes = gt_boxes[rpn_roi_iou_argmax]  # GT box assigned to each ROI

    # Positive ROIs are those with >= 0.5 IoU with a GT box. 
    fg_ids = np.where(rpn_roi_iou_max > 0.5)[0]

    # Negative ROIs are those with max IoU 0.1-0.5 (hard example mining)
    # TODO: To hard example mine or not to hard example mine, that's the question
#     bg_ids = np.where((rpn_roi_iou_max >= 0.1) & (rpn_roi_iou_max < 0.5))[0]
    bg_ids = np.where(rpn_roi_iou_max < 0.5)[0]

    # Subsample ROIs. Aim for 33% foreground.
    # FG
    fg_roi_count = int(config.TRAIN_ROIS_PER_IMAGE * config.ROI_POSITIVE_RATIO)
    if fg_ids.shape[0] > fg_roi_count:
        keep_fg_ids = np.random.choice(fg_ids, fg_roi_count, replace=False)
    else:
        keep_fg_ids = fg_ids
    # BG
    remaining = config.TRAIN_ROIS_PER_IMAGE - keep_fg_ids.shape[0]
    if bg_ids.shape[0] > remaining:
        keep_bg_ids = np.random.choice(bg_ids, remaining, replace=False)
    else:
        keep_bg_ids = bg_ids
    # Combine indicies of ROIs to keep
    keep = np.concatenate([keep_fg_ids, keep_bg_ids])
    # Need more?
    remaining = config.TRAIN_ROIS_PER_IMAGE - keep.shape[0]
    if remaining > 0:
        # Looks like we don't have enough samples to maintain the desired
        # balance. Reduce requirements and fill in the rest. This is
        # likely different from the Mask RCNN paper.

        # There is a small chance we have neither fg nor bg samples.
        if keep.shape[0] == 0:
            # Pick bg regions with easier IoU threshold
            bg_ids = np.where(rpn_roi_iou_max < 0.5)[0]
            assert bg_ids.shape[0] >= remaining
            keep_bg_ids = np.random.choice(bg_ids, remaining, replace=False)
            assert keep_bg_ids.shape[0] == remaining
            keep = np.concatenate([keep, keep_bg_ids])
        else:
            # Fill the rest with repeated bg rois.
            keep_extra_ids = np.random.choice(keep_bg_ids, remaining, replace=True)
            keep = np.concatenate([keep, keep_extra_ids])
    assert keep.shape[0] == config.TRAIN_ROIS_PER_IMAGE, \
        "keep doesn't match ROI batch size {}, {}".format(
            keep.shape[0], config.TRAIN_ROIS_PER_IMAGE)

    # Reset the gt boxes assigned to BG ROIs.
    rpn_roi_gt_boxes[keep_bg_ids, :] = 0

    # For each kept ROI, assign a class_id, and for FG ROIs also add bbox refinement.
    rois = rpn_rois[keep, :4]
    roi_gt_boxes = rpn_roi_gt_boxes[keep]
    class_ids = roi_gt_boxes[:,4].astype(np.int32)
    roi_gt_assignment = rpn_roi_iou_argmax[keep]

    # Class-aware bbox shifts. [y, x, log(h), log(w), weight]. Weight is 0 or 1 to
    # determine if a bbox is included in the loss.
    bboxes = np.zeros((config.TRAIN_ROIS_PER_IMAGE, config.NUM_CLASSES, 5), dtype=np.float32)
    pos_ids = np.where(class_ids > 0)[0]
    bboxes[pos_ids, class_ids[pos_ids], :4] = utils.box_refinement(rois[pos_ids], roi_gt_boxes[pos_ids, :4])
    bboxes[pos_ids, class_ids[pos_ids], 4] = 1  # weight = 1 to influence the loss
    # Normalize bbox refinments
    bboxes[:, :, :4] /= config.BBOX_STD_DEV

    # Generate class-specific target masks.
    masks = np.zeros((config.TRAIN_ROIS_PER_IMAGE, config.MASK_SHAPE[0], config.MASK_SHAPE[1], config.NUM_CLASSES), 
                     dtype=np.float32)
    for i in pos_ids:
        class_id = class_ids[i]
        assert class_id > 0, "class id must be greater than 0"
        gt_id = roi_gt_assignment[i]
        class_mask = gt_masks[:, :, gt_id]
        
        if config.USE_MINI_MASK:
            # Create a mask placeholder, the size of the image
            placeholder = np.zeros(config.IMAGE_SHAPE[:2], dtype=bool)
            # GT box
            gt_y1, gt_x1, gt_y2, gt_x2 = gt_boxes[gt_id][:4]
            gt_w = gt_x2 - gt_x1
            gt_h = gt_y2 - gt_y1
            # Resize mini mask to size of GT box
            placeholder[gt_y1:gt_y2, gt_x1:gt_x2] = \
                np.round(scipy.misc.imresize(class_mask.astype(float), (gt_h, gt_w), 
                                             interp='nearest') / 255.0).astype(bool)
            # Place the mini batch in the placeholder
            class_mask = placeholder
            
        # Pick part of the mask and resize it
        y1, x1, y2, x2 = rois[i][:4].astype(np.int32)
        m = class_mask[y1:y2, x1:x2]
        mask = scipy.misc.imresize(m.astype(float), config.MASK_SHAPE, interp='nearest') / 255.0
        masks[i,:,:,class_id] = mask
        
    return rois, class_ids, bboxes, masks


def build_rpn_targets(image_shape, anchors, gt_boxes, config):
    """Given the anchors and GT boxes, compute overlaps and identify positive
    anchors and deltas to refine them to match their corresponding GT boxes.

    anchors: [num_anchors, (y1, x1, y2, x2)]
    gt_boxes: [num_gt_boxes, (y1, x1, y2, x2, class_id)]

    Returns:
    rpn_match: [N] (int32) matches between anchors and GT boxes.
               1 = positive anchor, -1 = negative anchor, 0 = neutral
    rpn_bbox: [N, (dy, dx, log(dh), log(dw))] Anchor bbox deltas.
    """
    # RPN Match: 1 = positive anchor, -1 = negative anchor, 0 = neutral
    rpn_match = np.zeros([anchors.shape[0]], dtype=np.int32)
    # RPN bounding boxes: [max anchors per image, (dy, dx, log(dh), log(dw))]
    rpn_bbox = np.zeros((config.RPN_TRAIN_ANCHORS_PER_IMAGE, 4))

    # Areas of anchors and GT boxes
    gt_box_area = (gt_boxes[:, 2] - gt_boxes[:, 0]) * (gt_boxes[:, 3] - gt_boxes[:, 1])
    anchor_area = (anchors[:, 2] - anchors[:, 0]) * (anchors[:, 3] - anchors[:, 1])

