提交 1947e5a1 编写于 作者: G guide

[feat]分布式ID文章完善更新

上级 7ec4dcd7
......@@ -278,7 +278,7 @@ Dubbo 是一款国产的 RPC 框架,由阿里开源。相关阅读:
#### 分布式 id
在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识。比如数据量太大之后,往往需要对数据进行分库分表,分库分表后需要有一个唯一 ID 来标识一条数据或消息,数据库的自增 ID 显然不能满足需求。相关阅读:[为什么要分布式 id ?分布式 id 生成方案有哪些?](docs/system-design/micro-service/分布式id生成方案总结.md)
在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识。比如数据量太大之后,往往需要对数据进行分库分表,分库分表后需要有一个唯一 ID 来标识一条数据或消息,数据库的自增 ID 显然不能满足需求。相关阅读:[为什么要分布式 id ?分布式 id 生成方案有哪些?](docs/system-design/distributed/分布式ID.md)
#### 分布式事务
......
## 分布式 ID
### 何为 ID?
日常开发中,我们需要对系统中的各种数据使用 ID 唯一表示,比如用户 ID 对应且仅对应一个人,商品 ID 对应且仅对应一件商品,订单 ID 对应且仅对应一个订单。
![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/javaguide/up-79beb853b8319f850638c9708f83039dfda.png)
我们现实生活中也有各种 ID,比如身份证 ID 对应且仅对应一个人、地址 ID 对应且仅对应
简单来说,**ID 就是数据的唯一标识**
### 何为分布式 ID?
分布式 ID 是分布式系统下的 ID。分布式 ID 不存在与现实生活中,属于计算机系统中的一个概念。
我简单举一个分库分表的例子。
我司的一个项目,使用的是单机 MySQL 。但是,没想到的是,项目上线一个月之后,随着使用人数越来越多,整个系统的数据量将越来越大。
单机 MySQL 已经没办法支撑了,需要进行分库分表(推荐 Sharding-JDBC)。
在分库之后, 数据遍布在不同服务器上的数据库,数据库的自增主键已经没办法满足生成的主键唯一了。**我们如何为不同的数据节点生成全局唯一主键呢?**
![](https://oscimg.oschina.net/oscnet/up-d78d9d5362c71f4713a090baf7ec65d2b6d.png)
这个时候就需要生成**分布式 ID**了。
### 分布式 ID 需要满足哪些要求?
![](https://img-blog.csdnimg.cn/20210610082309988.png)
分布式 ID 作为分布式系统中必不可少的一环,很多地方都要用到分布式 ID。
一个最基本的分布式 ID 需要满足下面这些要求:
- **全局唯一** :ID 的全局唯一性肯定是首先要满足的!
- **高性能** : 分布式 ID 的生成速度要快,对本地资源消耗要小。
- **高可用** :生成分布式 ID 的服务要保证可用性无限接近于 100%。
- **方便易用** :拿来即用,使用方便,快速接入!
除了这些之外,一个比较好的分布式 ID 还应保证:
- **安全** :ID 中不包含敏感信息。
- **有序递增** :如果要把 ID 存放在数据库的话,ID 的有序性可以提升数据库写入速度。并且,很多时候 ,我们还很有可能会直接通过 ID 来进行排序。
- **有具体的业务含义** :生成的 ID 如果能有具体的业务含义,可以让定位问题以及开发更透明化(通过 ID 就能确定是哪个业务)。
- **独立部署** :也就是分布式系统单独有一个发号器服务,专门用来生成分布式 ID。这样就生成 ID 的服务可以和业务相关的服务解耦。不过,这样同样带来了网络调用消耗增加的问题。总的来说,如果需要用到分布式 ID 的场景比较多的话,独立部署的发号器服务还是很有必要的。
## 分布式 ID 常见解决方案
### 数据库
#### 数据库主键自增
这种方式就比较简单直白了,就是通过关系型数据库的自增主键产生来唯一的 ID。
![](https://img-blog.csdnimg.cn/20210610081957287.png)
以 MySQL 举例,我们通过下面的方式即可。
**1.创建一个数据库表。**
```sql
CREATE TABLE `sequence_id` (
`id` bigint(20) unsigned NOT NULL AUTO_INCREMENT,
`stub` char(10) NOT NULL DEFAULT '',
PRIMARY KEY (`id`),
UNIQUE KEY `stub` (`stub`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
```
`stub` 字段无意义,只是为了占位,便于我们插入或者修改数据。并且,给 `stub` 字段创建了唯一索引,保证其唯一性。
