measure_republish_process.cc 26.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/******************************************************************************
 * Copyright 2018 The Apollo Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *****************************************************************************/

#include "modules/localization/msf/local_integ/measure_republish_process.h"

19
#include <fstream>
A
Aaron Xiao 已提交
20

G
GoLancer 已提交
21
#include "cyber/common/log.h"
22
#include "modules/common/math/euler_angles_zxy.h"
23
#include "modules/common/time/time_util.h"
24 25 26
#include "modules/localization/msf/common/util/math_util.h"
#include "modules/localization/msf/common/util/time_conversion.h"
#include "yaml-cpp/yaml.h"
27 28 29 30 31 32

namespace apollo {
namespace localization {
namespace msf {

using common::Status;
33
using common::time::TimeUtil;
34 35

MeasureRepublishProcess::MeasureRepublishProcess()
36 37
    : pre_bestgnsspose_(),
      pre_bestgnsspose_valid_(false),
38
      send_init_bestgnsspose_(false),
39 40
      pva_buffer_size_(150),
      local_utm_zone_id_(50),
41
      is_trans_gpstime_to_utctime_(true),
42
      map_height_time_(0.0),
43 44
      gnss_mode_(GnssMode::NOVATEL) {}

45
MeasureRepublishProcess::~MeasureRepublishProcess() {}
46

47
Status MeasureRepublishProcess::Init(const LocalizationIntegParam& params) {
48 49 50 51 52 53 54
  local_utm_zone_id_ = params.utm_zone_id;
  is_trans_gpstime_to_utctime_ = params.is_trans_gpstime_to_utctime;
  gnss_mode_ = GnssMode(params.gnss_mode);

  pva_buffer_size_ = 150;

  map_height_time_ = 0.0;
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

  novatel_heading_time_ = 0.0;

  std::ifstream imu_ant_fin(params.ant_imu_leverarm_file.c_str());
  AINFO << "the ant_imu_leverarm file: " << params.ant_imu_leverarm_file.c_str()
        << std::endl;
  if (imu_ant_fin) {
    bool success = LoadImuGnssAntennaExtrinsic(params.ant_imu_leverarm_file,
                                               &imu_gnssant_extrinsic_);
    if (!success) {
      AERROR << "IntegratedLocalization: Fail to access the lever arm "
                "between imu and gnss extrinsic file: "
             << params.ant_imu_leverarm_file;
    }
    AINFO << "gnss and imu lever arm in vehicle frame: "
          << " " << imu_gnssant_extrinsic_.ant_num << " "
          << imu_gnssant_extrinsic_.transform_1.translation()[0] << " "
          << imu_gnssant_extrinsic_.transform_1.translation()[1] << " "
          << imu_gnssant_extrinsic_.transform_1.translation()[2] << " "
          << imu_gnssant_extrinsic_.transform_2.translation()[0] << " "
          << imu_gnssant_extrinsic_.transform_2.translation()[1] << " "
          << imu_gnssant_extrinsic_.transform_2.translation()[2];
  } else {
    AINFO << "the ant_imu_leverarm_file does not existence!";
  }

  double vehicle_to_imu_quatern[4] = {
      params.vehicle_to_imu_quatern.w, params.vehicle_to_imu_quatern.x,
      params.vehicle_to_imu_quatern.y, params.vehicle_to_imu_quatern.z};

  double dcm[3][3] = {0.0};
  math::QuaternionToDcm(&vehicle_to_imu_quatern[0], dcm);
  double lever_arm_x = imu_gnssant_extrinsic_.transform_1.translation()[0];
  double lever_arm_y = imu_gnssant_extrinsic_.transform_1.translation()[1];
  double lever_arm_z = imu_gnssant_extrinsic_.transform_1.translation()[2];

  imu_gnssant_extrinsic_.transform_1.translation()[0] =
      dcm[0][0] * lever_arm_x + dcm[0][1] * lever_arm_y +
      dcm[0][2] * lever_arm_z;
  imu_gnssant_extrinsic_.transform_1.translation()[1] =
      dcm[1][0] * lever_arm_x + dcm[1][1] * lever_arm_y +
      dcm[1][2] * lever_arm_z;
  imu_gnssant_extrinsic_.transform_1.translation()[2] =
      dcm[2][0] * lever_arm_x + dcm[2][1] * lever_arm_y +
      dcm[2][2] * lever_arm_z;