    # Compute overlaps [num_anchors, num_gt_boxes]
    # Each cell contains the IoU of an anchor and GT box.
    overlaps = np.zeros((anchors.shape[0], gt_boxes.shape[0]))
    for i in range(overlaps.shape[1]):
        gt = gt_boxes[i][:4]
        overlaps[:,i] = utils.compute_iou(gt, anchors, gt_box_area[i], anchor_area)

    # Match anchors to GT Boxes
    # If an anchor overlaps a GT box with IoU >= 0.7 then it's positive.
    # If an anchor overlaps a GT box with IoU < 0.3 then it's negative.
    # Neutral anchors are those that don't match the conditions above, 
    # and they don't influence the loss function.
    # However, don't keep any GT box unmatched (rare, but happens). Instead,
    # match it to the closest anchor (even if its max IoU is < 0.3).
    #
    # 1. Set negative anchors first. It gets overwritten if a gt box is matched to them.
    anchor_iou_argmax = np.argmax(overlaps, axis=1)
    anchor_iou_max = overlaps[np.arange(overlaps.shape[0]), anchor_iou_argmax]
    rpn_match[anchor_iou_max < 0.3] = -1
    # 2. Set an anchor for each GT box (regardless of IoU value).
    # TODO: If multiple anchors have the same IoU match all of them
    gt_iou_argmax = np.argmax(overlaps, axis=0)
    rpn_match[gt_iou_argmax] = 1
    # 3. Set anchors with high overlap as positive.
    rpn_match[anchor_iou_max >= 0.7] = 1

    # Subsample to balance positive and negative anchors
    # Don't let positives be more than half the anchors
    ids = np.where(rpn_match == 1)[0]
    extra = len(ids) - (config.RPN_TRAIN_ANCHORS_PER_IMAGE // 2)
    if extra > 0:
        # Reset the extra ones to neutral
        ids = np.random.choice(ids, extra, replace=False)
        rpn_match[ids] = 0
    # Same for negative proposals
    ids = np.where(rpn_match == -1)[0]
    extra = len(ids) - (config.RPN_TRAIN_ANCHORS_PER_IMAGE - np.sum(rpn_match == 1))
    if extra > 0:
        # Rest the extra ones to neutral
        ids = np.random.choice(ids, extra, replace=False)
        rpn_match[ids] = 0

    # For positive anchors, compute shift and scale needed to transform them
    # to match the corresponding GT boxes.
    ids = np.where(rpn_match == 1)[0]
    ix = 0  # index into rpn_bbox
    # TODO: use box_refinment() rather that duplicating the code here
    for i, a in zip(ids, anchors[ids]):
        # Closest gt box (it might have IoU < 0.7)
        gt = gt_boxes[anchor_iou_argmax[i], :4]

        # Convert coordinates to center plus width/height.
        # GT Box
        gt_h = gt[2] - gt[0]
        gt_w = gt[3] - gt[1]
        gt_center_y = gt[0] + 0.5 * gt_h
        gt_center_x = gt[1] + 0.5 * gt_w
        # Anchor
        a_h = a[2] - a[0]
        a_w = a[3] - a[1]
        a_center_y = a[0] + 0.5 * a_h
        a_center_x = a[1] + 0.5 * a_w

        # Compute the bbox refinement that the RPN should predict.
        rpn_bbox[ix] = [
            (gt_center_y - a_center_y) / a_h,
            (gt_center_x - a_center_x) / a_w,
            np.log(gt_h / a_h),
            np.log(gt_w / a_w),
        ]
        # Normalize
        rpn_bbox[ix] /= config.RPN_BBOX_STD_DEV
        ix += 1

    return rpn_match, rpn_bbox


def generate_random_rois(image_shape, count, gt_boxes):
    """Generates ROI proposals similar to what a region proposal network
    would generate.

    image_shape: [Height, Width, Depth]
    count: Number of ROIs to generate
    gt_boxes: [N, (y1, x1, y2, x2, class_id)] Ground trugh boxes in pixels.

    Returns: [count, (y1, x1, y2, x2)] ROI boxes in pixels.
    """
    # placeholder
    rois = np.zeros((count, 4), dtype=np.int32)
    
    # Generate random ROIs around GT boxes (90% of count)
    rois_per_box = int(0.9 * count / gt_boxes.shape[0])
    for i in range(gt_boxes.shape[0]):
        gt_y1, gt_x1, gt_y2, gt_x2 = gt_boxes[i,:4]
        h = gt_y2 - gt_y1
        w = gt_x2 - gt_x1
        # random boundaries
        r_y1 = max(gt_y1-h, 0)
        r_y2 = min(gt_y2+h, image_shape[0])
        r_x1 = max(gt_x1-w, 0)
        r_x2 = min(gt_x2+w, image_shape[1])
        
        # To avoid generating boxes with zero area, we generate double what
        # we need and filter out the extra. If we get fewer valid boxes 
        # than we need, we loop and try again.
        while True:
            y1y2 = np.random.randint(r_y1, r_y2, (rois_per_box*2, 2))
            x1x2 = np.random.randint(r_x1, r_x2, (rois_per_box*2, 2))
            # Filter out zero area boxes
            threshold = 1
            y1y2 = y1y2[np.abs(y1y2[:,0] - y1y2[:,1]) >= threshold][:rois_per_box]
            x1x2 = x1x2[np.abs(x1x2[:,0] - x1x2[:,1]) >= threshold][:rois_per_box]
            if y1y2.shape[0] == rois_per_box and x1x2.shape[0] == rois_per_box:
                break
        
        # Sort on axis 1 to ensure x1 <= x2 and y1 <= y2 and then reshape
        # into x1, y1, x2, y2 order
        x1, x2 = np.split(np.sort(x1x2, axis=1), 2, axis=1)
        y1, y2 = np.split(np.sort(y1y2, axis=1), 2, axis=1)
        box_rois = np.hstack([y1, x1, y2, x2])
        rois[rois_per_box*i:rois_per_box*(i+1)] = box_rois
    
    # Generate random ROIs anywhere in the image (10% of count)
    remaining_count = count - (rois_per_box * gt_boxes.shape[0])
    # To avoid generating boxes with zero area, we generate double what
    # we need and filter out the extra. If we get fewer valid boxes 
    # than we need, we loop and try again.
    while True:
        y1y2 = np.random.randint(0, image_shape[0], (remaining_count * 2, 2))
        x1x2 = np.random.randint(0, image_shape[1], (remaining_count * 2, 2))
        # Filter out zero area boxes
        threshold = 1
        y1y2 = y1y2[np.abs(y1y2[:,0] - y1y2[:,1]) >= threshold][:remaining_count]
        x1x2 = x1x2[np.abs(x1x2[:,0] - x1x2[:,1]) >= threshold][:remaining_count]
        if y1y2.shape[0] == remaining_count and x1x2.shape[0] == remaining_count:
            break
    
