utils.py 26.5 KB
Newer Older
W
Waleed Abdulla 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
"""
Mask R-CNN
Common utility functions and classes.

Copyright (c) 2017 Matterport, Inc.
Licensed under the MIT License (see LICENSE for details)
Written by Waleed Abdulla
"""

import sys
import os
import math
import random
import numpy as np
import tensorflow as tf
import scipy.misc
import skimage.color
18
import skimage.io
19
import skimage.transform
20 21
import urllib.request
import shutil
22
import warnings
23 24 25

# URL from which to download the latest COCO trained weights
COCO_MODEL_URL = "https://github.com/matterport/Mask_RCNN/releases/download/v2.0/mask_rcnn_coco.h5"
W
Waleed Abdulla 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96


############################################################
#  Bounding Boxes
############################################################

def extract_bboxes(mask):
    """Compute bounding boxes from masks.
    mask: [height, width, num_instances]. Mask pixels are either 1 or 0.

    Returns: bbox array [num_instances, (y1, x1, y2, x2)].
    """
    boxes = np.zeros([mask.shape[-1], 4], dtype=np.int32)
    for i in range(mask.shape[-1]):
        m = mask[:, :, i]
        # Bounding box.
        horizontal_indicies = np.where(np.any(m, axis=0))[0]
        vertical_indicies = np.where(np.any(m, axis=1))[0]
        if horizontal_indicies.shape[0]:
            x1, x2 = horizontal_indicies[[0, -1]]
            y1, y2 = vertical_indicies[[0, -1]]
            # x2 and y2 should not be part of the box. Increment by 1.
            x2 += 1
            y2 += 1
        else:
            # No mask for this instance. Might happen due to
            # resizing or cropping. Set bbox to zeros
            x1, x2, y1, y2 = 0, 0, 0, 0
        boxes[i] = np.array([y1, x1, y2, x2])
    return boxes.astype(np.int32)


def compute_iou(box, boxes, box_area, boxes_area):
    """Calculates IoU of the given box with the array of the given boxes.
    box: 1D vector [y1, x1, y2, x2]
    boxes: [boxes_count, (y1, x1, y2, x2)]
    box_area: float. the area of 'box'
    boxes_area: array of length boxes_count.

    Note: the areas are passed in rather than calculated here for
          efficency. Calculate once in the caller to avoid duplicate work.
    """
    # Calculate intersection areas
    y1 = np.maximum(box[0], boxes[:, 0])
    y2 = np.minimum(box[2], boxes[:, 2])
    x1 = np.maximum(box[1], boxes[:, 1])
    x2 = np.minimum(box[3], boxes[:, 3])
    intersection = np.maximum(x2 - x1, 0) * np.maximum(y2 - y1, 0)
    union = box_area + boxes_area[:] - intersection[:]
    iou = intersection / union
    return iou


def compute_overlaps(boxes1, boxes2):
    """Computes IoU overlaps between two sets of boxes.
    boxes1, boxes2: [N, (y1, x1, y2, x2)].

    For better performance, pass the largest set first and the smaller second.
    """
    # Areas of anchors and GT boxes
    area1 = (boxes1[:, 2] - boxes1[:, 0]) * (boxes1[:, 3] - boxes1[:, 1])
    area2 = (boxes2[:, 2] - boxes2[:, 0]) * (boxes2[:, 3] - boxes2[:, 1])

    # Compute overlaps to generate matrix [boxes1 count, boxes2 count]
    # Each cell contains the IoU value.
    overlaps = np.zeros((boxes1.shape[0], boxes2.shape[0]))
    for i in range(overlaps.shape[1]):
        box2 = boxes2[i]
        overlaps[:, i] = compute_iou(box2, boxes1, area2[i], area1)
    return overlaps

刘定坤 已提交
97

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
def compute_overlaps_masks(masks1, masks2):
    '''Computes IoU overlaps between two sets of masks.
    masks1, masks2: [Height, Width, instances]
    '''
    # flatten masks
    masks1 = np.reshape(masks1 > .5, (-1, masks1.shape[-1])).astype(np.float32)
    masks2 = np.reshape(masks2 > .5, (-1, masks2.shape[-1])).astype(np.float32)
    area1 = np.sum(masks1, axis=0)
    area2 = np.sum(masks2, axis=0)