  lever_arm_x = imu_gnssant_extrinsic_.transform_2.translation()[0];
  lever_arm_y = imu_gnssant_extrinsic_.transform_2.translation()[1];
  lever_arm_z = imu_gnssant_extrinsic_.transform_2.translation()[2];

  imu_gnssant_extrinsic_.transform_2.translation()[0] =
      dcm[0][0] * lever_arm_x + dcm[0][1] * lever_arm_y +
      dcm[0][2] * lever_arm_z;
  imu_gnssant_extrinsic_.transform_2.translation()[1] =
      dcm[1][0] * lever_arm_x + dcm[1][1] * lever_arm_y +
      dcm[1][2] * lever_arm_z;
  imu_gnssant_extrinsic_.transform_2.translation()[2] =
      dcm[2][0] * lever_arm_x + dcm[2][1] * lever_arm_y +
      dcm[2][2] * lever_arm_z;

  AINFO << "gnss and imu lever arm in imu frame: "
        << " " << imu_gnssant_extrinsic_.ant_num << " "
        << imu_gnssant_extrinsic_.transform_1.translation()[0] << " "
        << imu_gnssant_extrinsic_.transform_1.translation()[1] << " "
        << imu_gnssant_extrinsic_.transform_1.translation()[2] << " "
        << imu_gnssant_extrinsic_.transform_2.translation()[0] << " "
        << imu_gnssant_extrinsic_.transform_2.translation()[1] << " "
        << imu_gnssant_extrinsic_.transform_2.translation()[2];

  is_using_novatel_heading_ = params.is_using_novatel_heading;
  if (imu_gnssant_extrinsic_.ant_num == 1) {
    is_using_novatel_heading_ = false;
  }
128 129 130 131
  return Status::OK();
}

bool MeasureRepublishProcess::NovatelBestgnssposProcess(
132
    const GnssBestPose& bestgnsspos_msg, MeasureData* measure) {
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
  if (gnss_mode_ != GnssMode::NOVATEL) {
    return false;
  }
  CHECK_NOTNULL(measure);

  if (!CheckBestgnssposeStatus(bestgnsspos_msg)) {
    AWARN << "Discard a bestgnsspose msg. "
          << "The status of this msg is not OK.";
    return false;
  }

  // check sins status
  bool is_sins_align = IsSinsAlign();

  // If sins is align, we only need measure of xyz from bestgnsspos.
  // If sins is not align, in order to init sins, we need
X
Xiangquan Xiao 已提交
149
  // (1) send an initial measure of xyz; (2) send measure of xyz and velocity.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
  if (is_sins_align) {
    TransferXYZFromBestgnsspose(bestgnsspos_msg, measure);
  } else {
    if (!CheckBestgnssPoseXYStd(bestgnsspos_msg)) {
      AWARN << "Discard a bestgnsspose msg for large std.";
      return false;
    }

    if (!send_init_bestgnsspose_) {
      TransferFirstMeasureFromBestgnsspose(bestgnsspos_msg, measure);
      send_init_bestgnsspose_ = true;
    } else {
      if (!CalculateVelFromBestgnsspose(bestgnsspos_msg, measure)) {
        AINFO << "Waiting calculate velocity successfully...";
        return false;
      }
    }
  }

169 170 171 172 173 174 175 176 177 178
  ADEBUG << std::setprecision(16)
         << "MeasureDataRepublish Debug Log: bestgnsspos msg: "
         << "[time:" << measure->time << "]"
         << "[x:" << measure->gnss_pos.longitude * RAD_TO_DEG << "]"
         << "[y:" << measure->gnss_pos.latitude * RAD_TO_DEG << "]"
         << "[z:" << measure->gnss_pos.height << "]"
         << "[std_x:" << bestgnsspos_msg.longitude_std_dev() << "]"
         << "[std_y:" << bestgnsspos_msg.latitude_std_dev() << "]"
         << "[std_z:" << bestgnsspos_msg.height_std_dev() << "]"
         << "[position_type:" << bestgnsspos_msg.sol_type() << "]";
179 180 181 182 183

  return true;
}

void MeasureRepublishProcess::GnssLocalProcess(
184
    const MeasureData& gnss_local_msg, MeasureData* measure) {
185 186 187 188 189 190 191 192
  if (gnss_mode_ != GnssMode::SELF) {
    return;
  }