    # Sort on axis 1 to ensure x1 <= x2 and y1 <= y2 and then reshape
    # into x1, y1, x2, y2 order
    x1, x2 = np.split(np.sort(x1x2, axis=1), 2, axis=1)
    y1, y2 = np.split(np.sort(y1y2, axis=1), 2, axis=1)
    global_rois = np.hstack([y1, x1, y2, x2])
    rois[-remaining_count:] = global_rois
    return rois


def data_generator(dataset, config, shuffle=True, augment=True, random_rois=0,
                   batch_size=1, detection_targets=False):
    """A generator that returns images and corresponding target class ids, 
    bounding box deltas, and masks.

    dataset: The Dataset object to pick data from
    config: The model config object
    shuffle: If True, shuffles the samples before every epoch
    augment: If True, applies image augmentation to images (currently only 
             horizontal flips are supported)
    random_rois: If > 0 then generate proposals to be used to train the
                 network classifier and mask heads. Useful if training
                 the Mask RCNN part without the RPN.
    batch_size: How many images to return in each call
    detection_targets: If True, generate detection targets (class IDs, bbox
        deltas, and masks). Typically for debugging or visualizations because
        in trainig detection targets are generated by DetectionTargetLayer.

    Returns a Python generator. Upon calling next() on it, the 
    generator returns two lists, inputs and outputs. The containtes
    of the lists differs depending on the received arguments:
    inputs list:
    - images: [batch, H, W, C]
    - image_meta: [batch, size of image meta]
    - rpn_match: [batch, N] Integer (1=positive anchor, -1=negative, 0=neutral)
    - rpn_bbox: [batch, N, (dy, dx, log(dh), log(dw))] Anchor bbox deltas.
    - gt_boxes: [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2, class_id)]
    - gt_masks: [batch, height, width, MAX_GT_INSTANCES]. The height and width
                are those of the image unless use_mini_mask is True, in which
                case they are defined in MINI_MASK_SHAPE.

    outputs list: Usually empty in regular training. But if detection_targets
        is True then the outputs list contains target class_ids, bbox deltas,
        and masks.
    """
    b = 0  # batch item index
    image_index = -1
    image_ids = np.copy(dataset.image_ids)
    error_count = 0

    # Anchors
    # [anchor_count, (y1, x1, y2, x2)]
    anchors = utils.generate_pyramid_anchors(config.RPN_ANCHOR_SCALES, 
                                              config.RPN_ANCHOR_RATIOS,
                                              config.BACKBONE_SHAPES,
                                              config.BACKBONE_STRIDES, 
                                              config.RPN_ANCHOR_STRIDE)

    # Keras requires a generator to run indefinately.
    while True:
        try:
            # Increment index to pick next image. Shuffle if at the start of an epoch.
            image_index = (image_index + 1) % len(image_ids)
            if shuffle and image_index == 0:
                np.random.shuffle(image_ids)

            # Get GT bounding boxes and masks for image.
            image_id = image_ids[image_index]
            image, image_meta, gt_boxes, gt_masks = \
                load_image_gt(dataset, config, image_id, augment=augment, use_mini_mask=config.USE_MINI_MASK)
            
            # Skip images that have no instances. This can happen in cases 
            # where we train on a subset of classes and the image doesn't
            # have any of the classes we care about.
            if np.sum(gt_boxes) <= 0:
                continue

            # RPN Targets
            rpn_match, rpn_bbox = build_rpn_targets(image.shape, anchors, gt_boxes, config)

            # Mask R-CNN Targets
            if random_rois:
                rpn_rois = generate_random_rois(image.shape, random_rois, gt_boxes)
                if detection_targets:
                    # Append two columns of zeros. TODO: needed?
                    rpn_rois = np.hstack([rpn_rois, np.zeros([rpn_rois.shape[0], 2], dtype=np.int32)])
                    rois, mrcnn_class_ids, mrcnn_bbox, mrcnn_mask =\
                        build_detection_targets(rpn_rois, gt_boxes, gt_masks, config)

            # Init batch arrays
            if b == 0:
                batch_image_meta = np.zeros((batch_size,)+image_meta.shape, dtype=image_meta.dtype)
                batch_rpn_match = np.zeros([batch_size, anchors.shape[0], 1], dtype=rpn_match.dtype)
                batch_rpn_bbox = np.zeros([batch_size, config.RPN_TRAIN_ANCHORS_PER_IMAGE, 4], dtype=rpn_bbox.dtype)
                batch_images = np.zeros((batch_size,)+image.shape, dtype=np.float32)
                batch_gt_boxes = np.zeros((batch_size, config.MAX_GT_INSTANCES, 5), dtype=np.int32)
                if config.USE_MINI_MASK:
                    batch_gt_masks = np.zeros((batch_size, config.MINI_MASK_SHAPE[0], config.MINI_MASK_SHAPE[1], 
                                               config.MAX_GT_INSTANCES))
                else:
                    batch_gt_masks = np.zeros((batch_size, image.shape[0], image.shape[1], config.MAX_GT_INSTANCES))
                if random_rois:
                    batch_rpn_rois = np.zeros((batch_size,rpn_rois.shape[0], 4), dtype=rpn_rois.dtype)
                    if detection_targets:
                        batch_rois = np.zeros((batch_size,)+rois.shape, dtype=rois.dtype)
                        batch_mrcnn_class_ids = np.zeros((batch_size,)+mrcnn_class_ids.shape, dtype=mrcnn_class_ids.dtype)
                        batch_mrcnn_bbox = np.zeros((batch_size,)+mrcnn_bbox.shape, dtype=mrcnn_bbox.dtype)
                        batch_mrcnn_mask = np.zeros((batch_size,)+mrcnn_mask.shape, dtype=mrcnn_mask.dtype)

            # If more instances than fits in the array, sub-sample from them.
            if gt_boxes.shape[0] > config.MAX_GT_INSTANCES:
                ids = np.random.choice(np.arange(gt_boxes.shape[0]), config.MAX_GT_INSTANCES, replace=False)
                gt_boxes = gt_boxes[ids]
                gt_masks = gt_masks[:,:,ids]

            # Add to batch
            batch_image_meta[b] = image_meta
            batch_rpn_match[b] = rpn_match[:, np.newaxis]
            batch_rpn_bbox[b] = rpn_bbox
            batch_images[b] = mold_image(image.astype(np.float32), config)
            batch_gt_boxes[b,:gt_boxes.shape[0]] = gt_boxes
            batch_gt_masks[b,:,:,:gt_masks.shape[-1]] = gt_masks
            if random_rois:
                batch_rpn_rois[b] = rpn_rois[:,:4]
                if detection_targets:
                    batch_rois[b] = rois
                    batch_mrcnn_class_ids[b] = mrcnn_class_ids
                    batch_mrcnn_bbox[b] = mrcnn_bbox
                    batch_mrcnn_mask[b] = mrcnn_mask
            b += 1