**2.通过 `replace into` 来插入数据。**
```java
BEGIN;
REPLACE INTO sequence_id (stub) VALUES ('stub');
SELECT LAST_INSERT_ID();
COMMIT;
```
插入数据这里,我们没有使用 `insert into` 而是使用 `replace into` 来插入数据,具体步骤是这样的:
1)第一步: 尝试把数据插入到表中。
2)第二步: 如果主键或唯一索引字段出现重复数据错误而插入失败时,先从表中删除含有重复关键字值的冲突行,然后再次尝试把数据插入到表中。
这种方式的优缺点也比较明显:
- **优点** :实现起来比较简单、ID 有序递增、存储消耗空间小
- **缺点** : 支持的并发量不大、存在数据库单点问题(可以使用数据库集群解决,不过增加了复杂度)、ID 没有具体业务含义、安全问题(比如根据订单 ID 的递增规律就能推算出每天的订单量,商业机密啊! )、每次获取 ID 都要访问一次数据库(增加了对数据库的压力,获取速度也慢)
#### 数据库号段模式
数据库主键自增这种模式,每次获取 ID 都要访问一次数据库,ID 需求比较大的时候,肯定是不行的。
如果我们可以批量获取,然后存在在内存里面,需要用到的时候,直接从内存里面拿就舒服了!这也就是我们说的 **基于数据库的号段模式来生成分布式 ID。**
数据库的号段模式也是目前比较主流的一种分布式 ID 生成方式。像滴滴开源的[Tinyid](https://github.com/didi/tinyid/wiki/tinyid%E5%8E%9F%E7%90%86%E4%BB%8B%E7%BB%8D) 就是基于这种方式来做的。不过,TinyId 使用了双号段缓存、增加多 db 支持等方式来进一步优化。
以 MySQL 举例,我们通过下面的方式即可。
**1.创建一个数据库表。**
```sql
CREATE TABLE `sequence_id_generator` (
`id` int(10) NOT NULL,
`current_max_id` bigint(20) NOT NULL COMMENT '当前最大id',
`step` int(10) NOT NULL COMMENT '号段的长度',
`version` int(20) NOT NULL COMMENT '版本号',
`biz_type` int(20) NOT NULL COMMENT '业务类型',
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
```
`current_max_id` 字段和`step`字段主要用于获取批量 ID,获取的批量 id 为: `current_max_id ~ current_max_id+step`
![](https://img-blog.csdnimg.cn/20210610081149228.png)
`version` 字段主要用于解决并发问题(乐观锁),`biz_type` 主要用于表示业余类型。
**2.先插入一行数据。**
```sql
INSERT INTO `sequence_id_generator` (`id`, `current_max_id`, `step`, `version`, `biz_type`)
VALUES
(1, 0, 100, 0, 101);
```
**3.通过 SELECT 获取指定业务下的批量唯一 ID**
```sql
SELECT `current_max_id`, `step`,`version` FROM `sequence_id_generator` where `biz_type` = 101
```
结果:
```
id current_max_id step version biz_type
1 0 100 1 101
```
**4.不够用的话,更新之后重新 SELECT 即可。**
```sql
UPDATE sequence_id_generator SET current_max_id = 0+100, version=version+1 WHERE version = 0 AND `biz_type` = 101
SELECT `current_max_id`, `step`,`version` FROM `sequence_id_generator` where `biz_type` = 101
```
结果:
```
id current_max_id step version biz_type
1 100 100 1 101
```
相比于数据库主键自增的方式,**数据库的号段模式对于数据库的访问次数更少,数据库压力更小。**
另外,为了避免单点问题,你可以从使用主从模式来提高可用性。
**数据库号段模式的优缺点:**
- **优点** :ID 有序递增、存储消耗空间小
- **缺点** :存在数据库单点问题(可以使用数据库集群解决,不过增加了复杂度)、ID 没有具体业务含义、安全问题(比如根据订单 ID 的递增规律就能推算出每天的订单量,商业机密啊! )
#### NoSQL
![](https://img-blog.csdnimg.cn/2021061008245858.png)