    # intersections and union
    intersections = np.dot(masks1.T, masks2)
    union = area1[:, None] + area2[None, :] - intersections
    overlaps = intersections / union

    return overlaps

W
Waleed Abdulla 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

def non_max_suppression(boxes, scores, threshold):
    """Performs non-maximum supression and returns indicies of kept boxes.
    boxes: [N, (y1, x1, y2, x2)]. Notice that (y2, x2) lays outside the box.
    scores: 1-D array of box scores.
    threshold: Float. IoU threshold to use for filtering.
    """
    assert boxes.shape[0] > 0
    if boxes.dtype.kind != "f":
        boxes = boxes.astype(np.float32)

    # Compute box areas
    y1 = boxes[:, 0]
    x1 = boxes[:, 1]
    y2 = boxes[:, 2]
    x2 = boxes[:, 3]
    area = (y2 - y1) * (x2 - x1)

    # Get indicies of boxes sorted by scores (highest first)
    ixs = scores.argsort()[::-1]

    pick = []
    while len(ixs) > 0:
        # Pick top box and add its index to the list
        i = ixs[0]
        pick.append(i)
        # Compute IoU of the picked box with the rest
        iou = compute_iou(boxes[i], boxes[ixs[1:]], area[i], area[ixs[1:]])
        # Identify boxes with IoU over the threshold. This
        # returns indicies into ixs[1:], so add 1 to get
        # indicies into ixs.
        remove_ixs = np.where(iou > threshold)[0] + 1
        # Remove indicies of the picked and overlapped boxes.
        ixs = np.delete(ixs, remove_ixs)
        ixs = np.delete(ixs, 0)
    return np.array(pick, dtype=np.int32)


def apply_box_deltas(boxes, deltas):
    """Applies the given deltas to the given boxes.
    boxes: [N, (y1, x1, y2, x2)]. Note that (y2, x2) is outside the box.
    deltas: [N, (dy, dx, log(dh), log(dw))]
    """
    boxes = boxes.astype(np.float32)
    # Convert to y, x, h, w
    height = boxes[:, 2] - boxes[:, 0]
    width = boxes[:, 3] - boxes[:, 1]
    center_y = boxes[:, 0] + 0.5 * height
    center_x = boxes[:, 1] + 0.5 * width
    # Apply deltas
    center_y += deltas[:, 0] * height
    center_x += deltas[:, 1] * width
    height *= np.exp(deltas[:, 2])
    width *= np.exp(deltas[:, 3])
    # Convert back to y1, x1, y2, x2
    y1 = center_y - 0.5 * height
    x1 = center_x - 0.5 * width
    y2 = y1 + height
    x2 = x1 + width
    return np.stack([y1, x1, y2, x2], axis=1)


def box_refinement_graph(box, gt_box):
    """Compute refinement needed to transform box to gt_box.
    box and gt_box are [N, (y1, x1, y2, x2)]
    """
    box = tf.cast(box, tf.float32)
    gt_box = tf.cast(gt_box, tf.float32)

    height = box[:, 2] - box[:, 0]
    width = box[:, 3] - box[:, 1]
    center_y = box[:, 0] + 0.5 * height
    center_x = box[:, 1] + 0.5 * width

    gt_height = gt_box[:, 2] - gt_box[:, 0]
    gt_width = gt_box[:, 3] - gt_box[:, 1]
    gt_center_y = gt_box[:, 0] + 0.5 * gt_height
    gt_center_x = gt_box[:, 1] + 0.5 * gt_width

    dy = (gt_center_y - center_y) / height
    dx = (gt_center_x - center_x) / width
    dh = tf.log(gt_height / height)
    dw = tf.log(gt_width / width)

    result = tf.stack([dy, dx, dh, dw], axis=1)
    return result


def box_refinement(box, gt_box):
    """Compute refinement needed to transform box to gt_box.
    box and gt_box are [N, (y1, x1, y2, x2)]. (y2, x2) is
    assumed to be outside the box.
    """
    box = box.astype(np.float32)
    gt_box = gt_box.astype(np.float32)