            # Batch full?
            if b >= batch_size:
                inputs = [batch_images, batch_image_meta, batch_rpn_match, batch_rpn_bbox,
                          batch_gt_boxes, batch_gt_masks]
                outputs = []

                if random_rois:
                    inputs.extend([batch_rpn_rois])
                    if detection_targets:
                        inputs.extend([batch_rois])
                        # Keras requires that output and targets have the same number of dimensions
                        batch_mrcnn_class_ids = np.expand_dims(batch_mrcnn_class_ids, -1)
                        outputs.extend([batch_mrcnn_class_ids, batch_mrcnn_bbox, batch_mrcnn_mask])

                yield inputs, outputs

                # start a new batch
                b = 0
        except (GeneratorExit, KeyboardInterrupt):
            raise
        except:
            # Log it and skip the image
            logging.exception("Error processing image {}".format(dataset.image_info[image_id]))
            error_count += 1
            if error_count > 5:
                raise



############################################################
#  MaskRCNN Class
############################################################

class MaskRCNN():
    """Encapsulates the Mask RCNN model functionality.

    The actual Keras model is in the keras_model property.
    """

    def __init__(self, mode, config, model_dir):
        """
        mode: Either "training" or "inference"
        config: A Sub-class of the Config class
        model_dir: Directory to save training logs and trained weights
        """
        assert mode in ['training', 'inference']
        self.mode = mode
        self.config = config
        self.model_dir = model_dir
        self.set_log_dir()
        self.keras_model = self.build(mode=mode, config=config)

    def build(self, mode, config):
        """Build Mask R-CNN architecture.
            input_shape: The shape of the input image.
            mode: Either "training" or "inference". The inputs and 
                outputs of the model differ accordingly.
        """
        assert mode in ['training', 'inference']
        
        # Image size must be dividable by 2 multiple times
        h, w = config.IMAGE_SHAPE[:2]
        if h/2**6 != int(h/2**6) or w/2**6 != int(w/2**6):
            raise Exception("Image size must be dividable by 2 at least 6 times "
                            "to avoid fractions when downscaling and upscaling."
                            "For example, use 256, 320, 384, 448, 512, ... etc. ")
        
        # Inputs
        input_image = KL.Input(shape=config.IMAGE_SHAPE.tolist(), name="input_image")
        input_image_meta = KL.Input(shape=[None], name="input_image_meta")
        if mode == "training":
            # RPN GT
            input_rpn_match = KL.Input(shape=[None, 1], name="input_rpn_match", dtype=tf.int32)
            input_rpn_bbox = KL.Input(shape=[None, 4], name="input_rpn_bbox", dtype=tf.float32)
            # GT Boxes (zero padded)
            # [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2, class_id)] in image coordinates
            input_gt_boxes = KL.Input(shape=[None, 5], name="input_gt_boxes", dtype=tf.int32)
            # Normalize coordinates
            h, w = K.shape(input_image)[1], K.shape(input_image)[2]
            image_scale = K.cast(K.stack([h, w, h, w, 1], axis=0), tf.float32)
            gt_boxes = KL.Lambda(lambda x: K.cast(x, tf.float32) / image_scale)(input_gt_boxes)
            # GT Masks (zero padded)
            # [batch, height, width, MAX_GT_INSTANCES]
            if config.USE_MINI_MASK:
                input_gt_masks = KL.Input(
                    shape=[config.MINI_MASK_SHAPE[0], config.MINI_MASK_SHAPE[1], None],
                    name="input_gt_masks", dtype=bool)
            else:
                input_gt_masks = KL.Input(
                    shape=[config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1], None],
                    name="input_gt_masks", dtype=bool)
                
        # Build the shared convolutional layers.
        # Bottom-up Layers
        # Returns a list of the last layers of each stage, 5 in total.
        # Don't create the thead (stage 5), so we pick the 4th item in the list.
        _, C2, C3, C4, C5 = resnet_graph(input_image, "resnet101", stage5=True)
        # Top-down Layers
        # TODO: add assert to varify feature map sizes match what's in config
        P5 = KL.Conv2D(256, (1, 1), name='fpn_c5p5')(C5)
        P4 = KL.Add(name="fpn_p4add")([
            KL.UpSampling2D(size=(2, 2), name="fpn_p5upsampled")(P5),
            KL.Conv2D(256, (1, 1), name='fpn_c4p4')(C4)])
        P3 = KL.Add(name="fpn_p3add")([
            KL.UpSampling2D(size=(2, 2), name="fpn_p4upsampled")(P4),
            KL.Conv2D(256, (1, 1), name='fpn_c3p3')(C3)])
        P2 = KL.Add(name="fpn_p2add")([
            KL.UpSampling2D(size=(2, 2), name="fpn_p3upsampled")(P3),
            KL.Conv2D(256, (1, 1), name='fpn_c2p2')(C2)])
        # Attach 3x3 conv to all P layers to get the final feature maps.
        P2 = KL.Conv2D(256, (3, 3), padding="SAME", name="fpn_p2")(P2)
        P3 = KL.Conv2D(256, (3, 3), padding="SAME", name="fpn_p3")(P3)
        P4 = KL.Conv2D(256, (3, 3), padding="SAME", name="fpn_p4")(P4)
        P5 = KL.Conv2D(256, (3, 3), padding="SAME", name="fpn_p5")(P5)
        # P6 is used for the 5th anchor scale in RPN. Generated by
        # subsampling from P5 with stride of 2.
        P6 = KL.MaxPooling2D(pool_size=(1, 1), strides=2, name="fpn_p6")(P5)
        
        # Note that P6 is used in RPN, but not in the classifier heads.
        rpn_feature_maps = [P2, P3, P4, P5, P6]
        mrcnn_feature_maps = [P2, P3, P4, P5]
        
        # Generate Anchors
        self.anchors = utils.generate_pyramid_anchors(config.RPN_ANCHOR_SCALES, 
                                                       config.RPN_ANCHOR_RATIOS,
                                                       config.BACKBONE_SHAPES,
                                                       config.BACKBONE_STRIDES, 
                                                       config.RPN_ANCHOR_STRIDE)    
        
