README.md

    English | 简体中文

    Introduction

    PaddleOCR aims to create multilingual, awesome, leading, and practical OCR tools that help users train better models and apply them into practice.

    Recent updates

    • 2020.11.25 Update a new data annotation tool, i.e., PPOCRLabel, which is helpful to improve the labeling efficiency. Moreover, the labeling results can be used in training of the PP-OCR system directly.
    • 2020.9.22 Update the PP-OCR technical article, https://arxiv.org/abs/2009.09941
    • 2020.9.19 Update the ultra lightweight compressed ppocr_mobile_slim series models, the overall model size is 3.5M (see PP-OCR Pipeline), suitable for mobile deployment. Model Downloads
    • 2020.9.17 Update the ultra lightweight ppocr_mobile series and general ppocr_server series Chinese and English ocr models, which are comparable to commercial effects. Model Downloads
    • 2020.9.17 update English recognition model and Multilingual recognition model, English, Chinese, German, French, Japanese and Korean have been supported. Models for more languages will continue to be updated.
    • 2020.8.24 Support the use of PaddleOCR through whl package installation,please refer PaddleOCR Package
    • 2020.8.21 Update the replay and PPT of the live lesson at Bilibili on August 18, lesson 2, easy to learn and use OCR tool spree. Get Address
    • more

    Features

    • PPOCR series of high-quality pre-trained models, comparable to commercial effects
      • Ultra lightweight ppocr_mobile series models: detection (2.6M) + direction classifier (0.9M) + recognition (4.6M) = 8.1M
      • General ppocr_server series models: detection (47.2M) + direction classifier (0.9M) + recognition (107M) = 155.1M
      • Ultra lightweight compression ppocr_mobile_slim series models: detection (1.4M) + direction classifier (0.5M) + recognition (1.6M) = 3.5M
    • Support Chinese, English, and digit recognition, vertical text recognition, and long text recognition
    • Support multi-language recognition: Korean, Japanese, German, French
    • Support user-defined training, provides rich predictive inference deployment solutions
    • Support PIP installation, easy to use
    • Support Linux, Windows, MacOS and other systems

    Visualization

    The above pictures are the visualizations of the general ppocr_server model. For more effect pictures, please see More visualizations.

    Community

    • Scan the QR code below with your Wechat, you can access to official technical exchange group. Look forward to your participation.

    Quick Experience

    You can also quickly experience the ultra-lightweight OCR : Online Experience

    Mobile DEMO experience (based on EasyEdge and Paddle-Lite, supports iOS and Android systems): Sign in to the website to obtain the QR code for installing the App

    Also, you can scan the QR code below to install the App (Android support only)

    PP-OCR 1.1 series model list(Update on Sep 17)

    Model introduction Model name Recommended scene Detection model Direction classifier Recognition model
    Chinese and English ultra-lightweight OCR model (8.1M) ch_ppocr_mobile_v1.1_xx Mobile & server inference model / pre-trained model inference model / pre-trained model inference model / pre-trained model
    Chinese and English general OCR model (155.1M) ch_ppocr_server_v1.1_xx Server inference model / pre-trained model inference model / pre-trained model inference model / pre-trained model
    Chinese and English ultra-lightweight compressed OCR model (3.5M) ch_ppocr_mobile_slim_v1.1_xx Mobile inference model / slim model inference model / slim model inference model / slim model
    French ultra-lightweight OCR model (4.6M) french_ppocr_mobile_v1.1_xx Mobile & server inference model / pre-trained model - inference model / pre-trained model
    German ultra-lightweight OCR model (4.6M) german_ppocr_mobile_v1.1_xx Mobile & server inference model / pre-trained model - inference model / pre-trained model
    Korean ultra-lightweight OCR model (5.9M) korean_ppocr_mobile_v1.1_xx Mobile & server inference model / pre-trained model - inference model / pre-trained model
    Japan ultra-lightweight OCR model (6.2M) japan_ppocr_mobile_v1.1_xx Mobile & server inference model / pre-trained model - inference model / pre-trained model

    For more model downloads (including multiple languages), please refer to PP-OCR v1.1 series model downloads.

    For a new language request, please refer to Guideline for new language_requests.

    Tutorials

    PP-OCR Pipeline

    PP-OCR is a practical ultra-lightweight OCR system. It is mainly composed of three parts: DB text detection, detection frame correction and CRNN text recognition. The system adopts 19 effective strategies from 8 aspects including backbone network selection and adjustment, prediction head design, data augmentation, learning rate transformation strategy, regularization parameter selection, pre-training model use, and automatic model tailoring and quantization to optimize and slim down the models of each module. The final results are an ultra-lightweight Chinese and English OCR model with an overall size of 3.5M and a 2.8M English digital OCR model. For more details, please refer to the PP-OCR technical article (https://arxiv.org/abs/2009.09941). Besides, The implementation of the FPGM Pruner and PACT quantization is based on PaddleSlim.

    Visualization more

    • Chinese OCR model
    • English OCR model
    • Multilingual OCR model

    Guideline for new language requests

    If you want to request a new language support, a PR with 2 following files are needed:

    1. In folder ppocr/utils/dict, it is necessary to submit the dict text to this path and name it with {language}_dict.txt that contains a list of all characters. Please see the format example from other files in that folder.

    2. In folder ppocr/utils/corpus, it is necessary to submit the corpus to this path and name it with {language}_corpus.txt that contains a list of words in your language. Maybe, 50000 words per language is necessary at least. Of course, the more, the better.

    If your language has unique elements, please tell me in advance within any way, such as useful links, wikipedia and so on.

    More details, please refer to Multilingual OCR Development Plan.

    License

    This project is released under Apache 2.0 license

    Contribution

    We welcome all the contributions to PaddleOCR and appreciate for your feedback very much.

    • Many thanks to Khanh Tran and Karl Horky for contributing and revising the English documentation.
    • Many thanks to zhangxin for contributing the new visualize function、add .gitgnore and discard set PYTHONPATH manually.
    • Many thanks to lyl120117 for contributing the code for printing the network structure.
    • Thanks xiangyubo for contributing the handwritten Chinese OCR datasets.
    • Thanks authorfu for contributing Android demo and xiadeye contributing iOS demo, respectively.
    • Thanks BeyondYourself for contributing many great suggestions and simplifying part of the code style.
    • Thanks tangmq for contributing Dockerized deployment services to PaddleOCR and supporting the rapid release of callable Restful API services.
    • Thanks lijinhan for contributing a new way, i.e., java SpringBoot, to achieve the request for the Hubserving deployment.
    • Thanks Mejans for contributing the Occitan corpus and character set.
    • Thanks LKKlein for contributing a new deploying package with the Golang program language.
    • Thanks Evezerest, ninetailskim, edencfc, BeyondYourself and 1084667371 for contributing a new data annotation tool, i.e., PPOCRLabel。

    项目简介

    Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)

    🚀 Github 镜像仓库 🚀

    源项目地址

    https://github.com/PaddlePaddle/PaddleOCR

    发行版本

    当前项目没有发行版本

    贡献者 67

    全部贡献者

    开发语言

    • Python 79.1 %
    • C++ 17.6 %
    • Java 2.6 %
    • CMake 0.5 %
    • Makefile 0.2 %