  CHECK_NOTNULL(measure);

  MeasureData measure_data = gnss_local_msg;
  if (is_trans_gpstime_to_utctime_) {
193
    measure_data.time = TimeUtil::Gps2unix(measure_data.time);
194 195 196
  }

  AINFO << "the gnss velocity: " << measure_data.gnss_vel.ve << " "
197
        << measure_data.gnss_vel.vn << " " << measure_data.gnss_vel.vu;
198 199 200 201 202 203 204 205 206 207

  measure_data.gnss_att.pitch = 0.0;
  measure_data.gnss_att.roll = 0.0;

  Eigen::Vector3d pos_xyz = Eigen::Vector3d::Zero();
  pos_xyz[0] = measure_data.gnss_pos.longitude;
  pos_xyz[1] = measure_data.gnss_pos.latitude;
  pos_xyz[2] = measure_data.gnss_pos.height;

  Eigen::Vector3d pos_blh = Eigen::Vector3d::Zero();
208
  apollo::localization::msf::FrameTransform::XYZToBlh(pos_xyz, &pos_blh);
209 210 211 212 213 214 215 216
  measure_data.gnss_pos.longitude = pos_blh[0];
  measure_data.gnss_pos.latitude = pos_blh[1];
  measure_data.gnss_pos.height = pos_blh[2];

  double ve_std = std::sqrt(measure_data.variance[3][3]);
  double vn_std = std::sqrt(measure_data.variance[4][4]);
  double vu_std = std::sqrt(measure_data.variance[5][5]);
  AINFO << "the gnss velocity std: " << ve_std << " " << vn_std << " "
217
        << vu_std;
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249

  bool is_sins_align = IsSinsAlign();

  if (is_sins_align) {
    measure_data.measure_type = MeasureType::GNSS_POS_ONLY;
    height_mutex_.lock();
    if ((measure_data.time - 1.0 < map_height_time_)) {
      measure_data.measure_type = MeasureType::GNSS_POS_XY;
    }
    height_mutex_.unlock();
    measure_data.is_have_variance = true;
  } else {
    measure_data.measure_type = MeasureType::GNSS_POS_VEL;
    measure_data.is_have_variance = false;

    static bool is_sent_init_pos = false;
    if (!is_sent_init_pos) {
      is_sent_init_pos = true;
      measure_data.gnss_vel.ve = 0.0;
      measure_data.gnss_vel.vn = 0.0;
      measure_data.gnss_vel.vu = 0.0;
      AINFO << "send sins init position using rtk-gnss position!";
      *measure = measure_data;
      return;
    }

    static int position_good_counter = 0;
    if (position_good_counter < 10) {
      ++position_good_counter;
      return;
    }

250 251
    if (gnss_local_msg.measure_type != MeasureType::GNSS_POS_VEL &&
        gnss_local_msg.measure_type != MeasureType::ENU_VEL_ONLY) {
252
      AERROR << "gnss does not have velocity,"
253 254
             << "the gnss velocity std: " << ve_std << " " << vn_std << " "
             << vu_std;
255 256 257 258 259 260 261
      return;
    }
    if (!gnss_local_msg.is_have_variance) {
      AERROR << "gnss velocity does not have velocity variance!";
      return;
    } else {
      if ((ve_std > 0.1) || (vn_std > 0.1)) {
262
        AWARN << "gnss velocity variance is large: " << ve_std << " " << vn_std;
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
        return;
      }
    }

    static double pre_yaw_from_vel = 0.0;
    static double pre_measure_time = 0.0;
    double yaw_from_vel =
        atan2(measure_data.gnss_vel.ve, measure_data.gnss_vel.vn);
    if (pre_measure_time < 0.1) {
      pre_measure_time = measure_data.time;
      pre_yaw_from_vel = yaw_from_vel;
      return;
    } else {
      constexpr double rad_round = 2 * M_PI;
      constexpr double rad_pi = M_PI;

      double delta_yaw = yaw_from_vel - pre_yaw_from_vel;
      if (delta_yaw > rad_pi) {
        delta_yaw = delta_yaw - rad_round;
      }
      if (delta_yaw < -rad_pi) {
        delta_yaw = delta_yaw + rad_round;
      }