        # RPN Model
        rpn = build_rpn_model(config.RPN_ANCHOR_STRIDE, 
                              len(config.RPN_ANCHOR_RATIOS), 256)
        # Loop through pyramid layers
        layer_outputs = []  # list of lists
        for p in rpn_feature_maps:
            layer_outputs.append(rpn([p]))
        # Concatenate layer outputs
        # Convert from list of lists of level outputs to list of lists 
        # of outputs across levels. 
        # e.g. [[a1, b1, c1], [a2, b2, c2]] => [[a1, a2], [b1, b2], [c1, c2]]
        output_names = ["rpn_class_logits", "rpn_class", "rpn_bbox"]
        outputs = list(zip(*layer_outputs))
        outputs = [KL.Concatenate(axis=1, name=n)(list(o)) 
                    for o, n in zip(outputs, output_names)]
        
        rpn_class_logits, rpn_class, rpn_bbox = outputs

        # Generate proposals
        # Proposals are [N, (y1, x1, y2, x2)] in normalized coordinates.
        proposal_count = config.POST_NMS_ROIS_TRAINING if mode == "training"\
                         else config.POST_NMS_ROIS_INFERENCE
        rpn_rois = ProposalLayer(proposal_count=proposal_count,
                                 nms_threshold=0.7,
                                 name="ROI",
                                 anchors=self.anchors,
                                 config=config)([rpn_class, rpn_bbox])

        if mode == "training":
            # Class ID mask to mark class IDs supported by the dataset the image
            # came from.
            _, _, _, active_class_ids = KL.Lambda(lambda x: parse_image_meta_graph(x),
                                            mask=[None, None, None, None])(input_image_meta)

            if not config.USE_RPN_ROIS:
                # Ignore predicted ROIs and use ROIs provided as an input.
                input_rois = KL.Input(shape=[config.POST_NMS_ROIS_TRAINING, 4],
                                    name="input_roi", dtype=np.int32)
                # Normalize coordinates to 0-1 range.
                target_rois = KL.Lambda(lambda x: K.cast(x, tf.float32) / image_scale[:4])(input_rois)
            else:
                target_rois = rpn_rois

            # Generate detection targets
            # Subsamples proposals and generates target outputs for training
            # Note that proposals, gt_boxes, and gt_masks might be zero padded
            # Equally, returned rois and targets might be zero padded as well
            rois, target_class_ids, target_bbox, target_mask =\
                DetectionTargetLayer(config, name="proposal_targets")([
                    target_rois, gt_boxes, input_gt_masks])

            # Network Heads
            # TODO: verify that this handles zero padded ROIs
            mrcnn_class_logits, mrcnn_class, mrcnn_bbox =\
                fpn_classifier_graph(rois, mrcnn_feature_maps, config.IMAGE_SHAPE,
                                     config.POOL_SIZE, config.NUM_CLASSES)
                
            mrcnn_mask = build_fpn_mask_graph(rois, mrcnn_feature_maps,
                                              config.IMAGE_SHAPE,
                                              config.MASK_POOL_SIZE,
                                              config.NUM_CLASSES)

            # TODO: clean up (use tf.identify if necessary)
            output_rois = KL.Lambda(lambda x: x * 1, name="output_rois")(rois)

            # Losses
            rpn_class_loss = KL.Lambda(lambda x: rpn_class_loss_graph(*x), name="rpn_class_loss")(
                [input_rpn_match, rpn_class_logits])
            rpn_bbox_loss = KL.Lambda(lambda x: rpn_bbox_loss_graph(config, *x), name="rpn_bbox_loss")(
                [input_rpn_bbox, input_rpn_match, rpn_bbox])
            class_loss = KL.Lambda(lambda x: mrcnn_class_loss_graph(*x), name="mrcnn_class_loss")(
                [target_class_ids, mrcnn_class_logits, active_class_ids])
            bbox_loss = KL.Lambda(lambda x: mrcnn_bbox_loss_graph(*x), name="mrcnn_bbox_loss")(
                [target_bbox, target_class_ids, mrcnn_bbox])
            mask_loss = KL.Lambda(lambda x: mrcnn_mask_loss_graph(*x), name="mrcnn_mask_loss")(
                [target_mask, target_class_ids, mrcnn_mask])

            # Model
            inputs = [input_image, input_image_meta, 
                    input_rpn_match, input_rpn_bbox, input_gt_boxes, input_gt_masks]
            if not config.USE_RPN_ROIS:
                inputs.append(input_rois)
            outputs = [rpn_class_logits, rpn_class, rpn_bbox,
                    mrcnn_class_logits, mrcnn_class, mrcnn_bbox, mrcnn_mask,
                    rpn_rois, output_rois,
                    rpn_class_loss, rpn_bbox_loss, class_loss, bbox_loss, mask_loss]
            model = KM.Model(inputs, outputs, name='mask_rcnn')
        else:
            # Network Heads
            # Proposal classifier and BBox regressor heads
            mrcnn_class_logits, mrcnn_class, mrcnn_bbox =\
                fpn_classifier_graph(rpn_rois, mrcnn_feature_maps, config.IMAGE_SHAPE,
                                     config.POOL_SIZE, config.NUM_CLASSES)

            # Detections
            # output is [batch, num_detections, (y1, x1, y2, x2, class_id, score)] in image coordinates
            detections = DetectionLayer(config, name="mrcnn_detection")(
                [rpn_rois, mrcnn_class, mrcnn_bbox, input_image_meta])

            # Convert boxes to normalized coordinates
            # TODO: let DetectionLayer return normalized coordinates to avoid
            #       unnecessary conversions
            h, w = config.IMAGE_SHAPE[:2]
            detection_boxes = KL.Lambda(lambda x: x[...,:4]/np.array([h, w, h, w]))(detections)
            
            # Create masks for detections
            mrcnn_mask = build_fpn_mask_graph(detection_boxes, mrcnn_feature_maps,
                                              config.IMAGE_SHAPE,
                                              config.MASK_POOL_SIZE,
                                              config.NUM_CLASSES)

            model = KM.Model([input_image, input_image_meta], 
                        [detections, mrcnn_class, mrcnn_bbox, mrcnn_mask, rpn_rois, rpn_class, rpn_bbox], 
                        name='mask_rcnn')
            
        # Add multi-GPU support.
        if config.GPU_COUNT > 1:
            from parallel_model import ParallelModel
            model = ParallelModel(model, config.GPU_COUNT)
        
        return model

    def find_last(self):
        """Finds the last checkpoint file of the last trained model in the
        model directory.
        Returns:
            log_dir: The directory where events and weights are saved
            checkpoint_path: the path to the last checkpoint file
        """
        # Get directory names. Each directory corresponds to a model
        dir_names = next(os.walk(self.model_dir))[1]
        key = self.config.NAME.lower()
        dir_names = filter(lambda f: f.startswith(key), dir_names)
        dir_names = sorted(dir_names)
        if not dir_names:
            return None, None
        # Pick last directory
        dir_name = os.path.join(self.model_dir, dir_names[-1])
        # Find the last checkpoint
        checkpoints = next(os.walk(dir_name))[2]
        checkpoints = filter(lambda f: f.startswith("mask_rcnn"), checkpoints)
        checkpoints = sorted(checkpoints)
        if not checkpoints:
            return dir_name, None
        checkpoint = os.path.join(dir_name, checkpoints[-1])
        return dir_name, checkpoint

    def load_weights(self, filepath, by_name=False, exclude=None):
        """Modified version of the correspoding Keras function with
        the addition of multi-GPU support and the ability to exclude
        some layers from loading.
        exlude: list of layer names to excluce
        """
        import h5py
        from keras.engine import topology

        if exclude:
            by_name = True

        if h5py is None:
            raise ImportError('`load_weights` requires h5py.')
        f = h5py.File(filepath, mode='r')
        if 'layer_names' not in f.attrs and 'model_weights' in f:
            f = f['model_weights']