一般情况下,NoSQL 方案使用 Redis 多一些。我们通过 Redis 的 `incr` 命令即可实现对 id 原子顺序递增。
```bash
127.0.0.1:6379> set sequence_id_biz_type 1
OK
127.0.0.1:6379> incr sequence_id_biz_type
(integer) 2
127.0.0.1:6379> get sequence_id_biz_type
"2"
```
为了提高可用性和并发,我们可以使用 Redis Cluser。Redis Cluser 是 Redis 官方提供的 Redis 集群解决方案(3.0+版本)。
除了 Redis Cluser 之外,你也可以使用开源的 Redis 集群方案[Codis](https://github.com/CodisLabs/codis) (大规模集群比如上百个节点的时候比较推荐)。
除了高可用和并发之外,我们知道 Redis 基于内存,我们需要持久化数据,避免重启机器或者机器故障后数据丢失。Redis 支持两种不同的持久化方式:**快照(snapshotting,RDB)****只追加文件(append-only file, AOF)**。 并且,Redis 4.0 开始支持 **RDB 和 AOF 的混合持久化**(默认关闭,可以通过配置项 `aof-use-rdb-preamble` 开启)。
关于 Redis 持久化,我这里就不过多介绍。不了解这部分内容的小伙伴,可以看看 [JavaGuide 对于 Redis 知识点的总结](https://snailclimb.gitee.io/javaguide/#/docs/database/Redis/redis-all)
**Redis 方案的优缺点:**
- **优点** : 性能不错并且生成的 ID 是有序递增的
- **缺点** : 和数据库主键自增方案的缺点类似
除了 Redis 之外,MongoDB ObjectId 经常也会被拿来当做分布式 ID 的解决方案。
![](https://img-blog.csdnimg.cn/20210207103320582.png)
MongoDB ObjectId 一共需要 12 个字节存储:
- 0~3:时间戳
- 3~6: 代表机器 ID
- 7~8:机器进程 ID
- 9~11 :自增值
**MongoDB 方案的优缺点:**
- **优点** : 性能不错并且生成的 ID 是有序递增的
- **缺点** : 需要解决重复 ID 问题(当机器时间不对的情况下,可能导致会产生重复 ID) 、有安全性问题(ID 生成有规律性)
### 算法
#### UUID
UUID 是 Universally Unique Identifier(通用唯一标识符) 的缩写。UUID 包含 32 个 16 进制数字(8-4-4-4-12)。
JDK 就提供了现成的生成 UUID 的方法,一行代码就行了。
```java
//输出示例:cb4a9ede-fa5e-4585-b9bb-d60bce986eaa
UUID.randomUUID()
```
[RFC 4122](https://tools.ietf.org/html/rfc4122) 中关于 UUID 的示例是这样的:
![](https://img-blog.csdnimg.cn/20210202110824430.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM0MzM3Mjcy,size_16,color_FFFFFF,t_70)
我们这里重点关注一下这个 Version(版本),不同的版本对应的 UUID 的生成规则是不同的。
5 种不同的 Version(版本)值分别对应的含义(参考[维基百科对于 UUID 的介绍](https://zh.wikipedia.org/wiki/%E9%80%9A%E7%94%A8%E5%94%AF%E4%B8%80%E8%AF%86%E5%88%AB%E7%A0%81)):
- **版本 1** : UUID 是根据时间和节点 ID(通常是 MAC 地址)生成;
- **版本 2** : UUID 是根据标识符(通常是组或用户 ID)、时间和节点 ID 生成;
- **版本 3、版本 5** : 版本 5 - 确定性 UUID 通过散列(hashing)名字空间(namespace)标识符和名称生成;
- **版本 4** : UUID 使用[随机性](https://zh.wikipedia.org/wiki/随机性)[伪随机性](https://zh.wikipedia.org/wiki/伪随机性)生成。
下面是 Version 1 版本下生成的 UUID 的示例:
![](https://img-blog.csdnimg.cn/20210202113013477.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM0MzM3Mjcy,size_16,color_FFFFFF,t_70)
JDK 中通过 `UUID``randomUUID()` 方法生成的 UUID 的版本默认为 4。
```java