      AINFO << "yaw from position difference: " << yaw_from_vel * RAD_TO_DEG;
      double delta_time = measure_data.time - pre_measure_time;
      if (delta_time < 1.0e-10) {
        AINFO << "the delta time is too small: " << delta_time;
      }
      double yaw_incr = delta_yaw / delta_time;
      // 0.0872rad = 5deg
      constexpr double rad_5deg = 5 * DEG_TO_RAD;
      if ((yaw_incr > rad_5deg) || (yaw_incr < -rad_5deg)) {
        AWARN << "yaw velocity is large! pre, "
              << "cur yaw from vel and velocity: "
              << pre_yaw_from_vel * RAD_TO_DEG << " "
299
              << yaw_from_vel * RAD_TO_DEG << " " << yaw_incr * RAD_TO_DEG;
300 301 302 303 304 305 306 307 308 309
        pre_measure_time = measure_data.time;
        pre_yaw_from_vel = yaw_from_vel;
        return;
      }
      pre_measure_time = measure_data.time;
      pre_yaw_from_vel = yaw_from_vel;
    }
  }
  *measure = measure_data;

310 311 312 313 314 315 316 317 318
  ADEBUG << std::setprecision(16)
         << "MeasureDataRepublish Debug Log: rtkgnss msg: "
         << "[time:" << measure_data.time << "]"
         << "[x:" << measure_data.gnss_pos.longitude * RAD_TO_DEG << "]"
         << "[y:" << measure_data.gnss_pos.latitude * RAD_TO_DEG << "]"
         << "[z:" << measure_data.gnss_pos.height << "]"
         << "[std_x:" << measure_data.variance[0][0] << "]"
         << "[std_y:" << measure_data.variance[1][1] << "]"
         << "[std_z:" << measure_data.variance[2][2] << "]";
319 320 321 322 323 324
  return;
}

void MeasureRepublishProcess::IntegPvaProcess(const InsPva& inspva_msg) {
  const InsPva& integ_pva = inspva_msg;

325
  std::lock_guard<std::mutex> lock(integ_pva_mutex_);
326 327 328 329 330 331 332 333 334
  if (integ_pva_list_.size() < pva_buffer_size_) {
    integ_pva_list_.push_back(integ_pva);
  } else {
    integ_pva_list_.pop_front();
    integ_pva_list_.push_back(integ_pva);
  }
}

bool MeasureRepublishProcess::LidarLocalProcess(
335
    const LocalizationEstimate& lidar_local_msg, MeasureData* measure) {
336 337 338 339 340 341
  CHECK_NOTNULL(measure);

  MeasureData measure_data;
  measure_data.time = lidar_local_msg.measurement_time();

  apollo::localization::msf::WGS84Corr temp_wgs;
342
  apollo::localization::msf::FrameTransform::UtmXYToLatlon(
343
      lidar_local_msg.pose().position().x(),
344 345
      lidar_local_msg.pose().position().y(), local_utm_zone_id_, false,
      &temp_wgs);
346 347 348 349 350 351 352 353 354
  measure_data.gnss_pos.longitude = temp_wgs.log;
  measure_data.gnss_pos.latitude = temp_wgs.lat;
  measure_data.gnss_pos.height = lidar_local_msg.pose().position().z();

  Eigen::Quaterniond temp_quat(lidar_local_msg.pose().orientation().qw(),
                               lidar_local_msg.pose().orientation().qx(),
                               lidar_local_msg.pose().orientation().qy(),
                               lidar_local_msg.pose().orientation().qz());