    height = box[:, 2] - box[:, 0]
    width = box[:, 3] - box[:, 1]
    center_y = box[:, 0] + 0.5 * height
    center_x = box[:, 1] + 0.5 * width

    gt_height = gt_box[:, 2] - gt_box[:, 0]
    gt_width = gt_box[:, 3] - gt_box[:, 1]
    gt_center_y = gt_box[:, 0] + 0.5 * gt_height
    gt_center_x = gt_box[:, 1] + 0.5 * gt_width

    dy = (gt_center_y - center_y) / height
    dx = (gt_center_x - center_x) / width
    dh = np.log(gt_height / height)
    dw = np.log(gt_width / width)

    return np.stack([dy, dx, dh, dw], axis=1)


############################################################
#  Dataset
############################################################

class Dataset(object):
    """The base class for dataset classes.
    To use it, create a new class that adds functions specific to the dataset
    you want to use. For example:

    class CatsAndDogsDataset(Dataset):
        def load_cats_and_dogs(self):
            ...
        def load_mask(self, image_id):
            ...
        def image_reference(self, image_id):
            ...

    See COCODataset and ShapesDataset as examples.
    """
G
Gyuri Im 已提交
248

W
Waleed Abdulla 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
    def __init__(self, class_map=None):
        self._image_ids = []
        self.image_info = []
        # Background is always the first class
        self.class_info = [{"source": "", "id": 0, "name": "BG"}]
        self.source_class_ids = {}

    def add_class(self, source, class_id, class_name):
        assert "." not in source, "Source name cannot contain a dot"
        # Does the class exist already?
        for info in self.class_info:
            if info['source'] == source and info["id"] == class_id:
                # source.class_id combination already available, skip
                return
        # Add the class
        self.class_info.append({
            "source": source,
            "id": class_id,
            "name": class_name,
        })

    def add_image(self, source, image_id, path, **kwargs):
        image_info = {
            "id": image_id,
            "source": source,
            "path": path,
        }
        image_info.update(kwargs)
        self.image_info.append(image_info)

    def image_reference(self, image_id):
        """Return a link to the image in its source Website or details about
        the image that help looking it up or debugging it.

        Override for your dataset, but pass to this function
        if you encounter images not in your dataset.
        """
        return ""

    def prepare(self, class_map=None):
        """Prepares the Dataset class for use.

        TODO: class map is not supported yet. When done, it should handle mapping
              classes from different datasets to the same class ID.
        """
刘定坤 已提交
294

W
Waleed Abdulla 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
        def clean_name(name):
            """Returns a shorter version of object names for cleaner display."""
            return ",".join(name.split(",")[:1])

        # Build (or rebuild) everything else from the info dicts.
        self.num_classes = len(self.class_info)
        self.class_ids = np.arange(self.num_classes)
        self.class_names = [clean_name(c["name"]) for c in self.class_info]
        self.num_images = len(self.image_info)
        self._image_ids = np.arange(self.num_images)

        self.class_from_source_map = {"{}.{}".format(info['source'], info['id']): id
                                      for info, id in zip(self.class_info, self.class_ids)}

        # Map sources to class_ids they support
        self.sources = list(set([i['source'] for i in self.class_info]))
        self.source_class_ids = {}
        # Loop over datasets
        for source in self.sources:
            self.source_class_ids[source] = []
            # Find classes that belong to this dataset
            for i, info in enumerate(self.class_info):
                # Include BG class in all datasets
                if i == 0 or source == info['source']:
                    self.source_class_ids[source].append(i)

    def map_source_class_id(self, source_class_id):
        """Takes a source class ID and returns the int class ID assigned to it.