        # In multi-GPU training, we wrap the model. Get layers
        # of the inner model because they have the weights.
        keras_model = self.keras_model
        layers = keras_model.inner_model.layers if hasattr(keras_model, "inner_model")\
            else keras_model.layers

        # Exclude some layers
        if exclude:
            layers = filter(lambda l: l.name not in exclude, layers)
        
        if by_name:
            topology.load_weights_from_hdf5_group_by_name(f, layers)
        else:
            topology.load_weights_from_hdf5_group(f, layers)
        if hasattr(f, 'close'):
            f.close()

        # Update the log directory
        self.set_log_dir(filepath)

    def get_imagenet_weights(self):
        """Downloads ImageNet trained weights from Keras.
        Returns path to weights file.
        """
        from keras.utils.data_utils import get_file
        TF_WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/'\
                                 'releases/download/v0.2/'\
                                 'resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5'
        weights_path = get_file('resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5',
                                TF_WEIGHTS_PATH_NO_TOP,
                                cache_subdir='models',
                                md5_hash='a268eb855778b3df3c7506639542a6af')
        return weights_path
        
    def compile(self, learning_rate, momentum):
        """Gets the model ready for training. Adds losses, regularization, and
        metrics. Then calls the Keras compile() function.
        """
        # Optimizer object
        optimizer = keras.optimizers.SGD(lr=learning_rate, momentum=momentum,
                                         clipnorm=5.0)
        # Add Losses
        # First, clear previously set losses to avoid duplication
        self.keras_model._losses = []
        self.keras_model._per_input_losses = {}
        loss_names = ["rpn_class_loss", "rpn_bbox_loss",
                    "mrcnn_class_loss", "mrcnn_bbox_loss", "mrcnn_mask_loss"]
        for name in loss_names:
            layer = self.keras_model.get_layer(name)
            if layer.output in self.keras_model.losses:
                continue
            self.keras_model.add_loss(tf.reduce_mean(layer.output, keep_dims=True))

        # Add L2 Regularization
        reg_losses = [keras.regularizers.l2(self.config.WEIGHT_DECAY)(w)
                    for w in self.keras_model.trainable_weights]
        self.keras_model.add_loss(tf.add_n(reg_losses))
            
        # Compile
        self.keras_model.compile(optimizer=optimizer, loss=[None]*len(self.keras_model.outputs))

        # Add metrics
        for name in loss_names:
            if name in self.keras_model.metrics_names:
                continue
            layer = self.keras_model.get_layer(name)
            self.keras_model.metrics_names.append(name)
            self.keras_model.metrics_tensors.append(tf.reduce_mean(layer.output,
                                                    keep_dims=True))

    def set_trainable(self, layer_regex, keras_model=None, indent=0, verbose=1):
        """Sets model layers as trainable if their names match
        the given regular expression.
        """
        # Print message on the first call (but not on recursive calls)
        if verbose > 0 and keras_model is None:
            log("Selecting layers to train")

        keras_model = keras_model or self.keras_model

        # In multi-GPU training, we wrap the model. Get layers
        # of the inner model because they have the weights.
        layers = keras_model.inner_model.layers if hasattr(keras_model, "inner_model")\
            else keras_model.layers

        for layer in layers:
            # Is the layer a model?
            if layer.__class__.__name__ == 'Model':
                print("In model: ", layer.name)
                self.set_trainable(layer_regex, keras_model=layer, indent=indent+4)
                continue

            if not layer.weights:
                continue
            # Is it trainable?
            trainable = bool(re.fullmatch(layer_regex, layer.name))
            # Update layer. If layer is a container, update inner layer.
            if layer.__class__.__name__ == 'TimeDistributed':
                layer.layer.trainable = trainable
            else:
                layer.trainable = trainable
            # Print trainble layer names
            if trainable and verbose > 0:
                log("{}{:20}   ({})".format(" " * indent, layer.name,
                                            layer.__class__.__name__))

    def set_log_dir(self, model_path=None):
        """Sets the model log directory and epoch counter.

        model_path: If None, or a format different from what this code uses
            then set a new log directory and start epochs from 0. Otherwise,
            extract the log directory and the epoch counter from the file
            name.
        """
        # Set date and epoch counter as if starting a new model
        self.epoch = 0
        now = datetime.datetime.now()

        # If we have a model path with date and epochs use them
        if model_path:
            # Continue from we left of. Get epoch and date from the file name
            # A sample model path might look like:
            # /path/to/logs/coco20171029T2315/mask_rcnn_coco_0001.h5
            regex = r".*/\w+(\d{4})(\d{2})(\d{2})T(\d{2})(\d{2})/mask\_rcnn\_\w+(\d{4})\.h5"
            m = re.match(regex, model_path)
            if m:
                now = datetime.datetime(int(m.group(1)), int(m.group(2)), int(m.group(3)),
                                        int(m.group(4)), int(m.group(5)))
                self.epoch = int(m.group(6)) + 1

        # Directory for training logs
        self.log_dir = os.path.join(self.model_dir, "{}{:%Y%m%dT%H%M}".format(
            self.config.NAME.lower(), now))

        # Path to save after each epoch. Include placeholders that get filled by Keras.
        self.checkpoint_path = os.path.join(self.log_dir, "mask_rcnn_{}_*epoch*.h5".format(
            self.config.NAME.lower()))
        self.checkpoint_path = self.checkpoint_path.replace("*epoch*", "{epoch:04d}")
        

    def train(self, train_dataset, val_dataset, learning_rate, epochs, layers):
        """Train the model.
        train_dataset, val_dataset: Training and validation Dataset objects.
        learning_rate: The learning rate to train with
        epochs: Number of training epochs. Note that previous training epochs
                are considered to be done alreay, so this actually determines
                the epochs to train in total rather than in this particaular
                call.
        layers: Allows selecting wich layers to train. It can be:
            - A regular expression to match layer names to train
            - One of these predefined values:
              heaads: The RPN, classifier and mask heads of the network
              all: All the layers
              3+: Train Resnet stage 3 and up
              4+: Train Resnet stage 4 and up
              5+: Train Resnet stage 5 and up
        """
        assert self.mode == "training", "Create model in training mode."