355 356
  common::math::EulerAnglesZXYd euler(temp_quat.w(), temp_quat.x(),
                                      temp_quat.y(), temp_quat.z());
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383

  height_mutex_.lock();
  Eigen::Vector3d trans(lidar_local_msg.pose().position().x(),
                        lidar_local_msg.pose().position().y(),
                        lidar_local_msg.pose().position().z());

  map_height_time_ = measure_data.time;
  height_mutex_.unlock();

  measure_data.gnss_att.yaw = euler.yaw();
  measure_data.measure_type = MeasureType::POINT_CLOUD_POS;
  measure_data.frame_type = FrameType::UTM;

  measure_data.is_have_variance = true;

  double longitude_var = lidar_local_msg.uncertainty().position_std_dev().x();
  double latitude_var = lidar_local_msg.uncertainty().position_std_dev().y();
  double yaw_var = lidar_local_msg.uncertainty().orientation_std_dev().z();

  constexpr double height_var = 0.03 * 0.03;
  measure_data.variance[0][0] = longitude_var;
  measure_data.variance[1][1] = latitude_var;
  measure_data.variance[2][2] = height_var;
  measure_data.variance[8][8] = yaw_var;

  *measure = measure_data;

384 385 386 387 388 389 390 391 392 393
  ADEBUG << std::setprecision(16)
         << "MeasureDataRepublish Debug Log: lidarLocal msg: "
         << "[time:" << measure_data.time << "]"
         << "[x:" << measure_data.gnss_pos.longitude * RAD_TO_DEG << "]"
         << "[y:" << measure_data.gnss_pos.latitude * RAD_TO_DEG << "]"
         << "[z:" << measure_data.gnss_pos.height << "]"
         << "[yaw:" << measure_data.gnss_att.yaw * RAD_TO_DEG << "]"
         << "[std_x:" << std::sqrt(longitude_var) << "]"
         << "[std_y:" << std::sqrt(latitude_var) << "]"
         << "[std_z:" << std::sqrt(height_var) << "]";
394 395 396 397 398

  return true;
}

bool MeasureRepublishProcess::IsSinsAlign() {
399 400
  std::lock_guard<std::mutex> lock(integ_pva_mutex_);
  return !integ_pva_list_.empty() && integ_pva_list_.back().init_and_alignment;
401 402 403
}

void MeasureRepublishProcess::TransferXYZFromBestgnsspose(
404
    const GnssBestPose& bestgnsspos_msg, MeasureData* measure) {
405 406 407 408
  CHECK_NOTNULL(measure);

  measure->time = bestgnsspos_msg.measurement_time();
  if (is_trans_gpstime_to_utctime_) {
409
    measure->time = TimeUtil::Gps2unix(measure->time);
410 411
  }

412 413
  measure->gnss_pos.longitude = bestgnsspos_msg.longitude() * DEG_TO_RAD;
  measure->gnss_pos.latitude = bestgnsspos_msg.latitude() * DEG_TO_RAD;
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
  measure->gnss_pos.height =
      bestgnsspos_msg.height_msl() + bestgnsspos_msg.undulation();

  measure->variance[0][0] =
      bestgnsspos_msg.longitude_std_dev() * bestgnsspos_msg.longitude_std_dev();
  measure->variance[1][1] =
      bestgnsspos_msg.latitude_std_dev() * bestgnsspos_msg.latitude_std_dev();
  measure->variance[2][2] =
      bestgnsspos_msg.height_std_dev() * bestgnsspos_msg.height_std_dev();

  measure->measure_type = MeasureType::GNSS_POS_ONLY;
  measure->frame_type = FrameType::ENU;
  height_mutex_.lock();
  if ((measure->time - 1.0 < map_height_time_)) {
    measure->measure_type = MeasureType::GNSS_POS_XY;
  }
  height_mutex_.unlock();
  measure->is_have_variance = true;
  return;
}

void MeasureRepublishProcess::TransferFirstMeasureFromBestgnsspose(
436
    const GnssBestPose& bestgnsspos_msg, MeasureData* measure) {
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
  CHECK_NOTNULL(measure);