G
Gyuri Im 已提交
324
        For example:
W
Waleed Abdulla 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
        dataset.map_source_class_id("coco.12") -> 23
        """
        return self.class_from_source_map[source_class_id]

    def get_source_class_id(self, class_id, source):
        """Map an internal class ID to the corresponding class ID in the source dataset."""
        info = self.class_info[class_id]
        assert info['source'] == source
        return info['id']

    def append_data(self, class_info, image_info):
        self.external_to_class_id = {}
        for i, c in enumerate(self.class_info):
            for ds, id in c["map"]:
                self.external_to_class_id[ds + str(id)] = i

        # Map external image IDs to internal ones.
        self.external_to_image_id = {}
        for i, info in enumerate(self.image_info):
            self.external_to_image_id[info["ds"] + str(info["id"])] = i

    @property
    def image_ids(self):
        return self._image_ids

    def source_image_link(self, image_id):
        """Returns the path or URL to the image.
        Override this to return a URL to the image if it's availble online for easy
        debugging.
        """
        return self.image_info[image_id]["path"]

    def load_image(self, image_id):
        """Load the specified image and return a [H,W,3] Numpy array.
        """
        # Load image
361
        image = skimage.io.imread(self.image_info[image_id]['path'])
W
Waleed Abdulla 已提交
362 363 364
        # If grayscale. Convert to RGB for consistency.
        if image.ndim != 3:
            image = skimage.color.gray2rgb(image)
365 366 367
        # If has an alpha channel, remove it for consistency
        if image.shape[-1] == 4:
            image = image[..., :3]
W
Waleed Abdulla 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
        return image

    def load_mask(self, image_id):
        """Load instance masks for the given image.

        Different datasets use different ways to store masks. Override this
        method to load instance masks and return them in the form of am
        array of binary masks of shape [height, width, instances].

        Returns:
            masks: A bool array of shape [height, width, instance count] with
                a binary mask per instance.
            class_ids: a 1D array of class IDs of the instance masks.
        """
        # Override this function to load a mask from your dataset.
        # Otherwise, it returns an empty mask.
        mask = np.empty([0, 0, 0])
        class_ids = np.empty([0], np.int32)
        return mask, class_ids


def resize_image(image, min_dim=None, max_dim=None, padding=False):
    """
    Resizes an image keeping the aspect ratio.

    min_dim: if provided, resizes the image such that it's smaller
        dimension == min_dim
    max_dim: if provided, ensures that the image longest side doesn't
        exceed this value.
    padding: If true, pads image with zeros so it's size is max_dim x max_dim

    Returns:
    image: the resized image
    window: (y1, x1, y2, x2). If max_dim is provided, padding might
        be inserted in the returned image. If so, this window is the
        coordinates of the image part of the full image (excluding
        the padding). The x2, y2 pixels are not included.
    scale: The scale factor used to resize the image
    padding: Padding added to the image [(top, bottom), (left, right), (0, 0)]
    """
    # Default window (y1, x1, y2, x2) and default scale == 1.
    h, w = image.shape[:2]
    window = (0, 0, h, w)
    scale = 1

    # Scale?
    if min_dim:
        # Scale up but not down
        scale = max(1, min_dim / min(h, w))
    # Does it exceed max dim?
    if max_dim:
        image_max = max(h, w)
        if round(image_max * scale) > max_dim:
            scale = max_dim / image_max
    # Resize image and mask
    if scale != 1:
        image = scipy.misc.imresize(
            image, (round(h * scale), round(w * scale)))
    # Need padding?
    if padding:
        # Get new height and width
        h, w = image.shape[:2]
        top_pad = (max_dim - h) // 2
        bottom_pad = max_dim - h - top_pad
        left_pad = (max_dim - w) // 2
        right_pad = max_dim - w - left_pad
        padding = [(top_pad, bottom_pad), (left_pad, right_pad), (0, 0)]
        image = np.pad(image, padding, mode='constant', constant_values=0)
        window = (top_pad, left_pad, h + top_pad, w + left_pad)
    return image, window, scale, padding


def resize_mask(mask, scale, padding):
    """Resizes a mask using the given scale and padding.
    Typically, you get the scale and padding from resize_image() to
    ensure both, the image and the mask, are resized consistently.