UUID uuid = UUID.randomUUID();
int version = uuid.version();// 4
```
另外,Variant(变体)也有 4 种不同的值,这种值分别对应不同的含义。这里就不介绍了,貌似平时也不怎么需要关注。
需要用到的时候,去看看维基百科对于 UUID 的 Variant(变体) 相关的介绍即可。
从上面的介绍中可以看出,UUID 可以保证唯一性,因为其生成规则包括 MAC 地址、时间戳、名字空间(Namespace)、随机或伪随机数、时序等元素,计算机基于这些规则生成的 UUID 是肯定不会重复的。
虽然,UUID 可以做到全局唯一性,但是,我们一般很少会使用它。
比如使用 UUID 作为 MySQL 数据库主键的时候就非常不合适:
- 数据库主键要尽量越短越好,而 UUID 的消耗的存储空间比较大(32 个字符串,128 位)。
- UUID 是无顺序的,InnoDB 引擎下,数据库主键的无序性会严重影响数据库性能。
最后,我们再简单分析一下 **UUID 的优缺点** (面试的时候可能会被问到的哦!) :
- **优点** :生成速度比较快、简单易用
- **缺点** : 存储消耗空间大(32 个字符串,128 位) 、 不安全(基于 MAC 地址生成 UUID 的算法会造成 MAC 地址泄露)、无序(非自增)、没有具体业务含义、需要解决重复 ID 问题(当机器时间不对的情况下,可能导致会产生重复 ID)
#### Snowflake(雪花算法)
Snowflake 是 Twitter 开源的分布式 ID 生成算法。Snowflake 由 64 bit 的二进制数字组成,这 64bit 的二进制被分成了几部分,每一部分存储的数据都有特定的含义:
- **第 0 位**: 符号位(标识正负),始终为 0,没有用,不用管。
- **第 1~41 位** :一共 41 位,用来表示时间戳,单位是毫秒,可以支撑 2 ^41 毫秒(约 69 年)
- **第 42~52 位** :一共 10 位,一般来说,前 5 位表示机房 ID,后 5 位表示机器 ID(实际项目中可以根据实际情况调整)。这样就可以区分不同集群/机房的节点。
- **第 53~64 位** :一共 12 位,用来表示序列号。 序列号为自增值,代表单台机器每毫秒能够产生的最大 ID 数(2^12 = 4096),也就是说单台机器每毫秒最多可以生成 4096 个 唯一 ID。
![](https://oscimg.oschina.net/oscnet/up-a7e54a77b5ab1d9fa16d5ae3a3c50c5aee9.png)
如果你想要使用 Snowflake 算法的话,一般不需要你自己再造轮子。有很多基于 Snowflake 算法的开源实现比如美团 的 Leaf、百度的 UidGenerator,并且这些开源实现对原有的 Snowflake 算法进行了优化。
另外,在实际项目中,我们一般也会对 Snowflake 算法进行改造,最常见的就是在 Snowflake 算法生成的 ID 中加入业务类型信息。
我们再来看看 Snowflake 算法的优缺点 :
- **优点** :生成速度比较快、生成的 ID 有序递增、比较灵活(可以对 Snowflake 算法进行简单的改造比如加入业务 ID)
- **缺点** : 需要解决重复 ID 问题(依赖时间,当机器时间不对的情况下,可能导致会产生重复 ID)。
### 开源框架
#### UidGenerator(百度)
[UidGenerator](https://github.com/baidu/uid-generator) 是百度开源的一款基于 Snowflake(雪花算法)的唯一 ID 生成器。
不过,UidGenerator 对 Snowflake(雪花算法)进行了改进,生成的唯一 ID 组成如下。
![](https://oscimg.oschina.net/oscnet/up-ad5b9dd0077a949db923611b2450277e406.png)
可以看出,和原始 Snowflake(雪花算法)生成的唯一 ID 的组成不太一样。并且,上面这些参数我们都可以自定义。
UidGenerator 官方文档中的介绍如下:
![](https://oscimg.oschina.net/oscnet/up-358b1a4cddb3675018b8595f66ece9cae88.png)
自 18 年后,UidGenerator 就基本没有再维护了,我这里也不过多介绍。想要进一步了解的朋友,可以看看 [UidGenerator 的官方介绍](https://github.com/baidu/uid-generator/blob/master/README.zh_cn.md)
#### Leaf(美团)
**[Leaf](https://github.com/Meituan-Dianping/Leaf)** 是美团开源的一个分布式 ID 解决方案 。这个项目的名字 Leaf(树叶) 起源于德国哲学家、数学家莱布尼茨的一句话: “There are no two identical leaves in the world”(世界上没有两片相同的树叶) 。这名字起得真心挺不错的,有点文艺青年那味了!