  TransferXYZFromBestgnsspose(bestgnsspos_msg, measure);

  measure->measure_type = MeasureType::GNSS_POS_VEL;
  measure->frame_type = FrameType::ENU;
  measure->is_have_variance = false;

  measure->gnss_vel.ve = 0.0;
  measure->gnss_vel.vn = 0.0;
  measure->gnss_vel.vu = 0.0;
  AINFO << "Novatel bestgnsspose publish: "
        << "send sins init position using novatel bestgnsspos!";
  return;
}

bool MeasureRepublishProcess::CalculateVelFromBestgnsspose(
454
    const GnssBestPose& bestgnsspos_msg, MeasureData* measure) {
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
  CHECK_NOTNULL(measure);

  TransferXYZFromBestgnsspose(bestgnsspos_msg, measure);

  measure->measure_type = MeasureType::GNSS_POS_VEL;
  measure->frame_type = FrameType::ENU;
  measure->is_have_variance = false;

  if (!pre_bestgnsspose_valid_) {
    pre_bestgnsspose_valid_ = true;
    pre_bestgnsspose_ = *measure;
    return false;
  }

  static int position_good_counter = 0;
  if (position_good_counter < BESTPOSE_GOOD_COUNT) {
    ++position_good_counter;
    pre_bestgnsspose_ = *measure;
    return false;
  }

  const double re = 6378137.0;
  const double e = 0.0033528;
478 479
  double temp_sin_lati_2 =
      sin(measure->gnss_pos.latitude) * sin(measure->gnss_pos.latitude);
480 481 482 483 484 485 486 487 488
  double rn = re / (1 - e * temp_sin_lati_2);
  double rm = re / (1 + 2.0 * e - 3.0 * e * temp_sin_lati_2);

  double inv_time = 1.0 / (measure->time - pre_bestgnsspose_.time);
  if (measure->time - pre_bestgnsspose_.time > BESTPOSE_TIME_MAX_INTERVAL) {
    pre_bestgnsspose_ = *measure;
    position_good_counter = 0;
    return false;
  }
489 490 491 492 493
  measure->gnss_vel.ve =
      (measure->gnss_pos.longitude - pre_bestgnsspose_.gnss_pos.longitude) *
      rn * inv_time * cos(measure->gnss_pos.latitude);
  measure->gnss_vel.vn =
      (measure->gnss_pos.latitude - pre_bestgnsspose_.gnss_pos.latitude) * rm *
494
      inv_time;
495 496
  measure->gnss_vel.vu =
      (measure->gnss_pos.height - pre_bestgnsspose_.gnss_pos.height) * inv_time;
497 498

  pre_bestgnsspose_ = *measure;
499 500
  AINFO << "novatel bestgnsspos velocity: " << measure->gnss_vel.ve << " "
        << measure->gnss_vel.vn << " " << measure->gnss_vel.vu;
501 502

  static double pre_yaw_from_vel = 0.0;
503
  double yaw_from_vel = atan2(measure->gnss_vel.ve, measure->gnss_vel.vn);
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
  if (!pre_yaw_from_vel) {
    pre_yaw_from_vel = yaw_from_vel;
    return false;
  } else {
    constexpr double rad_round = 2 * M_PI;
    constexpr double rad_pi = M_PI;

    double delta_yaw = yaw_from_vel - pre_yaw_from_vel;
    if (delta_yaw > rad_pi) {
      delta_yaw = delta_yaw - rad_round;
    }
    if (delta_yaw < -rad_pi) {
      delta_yaw = delta_yaw + rad_round;
    }

A
Aaron Xiao 已提交
519
    AINFO << "yaw calculated from position difference: "
520 521 522 523 524
          << yaw_from_vel * RAD_TO_DEG;
    constexpr double rad_5deg = 5 * DEG_TO_RAD;
    if (delta_yaw > rad_5deg || delta_yaw < -rad_5deg) {
      AWARN << "novatel bestgnsspos delta yaw is large! "
            << "pre, cur yaw from vel and delta: "
525 526
            << pre_yaw_from_vel * RAD_TO_DEG << " " << yaw_from_vel * RAD_TO_DEG
            << " " << delta_yaw * RAD_TO_DEG;
527 528 529 530 531 532 533 534 535
      pre_yaw_from_vel = yaw_from_vel;
      return false;
    }
    pre_yaw_from_vel = yaw_from_vel;
  }