    scale: mask scaling factor
    padding: Padding to add to the mask in the form
            [(top, bottom), (left, right), (0, 0)]
    """
449 450 451 452 453
    # Suppress warning from scipy 0.13.0, the output shape of zoom() is
    # calculated with round() instead of int()
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        mask = scipy.ndimage.zoom(mask, zoom=[scale, scale, 1], order=0)
W
Waleed Abdulla 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
    mask = np.pad(mask, padding, mode='constant', constant_values=0)
    return mask


def minimize_mask(bbox, mask, mini_shape):
    """Resize masks to a smaller version to cut memory load.
    Mini-masks can then resized back to image scale using expand_masks()

    See inspect_data.ipynb notebook for more details.
    """
    mini_mask = np.zeros(mini_shape + (mask.shape[-1],), dtype=bool)
    for i in range(mask.shape[-1]):
        m = mask[:, :, i]
        y1, x1, y2, x2 = bbox[i][:4]
        m = m[y1:y2, x1:x2]
469 470
        if m.size == 0:
            raise Exception("Invalid bounding box with area of zero")
471 472
        # Resize with bilinear interpolation
        m = skimage.transform.resize(m, mini_shape, order=1)
473
        mini_mask[:, :, i] = np.around(m).astype(np.bool)
W
Waleed Abdulla 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
    return mini_mask


def expand_mask(bbox, mini_mask, image_shape):
    """Resizes mini masks back to image size. Reverses the change
    of minimize_mask().

    See inspect_data.ipynb notebook for more details.
    """
    mask = np.zeros(image_shape[:2] + (mini_mask.shape[-1],), dtype=bool)
    for i in range(mask.shape[-1]):
        m = mini_mask[:, :, i]
        y1, x1, y2, x2 = bbox[i][:4]
        h = y2 - y1
        w = x2 - x1
489 490
        # Resize with bilinear interpolation
        m = skimage.transform.resize(m, (h, w), order=1)
491
        mask[y1:y2, x1:x2, i] = np.around(m).astype(np.bool)
W
Waleed Abdulla 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
    return mask


# TODO: Build and use this function to reduce code duplication
def mold_mask(mask, config):
    pass


def unmold_mask(mask, bbox, image_shape):
    """Converts a mask generated by the neural network into a format similar
    to it's original shape.
    mask: [height, width] of type float. A small, typically 28x28 mask.
    bbox: [y1, x1, y2, x2]. The box to fit the mask in.

    Returns a binary mask with the same size as the original image.
    """
    threshold = 0.5
    y1, x1, y2, x2 = bbox
510 511
    mask = skimage.transform.resize(mask, (y2 - y1, x2 - x1), order=1)
    mask = np.where(mask >= threshold, 1, 0).astype(np.bool)
W
Waleed Abdulla 已提交
512 513

    # Put the mask in the right location.
514
    full_mask = np.zeros(image_shape[:2], dtype=np.bool)
W
Waleed Abdulla 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
    full_mask[y1:y2, x1:x2] = mask
    return full_mask


############################################################
#  Anchors
############################################################

def generate_anchors(scales, ratios, shape, feature_stride, anchor_stride):
    """
    scales: 1D array of anchor sizes in pixels. Example: [32, 64, 128]
    ratios: 1D array of anchor ratios of width/height. Example: [0.5, 1, 2]
    shape: [height, width] spatial shape of the feature map over which
            to generate anchors.
    feature_stride: Stride of the feature map relative to the image in pixels.
    anchor_stride: Stride of anchors on the feature map. For example, if the
        value is 2 then generate anchors for every other feature map pixel.
    """
    # Get all combinations of scales and ratios
    scales, ratios = np.meshgrid(np.array(scales), np.array(ratios))
    scales = scales.flatten()
    ratios = ratios.flatten()

    # Enumerate heights and widths from scales and ratios
    heights = scales / np.sqrt(ratios)
    widths = scales * np.sqrt(ratios)

    # Enumerate shifts in feature space
    shifts_y = np.arange(0, shape[0], anchor_stride) * feature_stride
    shifts_x = np.arange(0, shape[1], anchor_stride) * feature_stride
    shifts_x, shifts_y = np.meshgrid(shifts_x, shifts_y)

    # Enumerate combinations of shifts, widths, and heights
    box_widths, box_centers_x = np.meshgrid(widths, shifts_x)
    box_heights, box_centers_y = np.meshgrid(heights, shifts_y)