![](https://img-blog.csdnimg.cn/20210422145229617.png)
Leaf 提供了 **号段模式****Snowflake(雪花算法)** 这两种模式来生成分布式 ID。并且,它支持双号段,还解决了雪花 ID 系统时钟回拨问题。不过,时钟问题的解决需要弱依赖于 Zookeeper 。
Leaf 的诞生主要是为了解决美团各个业务线生成分布式 ID 的方法多种多样以及不可靠的问题。
Leaf 对原有的号段模式进行改进,比如它这里增加了双号段避免获取 DB 在获取号段的时候阻塞请求获取 ID 的线程。简单来说,就是我一个号段还没用完之前,我自己就主动提前去获取下一个号段(图片来自于美团官方文章:[《Leaf——美团点评分布式 ID 生成系统》](https://tech.meituan.com/2017/04/21/mt-leaf.html))。
![](https://img-blog.csdnimg.cn/20210422144846724.png)
根据项目 README 介绍,在 4C8G VM 基础上,通过公司 RPC 方式调用,QPS 压测结果近 5w/s,TP999 1ms。
#### Tinyid(滴滴)
[Tinyid](https://github.com/didi/tinyid) 是滴滴开源的一款基于数据库号段模式的唯一 ID 生成器。
数据库号段模式的原理我们在上面已经介绍过了。**Tinyid 有哪些亮点呢?**
为了搞清楚这个问题,我们先来看看基于数据库号段模式的简单架构方案。(图片来自于 Tinyid 的官方 wiki:[《Tinyid 原理介绍》](https://github.com/didi/tinyid/wiki/tinyid%E5%8E%9F%E7%90%86%E4%BB%8B%E7%BB%8D)
![](https://oscimg.oschina.net/oscnet/up-4afc0e45c0c86ba5ad645d023dce11e53c2.png)
在这种架构模式下,我们通过 HTTP 请求向发号器服务申请唯一 ID。负载均衡 router 会把我们的请求送往其中的一台 tinyid-server。
这种方案有什么问题呢?在我看来(Tinyid 官方 wiki 也有介绍到),主要由下面这 2 个问题:
- 获取新号段的情况下,程序获取唯一 ID 的速度比较慢。
- 需要保证 DB 高可用,这个是比较麻烦且耗费资源的。
除此之外,HTTP 调用也存在网络开销。
Tinyid 的原理比较简单,其架构如下图所示:
![](https://oscimg.oschina.net/oscnet/up-53f74cd615178046d6c04fe50513fee74ce.png)
相比于基于数据库号段模式的简单架构方案,Tinyid 方案主要做了下面这些优化:
- **双号段缓存** :为了避免在获取新号段的情况下,程序获取唯一 ID 的速度比较慢。 Tinyid 中的号段在用到一定程度的时候,就会去异步加载下一个号段,保证内存中始终有可用号段。
- **增加多 db 支持** :支持多个 DB,并且,每个 DB 都能生成唯一 ID,提高了可用性。
- **增加 tinyid-client** :纯本地操作,无 HTTP 请求消耗,性能和可用性都有很大提升。
Tinyid 的优缺点这里就不分析了,结合数据库号段模式的优缺点和 Tinyid 的原理就能知道。
## 分布式 ID 生成方案总结
这篇文章中,我基本上已经把最常见的分布式 ID 生成方案都总结了一波。
除了上面介绍的方式之外,像 ZooKeeper 这类中间件也可以帮助我们生成唯一 ID。**没有银弹,一定要结合实际项目来选择最适合自己的方案。**
\ No newline at end of file
> 点击关注[公众号](#公众号)及时获取笔主最新更新文章,并可免费领取本文档配套的《Java面试突击》以及Java工程师必备学习资源。