  return true;
}

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
bool MeasureRepublishProcess::GnssHeadingProcess(
    const drivers::gnss::Heading& heading_msg, MeasureData* measure_data,
    int* status) {
  if ((imu_gnssant_extrinsic_.ant_num == 1)) {
    return false;
  }
  int solution_status = heading_msg.solution_status();
  int position_type = heading_msg.position_type();
  AINFO << "the heading solution_status and position_type: " << solution_status
        << " " << position_type;

  if (solution_status != 0) {
    *status = 93;
    AINFO << "the heading's solution_status is not computed: "
          << solution_status;
    return false;
  }
  *status = position_type;
  if ((position_type == 0) || (position_type == 1)) {
    AINFO << "the heading's solution_type is invalid or fixed: "
          << position_type;
    return false;
  }
  measure_data->time = heading_msg.measurement_time();
  if (is_trans_gpstime_to_utctime_) {
    measure_data->time = GpsToUnixSeconds(measure_data->time);
  }

  novatel_heading_mutex_.lock();
  novatel_heading_time_ = measure_data->time;
  novatel_heading_mutex_.unlock();

  double delta_time_between_height = 0.0;
  height_mutex_.lock();
  delta_time_between_height = measure_data->time - map_height_time_;
  height_mutex_.unlock();

  if (delta_time_between_height < 1.0) {
    AINFO << "the heading time and delta time: " << std::setprecision(15)
          << measure_data->time << " " << delta_time_between_height;
    return false;
  }

  integ_pva_mutex_.lock();
  bool is_sins_align =
      integ_pva_list_.back().init_and_alignment && (integ_pva_list_.size() > 1);
  integ_pva_mutex_.unlock();

  if (is_sins_align) {
    static double pre_publish_time = 0.0;
    if (measure_data->time - pre_publish_time < 0.5) {
      return false;
    }
    pre_publish_time = measure_data->time;
  }
  double gnss_yaw = heading_msg.heading();
  double heading_std = heading_msg.heading_std_dev();

  static double imu_ant_yaw_angle = 0.0;
  if (imu_ant_yaw_angle == 0.0) {
    imu_ant_yaw_angle =
        -atan2(imu_gnssant_extrinsic_.transform_2.translation()[0] -
                   imu_gnssant_extrinsic_.transform_1.translation()[0],
               imu_gnssant_extrinsic_.transform_2.translation()[1] -
                   imu_gnssant_extrinsic_.transform_1.translation()[1]) *
        57.295779513082323;
    AINFO << "imu_gnssant_extrinsic_: "
          << imu_gnssant_extrinsic_.transform_2.translation()[0] << ", "
          << imu_gnssant_extrinsic_.transform_1.translation()[0] << ", "
          << imu_gnssant_extrinsic_.transform_2.translation()[1] << ", "
          << imu_gnssant_extrinsic_.transform_2.translation()[1];
    AINFO << "the yaw between double ant yaw and vehicle: "
          << imu_ant_yaw_angle;
  }
  AINFO << "novatel heading is: " << std::setprecision(15) << measure_data->time
        << " " << std::setprecision(6) << gnss_yaw;
  if (gnss_yaw > 180) {
    // the novatel yaw angle is 0-360deg
    gnss_yaw -= 360.0;
  }
  gnss_yaw += imu_ant_yaw_angle;

  if (gnss_yaw > 180) {
    gnss_yaw -= 360.0;
  }
  measure_data->measure_type = MeasureType::GNSS_DOUBLE_ANT_YAW;
  measure_data->is_have_variance = true;
  // 3.046174197867086e-04 = (pi / 180)^2
  AINFO << "the novatel heading std: " << std::setprecision(15)
        << measure_data->time << " " << heading_std;
  measure_data->variance[8][8] =
      heading_std * heading_std * 3.046174197867086e-04;
  measure_data->gnss_att.yaw = -gnss_yaw * 0.017453292519943;