        # Pre-defined layer regular expressions
        layer_regex = {
            # all layers but the backbone
            "heads": r"(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)",
            # From Resnet stage 4 layers and up
            "3+": r"(res3.*)|(bn3.*)|(res4.*)|(bn4.*)|(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)",
            "4+": r"(res4.*)|(bn4.*)|(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)",
            "5+": r"(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)",
            # All layers
            "all": ".*",
        }
        if layers in layer_regex.keys():
            layers = layer_regex[layers]

        # Data generators
        train_generator = data_generator(train_dataset, self.config, shuffle=True, 
                                                batch_size=self.config.BATCH_SIZE)
        val_generator = data_generator(val_dataset, self.config, shuffle=True, 
                                            batch_size=self.config.BATCH_SIZE)

        # Callbacks
        callbacks = [
            keras.callbacks.TensorBoard(log_dir=self.log_dir,
                                        histogram_freq=0, write_graph=True, write_images=False),
            keras.callbacks.ModelCheckpoint(self.checkpoint_path,
                                            verbose=0, save_weights_only=True),
        ]
        
        # Common parameters to pass to fit_generator()
        fit_kwargs = {
            "steps_per_epoch": self.config.STEPS_PER_EPOCH,
            "callbacks": callbacks,
            "validation_data": next(val_generator),
            "validation_steps": self.config.VALIDATION_STPES,
            "max_queue_size": 100,
            "workers": max(self.config.BATCH_SIZE // 2, 2),
            "use_multiprocessing": True,
        }
        
        # Train
        log("\nStarting at epoch {}. LR={}\n".format(self.epoch, learning_rate))
        log("Checkpoint Path: {}".format(self.checkpoint_path))
        self.set_trainable(layers)
        self.compile(learning_rate, self.config.LEARNING_MOMENTUM)

        self.keras_model.fit_generator(
            train_generator,
            initial_epoch=self.epoch,
            epochs=epochs,
            **fit_kwargs
            )
        self.epoch = max(self.epoch, epochs)
            
    def mold_inputs(self, images):
        """Takes a list of images and modifies them to the format expected
        as an input to the neural network.
        images: List of image matricies [height,width,depth]. Images can have
            different sizes.
        
        Returns 3 Numpy matricies:
        molded_images: [N, h, w, 3]. Images resized and normalized.
        image_metas: [N, length of meta data]. Details about each image.
        windows: [N, (y1, x1, y2, x2)]. The portion of the image that has the
            original image (padding excluded).
        """
        molded_images = []
        image_metas = []
        windows = []
        for image in images:
            # Resize image to fit the model expected size
            # TODO: move resizing to mold_image()
            molded_image, window, scale, padding = utils.resize_image(
                image,
                min_dim=self.config.IMAGE_MIN_DIM,
                max_dim=self.config.IMAGE_MAX_DIM,
                padding=self.config.IMAGE_PADDING)
            molded_image = mold_image(molded_image, self.config)
            # Build image_meta
            image_meta = compose_image_meta(
                0, image.shape, window, 
                np.zeros([self.config.NUM_CLASSES], dtype=np.int32))
            # Append
            molded_images.append(molded_image)
            windows.append(window)
            image_metas.append(image_meta)
        # Pack into arrays
        molded_images = np.stack(molded_images)
        image_metas = np.stack(image_metas)
        windows = np.stack(windows)
        return molded_images, image_metas, windows

    def unmold_detections(self, detections, mrcnn_mask, image_shape, window):
        """Reformats the detections of one image from the format of the neural
        network output to a format suitable for use in the rest of the
        application.

        detections: [N, (y1, x1, y2, x2, class_id, score)]
        mrcnn_mask: [N, height, width, num_classes]
        image_shape: [height, width, depth] Original size of the image before resizing
        window: [y1, x1, y2, x2] Box in the image where the real image is
                excluding the padding.
        
        Returns:
        boxes: [N, (y1, x1, y2, x2)] Bounding boxes in pixels
        class_ids: [N] Integer class IDs for each bounding box
        scores: [N] Float probability scores of the class_id
        masks: [height, width, num_instances] Instance masks
        """
        # How many detections do we have?
        # Detections array is padded with zeros. Find the first class_id == 0.
        zero_ix = np.where(detections[:,4] == 0)[0]
        N = zero_ix[0] if zero_ix.shape[0] > 0 else detections.shape[0]
        
        # Extract boxes, class_ids, scores, and class-specific masks
        boxes = detections[:N, :4]
        class_ids = detections[:N, 4].astype(np.int32)
        scores = detections[:N, 5]
        masks = mrcnn_mask[np.arange(N), :, :, class_ids]

        # Filter out detections with zero area. Often only happens in early
        # stages of training when the network weights are still a bit random.
        exclude_ix = np.where((boxes[:, 2] - boxes[:, 0]) * (boxes[:, 2] - boxes[:, 0]) <= 0)[0]
        if exclude_ix.shape[0] > 0:
            boxes = np.delete(boxes, exclude_ix, axis=0)
            class_ids = np.delete(class_ids, exclude_ix, axis=0)
            scores = np.delete(scores, exclude_ix, axis=0)
            masks = np.delete(masks, exclude_ix, axis=0)
            N = class_ids.shape[0]

        # Compute scale and shift to translate coordinates to image domain.
        h_scale = image_shape[0] / (window[2] - window[0])
        w_scale = image_shape[1] / (window[3] - window[1])
        scale = min(h_scale, w_scale)
        shift = window[:2]  # y, x
        scales = np.array([scale, scale, scale, scale])
        shifts = np.array([shift[0], shift[1], shift[0], shift[1]])
        
        # Translate bounding boxes to image domain
        boxes = np.multiply(boxes - shifts, scales).astype(np.int32)
        
        # Resize masks to original image size and set boundary threshold.
        full_masks = []
        for i in range(N):
            # Convert neural network mask to full size mask
            full_mask = utils.unmold_mask(masks[i], boxes[i], image_shape)
            full_masks.append(full_mask)
        full_masks = np.stack(full_masks, axis=-1)\
                    if full_masks else np.empty((0,) + masks.shape[1:3])
        
        return boxes, class_ids, scores, full_masks

    def detect(self, images, verbose=0):
        """Runs the detection pipeline.

        images: List of images, potentially of different sizes.