>
> 本文授权转载自:https://juejin.im/post/5d6fc8eff265da03ef7a324b ,作者:1点25。
ID是数据的唯一标识,传统的做法是利用UUID和数据库的自增ID,在互联网企业中,大部分公司使用的都是Mysql,并且因为需要事务支持,所以通常会使用Innodb存储引擎,UUID太长以及无序,所以并不适合在Innodb中来作为主键,自增ID比较合适,但是随着公司的业务发展,数据量将越来越大,需要对数据进行分表,而分表后,每个表中的数据都会按自己的节奏进行自增,很有可能出现ID冲突。这时就需要一个单独的机制来负责生成唯一ID,生成出来的ID也可以叫做**分布式ID**,或**全局ID**。下面来分析各个生成分布式ID的机制。
![常用分布式id方案](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-7/分布式id方案.jpeg)
这篇文章并不会分析的特别详细,主要是做一些总结,以后再出一些详细某个方案的文章。
## 数据库自增ID
第一种方案仍然还是基于数据库的自增ID,需要单独使用一个数据库实例,在这个实例中新建一个单独的表:
表结构如下:
```sql
CREATE DATABASE `SEQID`;
CREATE TABLE SEQID.SEQUENCE_ID (
id bigint(20) unsigned NOT NULL auto_increment,
stub char(10) NOT NULL default '',
PRIMARY KEY (id),
UNIQUE KEY stub (stub)
) ENGINE=MyISAM;
```
可以使用下面的语句生成并获取到一个自增ID
```sql
begin;
replace into SEQUENCE_ID (stub) VALUES ('anyword');
select last_insert_id();
commit;
```
stub字段在这里并没有什么特殊的意义,只是为了方便的去插入数据,只有能插入数据才能产生自增id。而对于插入我们用的是replace,replace会先看是否存在stub指定值一样的数据,如果存在则先delete再insert,如果不存在则直接insert。
这种生成分布式ID的机制,需要一个单独的Mysql实例,虽然可行,但是基于性能与可靠性来考虑的话都不够,**业务系统每次需要一个ID时,都需要请求数据库获取,性能低,并且如果此数据库实例下线了,那么将影响所有的业务系统。**
为了解决数据库可靠性问题,我们可以使用第二种分布式ID生成方案。
## 数据库多主模式
如果我们两个数据库组成一个**主从模式**集群,正常情况下可以解决数据库可靠性问题,但是如果主库挂掉后,数据没有及时同步到从库,这个时候会出现ID重复的现象。我们可以使用**双主模式**集群,也就是两个Mysql实例都能单独的生产自增ID,这样能够提高效率,但是如果不经过其他改造的话,这两个Mysql实例很可能会生成同样的ID。需要单独给每个Mysql实例配置不同的起始值和自增步长。
第一台Mysql实例配置:
```sql
set @@auto_increment_offset = 1; -- 起始值
set @@auto_increment_increment = 2; -- 步长
```
第二台Mysql实例配置:
```sql
set @@auto_increment_offset = 2; -- 起始值
set @@auto_increment_increment = 2; -- 步长
```
经过上面的配置后,这两个Mysql实例生成的id序列如下: mysql1,起始值为1,步长为2,ID生成的序列为:1,3,5,7,9,... mysql2,起始值为2,步长为2,ID生成的序列为:2,4,6,8,10,...