    # Reshape to get a list of (y, x) and a list of (h, w)
    box_centers = np.stack(
        [box_centers_y, box_centers_x], axis=2).reshape([-1, 2])
    box_sizes = np.stack([box_heights, box_widths], axis=2).reshape([-1, 2])

    # Convert to corner coordinates (y1, x1, y2, x2)
    boxes = np.concatenate([box_centers - 0.5 * box_sizes,
                            box_centers + 0.5 * box_sizes], axis=1)
    return boxes


def generate_pyramid_anchors(scales, ratios, feature_shapes, feature_strides,
                             anchor_stride):
    """Generate anchors at different levels of a feature pyramid. Each scale
    is associated with a level of the pyramid, but each ratio is used in
    all levels of the pyramid.

    Returns:
    anchors: [N, (y1, x1, y2, x2)]. All generated anchors in one array. Sorted
        with the same order of the given scales. So, anchors of scale[0] come
        first, then anchors of scale[1], and so on.
    """
    # Anchors
    # [anchor_count, (y1, x1, y2, x2)]
    anchors = []
    for i in range(len(scales)):
        anchors.append(generate_anchors(scales[i], ratios, feature_shapes[i],
                                        feature_strides[i], anchor_stride))
    return np.concatenate(anchors, axis=0)


############################################################
#  Miscellaneous
############################################################

def trim_zeros(x):
    """It's common to have tensors larger than the available data and
    pad with zeros. This function removes rows that are all zeros.

    x: [rows, columns].
    """
    assert len(x.shape) == 2
    return x[~np.all(x == 0, axis=1)]


刘定坤 已提交
596 597
def compute_ap(gt_boxes, gt_class_ids, gt_masks,
               pred_boxes, pred_class_ids, pred_scores, pred_masks,
W
Waleed Abdulla 已提交
598 599 600 601 602 603 604 605 606 607 608 609
               iou_threshold=0.5):
    """Compute Average Precision at a set IoU threshold (default 0.5).

    Returns:
    mAP: Mean Average Precision
    precisions: List of precisions at different class score thresholds.
    recalls: List of recall values at different class score thresholds.
    overlaps: [pred_boxes, gt_boxes] IoU overlaps.
    """
    # Trim zero padding and sort predictions by score from high to low
    # TODO: cleaner to do zero unpadding upstream
    gt_boxes = trim_zeros(gt_boxes)
刘定坤 已提交
610
    gt_masks = gt_masks[..., :gt_boxes.shape[0]]
W
Waleed Abdulla 已提交
611 612 613 614 615 616
    pred_boxes = trim_zeros(pred_boxes)
    pred_scores = pred_scores[:pred_boxes.shape[0]]
    indices = np.argsort(pred_scores)[::-1]
    pred_boxes = pred_boxes[indices]
    pred_class_ids = pred_class_ids[indices]
    pred_scores = pred_scores[indices]
刘定坤 已提交
617
    pred_masks = pred_masks[..., indices]
W
Waleed Abdulla 已提交
618

刘定坤 已提交
619 620
    # Compute IoU overlaps [pred_masks, gt_masks]
    overlaps = compute_overlaps_masks(pred_masks, gt_masks)
W
Waleed Abdulla 已提交
621

622
    # Loop through predictions and find matching ground truth boxes
W
Waleed Abdulla 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
    match_count = 0
    pred_match = np.zeros([pred_boxes.shape[0]])
    gt_match = np.zeros([gt_boxes.shape[0]])
    for i in range(len(pred_boxes)):
        # Find best matching ground truth box
        sorted_ixs = np.argsort(overlaps[i])[::-1]
        for j in sorted_ixs:
            # If ground truth box is already matched, go to next one
            if gt_match[j] == 1:
                continue
            # If we reach IoU smaller than the threshold, end the loop
            iou = overlaps[i, j]
            if iou < iou_threshold:
                break
            # Do we have a match?
            if pred_class_ids[i] == gt_class_ids[j]:
                match_count += 1
                gt_match[j] = 1
                pred_match[i] = 1
                break