  AINFO << "measure data heading is: " << std::setprecision(15)
        << measure_data->time << " " << std::setprecision(6)
        << measure_data->gnss_att.yaw;

  return true;
}

bool MeasureRepublishProcess::LoadImuGnssAntennaExtrinsic(
    std::string file_path, VehicleGnssAntExtrinsic* extrinsic) const {
  YAML::Node confige = YAML::LoadFile(file_path);
  if (confige["leverarm"]) {
    if (confige["leverarm"]["primary"]["offset"]) {
      extrinsic->transform_1.translation()[0] =
          confige["leverarm"]["primary"]["offset"]["x"].as<double>();
      extrinsic->transform_1.translation()[1] =
          confige["leverarm"]["primary"]["offset"]["y"].as<double>();
      extrinsic->transform_1.translation()[2] =
          confige["leverarm"]["primary"]["offset"]["z"].as<double>();
    } else {
      return false;
    }
    if (confige["leverarm"]["secondary"]["offset"]) {
      extrinsic->transform_2.translation()[0] =
          confige["leverarm"]["secondary"]["offset"]["x"].as<double>();
      extrinsic->transform_2.translation()[1] =
          confige["leverarm"]["secondary"]["offset"]["y"].as<double>();
      extrinsic->transform_2.translation()[2] =
          confige["leverarm"]["secondary"]["offset"]["z"].as<double>();
      extrinsic->ant_num = 2;

      if (confige["leverarm"]["secondary"]["rotation"]) {
        double qx =
            confige["leverarm"]["secondary"]["rotation"]["x"].as<double>();
        double qy =
            confige["leverarm"]["secondary"]["rotation"]["y"].as<double>();
        double qz =
            confige["leverarm"]["secondary"]["rotation"]["z"].as<double>();
        double qw =
            confige["leverarm"]["secondary"]["rotation"]["w"].as<double>();
        extrinsic->transform_1.linear() =
            Eigen::Quaterniond(qw, qx, qy, qz).toRotationMatrix();
      } else {
        double yaw = atan2(extrinsic->transform_2.translation()[0] -
                               extrinsic->transform_1.translation()[0],
                           extrinsic->transform_2.translation()[1] -
                               extrinsic->transform_1.translation()[1]);
        double quat[4] = {0.0};
        math::EulerToQuaternion(0.0, 0.0, yaw, quat);
        extrinsic->transform_1.linear() =
            Eigen::Quaterniond(quat[0], quat[1], quat[2], quat[3])
                .toRotationMatrix();
      }
      return true;
    } else {
      extrinsic->ant_num = 1;
      return true;
    }
  }
  return false;
}

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
bool MeasureRepublishProcess::CheckBestgnssPoseXYStd(
    const GnssBestPose& bestgnsspos_msg) {
  // check the standard deviation of xy
  if ((bestgnsspos_msg.longitude_std_dev() > GNSS_XY_STD_THRESHOLD) ||
      (bestgnsspos_msg.latitude_std_dev() > GNSS_XY_STD_THRESHOLD)) {
    AWARN << "the position std is large: "
          << bestgnsspos_msg.longitude_std_dev() << " "
          << bestgnsspos_msg.latitude_std_dev();
    return false;
  }
  return true;
}

bool MeasureRepublishProcess::CheckBestgnssposeStatus(
    const GnssBestPose& bestgnsspos_msg) {
  int gnss_solution_status = static_cast<int>(bestgnsspos_msg.sol_status());
  int gnss_position_type = static_cast<int>(bestgnsspos_msg.sol_type());
  AINFO << "the gnss solution_status and position_type: "
709
        << gnss_solution_status << " " << gnss_position_type;
710 711 712

  if (gnss_solution_status != 0) {
    AINFO << "novatel gnsspos's solution_status is not computed: "
713
          << gnss_solution_status;
714 715
    return false;
  }
716 717
  if (gnss_position_type == 0 || gnss_position_type == 1 ||
      gnss_position_type == 2) {
718
    AINFO << "novatel gnsspos's solution_type is invalid "
719
          << "or xy fixed or height fixed: " << gnss_position_type;
720 721 722 723 724 725 726 727 728
    return false;
  }

  return true;
}

}  // namespace msf
}  // namespace localization
}  // namespace apollo