对于这种生成分布式ID的方案,需要单独新增一个生成分布式ID应用,比如DistributIdService,该应用提供一个接口供业务应用获取ID,业务应用需要一个ID时,通过rpc的方式请求DistributIdService,DistributIdService随机去上面的两个Mysql实例中去获取ID。
实行这种方案后,就算其中某一台Mysql实例下线了,也不会影响DistributIdService,DistributIdService仍然可以利用另外一台Mysql来生成ID。
但是这种方案的扩展性不太好,如果两台Mysql实例不够用,需要新增Mysql实例来提高性能时,这时就会比较麻烦。
现在如果要新增一个实例mysql3,要怎么操作呢? 第一,mysql1、mysql2的步长肯定都要修改为3,而且只能是人工去修改,这是需要时间的。 第二,因为mysql1和mysql2是不停在自增的,对于mysql3的起始值我们可能要定得大一点,以给充分的时间去修改mysql1,mysql2的步长。 第三,在修改步长的时候很可能会出现重复ID,要解决这个问题,可能需要停机才行。
为了解决上面的问题,以及能够进一步提高DistributIdService的性能,如果使用第三种生成分布式ID机制。
## 号段模式
我们可以使用号段的方式来获取自增ID,号段可以理解成批量获取,比如DistributIdService从数据库获取ID时,如果能批量获取多个ID并缓存在本地的话,那样将大大提供业务应用获取ID的效率。
比如DistributIdService每次从数据库获取ID时,就获取一个号段,比如(1,1000],这个范围表示了1000个ID,业务应用在请求DistributIdService提供ID时,DistributIdService只需要在本地从1开始自增并返回即可,而不需要每次都请求数据库,一直到本地自增到1000时,也就是当前号段已经被用完时,才去数据库重新获取下一号段。
所以,我们需要对数据库表进行改动,如下:
```sql
CREATE TABLE id_generator (
id int(10) NOT NULL,
current_max_id bigint(20) NOT NULL COMMENT '当前最大id',
increment_step int(10) NOT NULL COMMENT '号段的长度',
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
```
这个数据库表用来记录自增步长以及当前自增ID的最大值(也就是当前已经被申请的号段的最后一个值),因为自增逻辑被移到DistributIdService中去了,所以数据库不需要这部分逻辑了。
这种方案不再强依赖数据库,就算数据库不可用,那么DistributIdService也能继续支撑一段时间。但是如果DistributIdService重启,会丢失一段ID,导致ID空洞。
为了提高DistributIdService的高可用,需要做一个集群,业务在请求DistributIdService集群获取ID时,会随机的选择某一个DistributIdService节点进行获取,对每一个DistributIdService节点来说,数据库连接的是同一个数据库,那么可能会产生多个DistributIdService节点同时请求数据库获取号段,那么这个时候需要利用乐观锁来进行控制,比如在数据库表中增加一个version字段,在获取号段时使用如下SQL:
```sql
update id_generator set current_max_id=#{newMaxId}, version=version+1 where version = #{version}
```
因为newMaxId是DistributIdService中根据oldMaxId+步长算出来的,只要上面的update更新成功了就表示号段获取成功了。
为了提供数据库层的高可用,需要对数据库使用多主模式进行部署,对于每个数据库来说要保证生成的号段不重复,这就需要利用最开始的思路,再在刚刚的数据库表中增加起始值和步长,比如如果现在是两台Mysql,那么 mysql1将生成号段(1,1001],自增的时候序列为1,3,5,7.... mysql1将生成号段(2,1002],自增的时候序列为2,4,6,8,10...
更详细的可以参考滴滴开源的TinyId:[github.com/didi/tinyid…](https://github.com/didi/tinyid/wiki/tinyid原理介绍)
在TinyId中还增加了一步来提高效率,在上面的实现中,ID自增的逻辑是在DistributIdService中实现的,而实际上可以把自增的逻辑转移到业务应用本地,这样对于业务应用来说只需要获取号段,每次自增时不再需要请求调用DistributIdService了。
## 雪花算法
上面的三种方法总的来说是基于自增思想的,而接下来就介绍比较著名的雪花算法-snowflake。
我们可以换个角度来对分布式ID进行思考,只要能让负责生成分布式ID的每台机器在每毫秒内生成不一样的ID就行了。
snowflake是twitter开源的分布式ID生成算法,是一种算法,所以它和上面的三种生成分布式ID机制不太一样,它不依赖数据库。
核心思想是:分布式ID固定是一个long型的数字,一个long型占8个字节,也就是64个bit,原始snowflake算法中对于bit的分配如下图:
![雪花算法](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-7/雪花算法.png)