    # Compute precision and recall at each prediction box step
G
Gyuri Im 已提交
645
    precisions = np.cumsum(pred_match) / (np.arange(len(pred_match)) + 1)
W
Waleed Abdulla 已提交
646 647 648 649 650 651 652 653 654
    recalls = np.cumsum(pred_match).astype(np.float32) / len(gt_match)

    # Pad with start and end values to simplify the math
    precisions = np.concatenate([[0], precisions, [0]])
    recalls = np.concatenate([[0], recalls, [1]])

    # Ensure precision values decrease but don't increase. This way, the
    # precision value at each recall threshold is the maximum it can be
    # for all following recall thresholds, as specified by the VOC paper.
G
Gyuri Im 已提交
655 656
    for i in range(len(precisions) - 2, -1, -1):
        precisions[i] = np.maximum(precisions[i], precisions[i + 1])
W
Waleed Abdulla 已提交
657 658 659

    # Compute mean AP over recall range
    indices = np.where(recalls[:-1] != recalls[1:])[0] + 1
G
Gyuri Im 已提交
660 661
    mAP = np.sum((recalls[indices] - recalls[indices - 1]) *
                 precisions[indices])
W
Waleed Abdulla 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725

    return mAP, precisions, recalls, overlaps


def compute_recall(pred_boxes, gt_boxes, iou):
    """Compute the recall at the given IoU threshold. It's an indication
    of how many GT boxes were found by the given prediction boxes.

    pred_boxes: [N, (y1, x1, y2, x2)] in image coordinates
    gt_boxes: [N, (y1, x1, y2, x2)] in image coordinates
    """
    # Measure overlaps
    overlaps = compute_overlaps(pred_boxes, gt_boxes)
    iou_max = np.max(overlaps, axis=1)
    iou_argmax = np.argmax(overlaps, axis=1)
    positive_ids = np.where(iou_max >= iou)[0]
    matched_gt_boxes = iou_argmax[positive_ids]

    recall = len(set(matched_gt_boxes)) / gt_boxes.shape[0]
    return recall, positive_ids


# ## Batch Slicing
# Some custom layers support a batch size of 1 only, and require a lot of work
# to support batches greater than 1. This function slices an input tensor
# across the batch dimension and feeds batches of size 1. Effectively,
# an easy way to support batches > 1 quickly with little code modification.
# In the long run, it's more efficient to modify the code to support large
# batches and getting rid of this function. Consider this a temporary solution
def batch_slice(inputs, graph_fn, batch_size, names=None):
    """Splits inputs into slices and feeds each slice to a copy of the given
    computation graph and then combines the results. It allows you to run a
    graph on a batch of inputs even if the graph is written to support one
    instance only.

    inputs: list of tensors. All must have the same first dimension length
    graph_fn: A function that returns a TF tensor that's part of a graph.
    batch_size: number of slices to divide the data into.
    names: If provided, assigns names to the resulting tensors.
    """
    if not isinstance(inputs, list):
        inputs = [inputs]

    outputs = []
    for i in range(batch_size):
        inputs_slice = [x[i] for x in inputs]
        output_slice = graph_fn(*inputs_slice)
        if not isinstance(output_slice, (tuple, list)):
            output_slice = [output_slice]
        outputs.append(output_slice)
    # Change outputs from a list of slices where each is
    # a list of outputs to a list of outputs and each has
    # a list of slices
    outputs = list(zip(*outputs))

    if names is None:
        names = [None] * len(outputs)

    result = [tf.stack(o, axis=0, name=n)
              for o, n in zip(outputs, names)]
    if len(result) == 1:
        result = result[0]

    return result
726 727 728 729 730 731 732 733 734 735 736 737 738


def download_trained_weights(coco_model_path, verbose=1):
    """Download COCO trained weights from Releases.

    coco_model_path: local path of COCO trained weights
    """
    if verbose > 0:
        print("Downloading pretrained model to " + coco_model_path + " ...")
    with urllib.request.urlopen(COCO_MODEL_URL) as resp, open(coco_model_path, 'wb') as out:
        shutil.copyfileobj(resp, out)
    if verbose > 0:
        print("... done downloading pretrained model!")