        Returns a list of dicts, one dict per image. The dict contains:
        rois: [N, (y1, x1, y2, x2)] detection bounding boxes
        class_ids: [N] int class IDs
        scores: [N] float probability scores for the class IDs
        masks: [H, W, N] instance binary masks
        """
        assert self.mode == "inference", "Create model in inference mode."

        if verbose: 
            log("Processing {} images".format(len(images)))
            for image in images:
                log("image", image)
        # Mold inputs to format expected by the neural network
        molded_images, image_metas, windows = self.mold_inputs(images)
        if verbose:
            log("molded_images", molded_images)
            log("image_metas", image_metas)
        # Run object detection
        detections, mrcnn_class, mrcnn_bbox, mrcnn_mask, \
        rois, rpn_class, rpn_bbox =\
            self.keras_model.predict([molded_images, image_metas], verbose=0)
        # Process detections
        results = []
        for i, image in enumerate(images):
            final_rois, final_class_ids, final_scores, final_masks =\
                self.unmold_detections(detections[i], mrcnn_mask[i],
                                       image.shape, windows[i])
            results.append({
                "rois": final_rois,
                "class_ids": final_class_ids,
                "scores": final_scores,
                "masks": final_masks,
            })
        return results

    def ancestor(self, tensor, name, checked=None):
        """Finds the ancestor of a TF tensor in the computation graph.
        tensor: TensorFlow symbolic tensor.
        name: Name of ancestor tensor to find
        checked: For internal use. A list of tensors that were already 
                 searched to avoid loops in traversing the graph.
        """
        checked = checked if checked is not None else []
        # Put a limit on how deep we go to avoid very long loops
        if len(checked) > 500:
            return None
        # Convert name to a regex and allow matching a number prefix
        # because Keras adds them automatically
        if isinstance(name, str):
            name = re.compile(name.replace("/", r"(\_\d+)*/"))
        
        parents = tensor.op.inputs
        for p in parents:
            if p in checked:
                continue
            if bool(re.fullmatch(name, p.name)):
                return p
            checked.append(p)
            a = self.ancestor(p, name, checked)
            if a is not None:
                return a
        return None

    def find_trainable_layer(self, layer):
        """If a layer is encapsulated by another layer, this function
        digs through the encapsulation and returns the layer that holds
        the weights.
        """
        if layer.__class__.__name__ == 'TimeDistributed':
            return self.find_trainable_layer(layer.layer)
        return layer

    def get_trainable_layers(self):
        """Returns a list of layers that have weights."""
        layers = []
        # Loop through all layers
        for l in self.keras_model.layers:
            # If layer is a wrapper, find inner trainable layer
            l = self.find_trainable_layer(l)
            # Include layer if it has weights
            if l.get_weights():
                layers.append(l)
        return layers
    
    def run_graph(self, images, outputs):
        """Runs a sub-set of the computation graph that computes the given
        outputs.

        outputs: List of tuples (name, tensor) to compute. The tensors are 
            symbolic TensorFlow tensors and the names are for easy tracking.

        Returns an ordered dict of results. Keys are the names received in the
        input and values are Numpy arrays.
        """
        model = self.keras_model

        # Organize desired outputs into an ordered dict
        outputs = OrderedDict(outputs)
        for o in outputs.values():
            assert o is not None

        # Build a Keras function to run parts of the computation graph
        inputs = model.inputs
        if model.uses_learning_phase and not isinstance(K.learning_phase(), int):
            inputs += [K.learning_phase()]
        kf = K.function(model.inputs, list(outputs.values()))

        # Run inference
        molded_images, image_metas, windows = self.mold_inputs(images)
        # TODO: support training mode?
        # if TEST_MODE == "training":
        #     model_in = [molded_images, image_metas, 
        #                 target_rpn_match, target_rpn_bbox, 
        #                 gt_boxes, gt_masks]
        #     if not config.USE_RPN_ROIS:
        #         model_in.append(target_rois)
        #     if model.uses_learning_phase and not isinstance(K.learning_phase(), int):
        #         model_in.append(1.)
        #     outputs_np = kf(model_in)
        # else:

        model_in = [molded_images, image_metas]
        if model.uses_learning_phase and not isinstance(K.learning_phase(), int):
            model_in.append(0.)
        outputs_np = kf(model_in)

        # Pack the generated Numpy arrays into a a dict and log the results.
        outputs_np = OrderedDict([(k, v) for k, v in zip(outputs.keys(), outputs_np)])
        for k, v in outputs_np.items():
            log(k, v)
        return outputs_np


############################################################
#  Data Formatting
############################################################

def compose_image_meta(image_id, image_shape, window, active_class_ids):
    """Takes attributes of an image and puts them in one 1D array. Use
    parse_image_meta() to parse the values back.
    
    image_id: An int ID of the image. Useful for debugging.
    image_shape: [height, width, channels]
    window: (y1, x1, y2, x2) in pixels. The area of the image where the real
            image is (excluding the padding)
    active_class_ids: List of class_ids available in the dataset from which
        the image came. Useful if training on images from multiple datasets
        where not all classes are present in all datasets.
    """
    meta = np.array(
        [image_id] +            # size=1
        list(image_shape) +     # size=3
        list(window) +          # size=4 (y1, x1, y2, x2) in image cooredinates
        list(active_class_ids)  # size=num_classes
    )
    return meta


# Two functions (for Numpy and TF) to parse image_meta tensors.
def parse_image_meta(meta):
    """Parses an image info Numpy array to its components.
    See compose_image_meta() for more details.
    """
    image_id = meta[:, 0]
    image_shape = meta[:, 1:4]
    window = meta[:, 4:8]   # (y1, x1, y2, x2) window of image in in pixels
    active_class_ids = meta[:, 8:]
    return image_id, image_shape, window, active_class_ids


def parse_image_meta_graph(meta):
    """Parses a tensor that contains image attributes to its components.
    See compose_image_meta() for more details.

    meta: [batch, meta length] where meta length depends on NUM_CLASSES
    """
    image_id = meta[:, 0]
    image_shape = meta[:, 1:4]
    window = meta[:, 4:8]
    active_class_ids = meta[:, 8:]
    return [image_id, image_shape, window, active_class_ids]


def mold_image(images, config):
    """Takes RGB images with 0-255 values and subtraces
    the mean pixel and converts it to float. Expects image
    colors in RGB order.
    """
    return images.astype(np.float32) - config.MEAN_PIXEL


def unmold_image(normalized_images, config):
    """Takes a image normalized with mold() and returns the original."""
    return (normalized_images + config.MEAN_PIXEL).astype(np.uint8)


############################################################
#  Miscellenous Graph Functions
############################################################

def trim_zeros_graph(boxes):
    """Often boxes are represented with matricies of shape [N, 4] and
    are padded with zeros. This removes zero boxes.

    boxes: [N, 4] matrix of boxes.

    TODO: use this function to reduce code duplication
    """
    area = tf.boolean_mask(boxes, tf.cast(tf.reduce_sum(tf.abs(boxes), axis=1),
                           tf.bool))


def batch_pack_graph(x, counts, num_rows):
    """Picks different number of values from each row
    in x depending on the values in counts.
    """
    outputs = []
    for i in range(num_rows):
        outputs.append(x[i, :counts[i]])
    return tf.concat(outputs, axis=0)