- 第一个bit位是标识部分,在java中由于long的最高位是符号位,正数是0,负数是1,一般生成的ID为正数,所以固定为0。
- 时间戳部分占41bit,这个是毫秒级的时间,一般实现上不会存储当前的时间戳,而是时间戳的差值(当前时间-固定的开始时间),这样可以使产生的ID从更小值开始;41位的时间戳可以使用69年,(1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69年
- 工作机器id占10bit,这里比较灵活,比如,可以使用前5位作为数据中心机房标识,后5位作为单机房机器标识,可以部署1024个节点。
- 序列号部分占12bit,支持同一毫秒内同一个节点可以生成4096个ID
根据这个算法的逻辑,只需要将这个算法用Java语言实现出来,封装为一个工具方法,那么各个业务应用可以直接使用该工具方法来获取分布式ID,只需保证每个业务应用有自己的工作机器id即可,而不需要单独去搭建一个获取分布式ID的应用。
snowflake算法实现起来并不难,提供一个github上用java实现的:[github.com/beyondfengy…](https://github.com/beyondfengyu/SnowFlake)
在大厂里,其实并没有直接使用snowflake,而是进行了改造,因为snowflake算法中最难实践的就是工作机器id,原始的snowflake算法需要人工去为每台机器去指定一个机器id,并配置在某个地方从而让snowflake从此处获取机器id。
但是在大厂里,机器是很多的,人力成本太大且容易出错,所以大厂对snowflake进行了改造。
### 百度(uid-generator)
github地址:[uid-generator](https://github.com/baidu/uid-generator)
uid-generator使用的就是snowflake,只是在生产机器id,也叫做workId时有所不同。
uid-generator中的workId是由uid-generator自动生成的,并且考虑到了应用部署在docker上的情况,在uid-generator中用户可以自己去定义workId的生成策略,默认提供的策略是:应用启动时由数据库分配。说的简单一点就是:应用在启动时会往数据库表(uid-generator需要新增一个WORKER_NODE表)中去插入一条数据,数据插入成功后返回的该数据对应的自增唯一id就是该机器的workId,而数据由host,port组成。
对于uid-generator中的workId,占用了22个bit位,时间占用了28个bit位,序列化占用了13个bit位,需要注意的是,和原始的snowflake不太一样,时间的单位是秒,而不是毫秒,workId也不一样,同一个应用每重启一次就会消费一个workId。
具体可参考[github.com/baidu/uid-g…](https://github.com/baidu/uid-generator/blob/master/README.zh_cn.md)
### 美团(Leaf)
github地址:[Leaf](https://github.com/Meituan-Dianping/Leaf)
美团的Leaf也是一个分布式ID生成框架。它非常全面,即支持号段模式,也支持snowflake模式。号段模式这里就不介绍了,和上面的分析类似。
Leaf中的snowflake模式和原始snowflake算法的不同点,也主要在workId的生成,Leaf中workId是基于ZooKeeper的顺序Id来生成的,每个应用在使用Leaf-snowflake时,在启动时都会都在Zookeeper中生成一个顺序Id,相当于一台机器对应一个顺序节点,也就是一个workId。
### 总结
总得来说,上面两种都是自动生成workId,以让系统更加稳定以及减少人工成本。
## Redis
这里额外再介绍一下使用Redis来生成分布式ID,其实和利用Mysql自增ID类似,可以利用Redis中的incr命令来实现原子性的自增与返回,比如:
```shell
127.0.0.1:6379> set seq_id 1 // 初始化自增ID为1
OK
127.0.0.1:6379> incr seq_id // 增加1,并返回
(integer) 2
127.0.0.1:6379> incr seq_id // 增加1,并返回
(integer) 3
```
使用redis的效率是非常高的,但是要考虑持久化的问题。Redis支持RDB和AOF两种持久化的方式。
RDB持久化相当于定时打一个快照进行持久化,如果打完快照后,连续自增了几次,还没来得及做下一次快照持久化,这个时候Redis挂掉了,重启Redis后会出现ID重复。
AOF持久化相当于对每条写命令进行持久化,如果Redis挂掉了,不会出现ID重复的现象,但是会由于incr命令过多,导致重启恢复数据时间过长。
## 公众号
如果大家想要实时关注我更新的文章以及分享的干货的话,可以关注我的公众号。
**《Java面试突击》:** 由本文档衍生的专为面试而生的《Java面试突击》V2.0 PDF 版本[公众号](#公众号)后台回复 **"Java面试突击"** 即可免费领取!
**Java工程师必备学习资源:** 一些Java工程师常用学习资源公众号后台回复关键字 **“1”** 即可免费无套路获取。
![我的公众号](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-6/167598cd2e17b8ec.png)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册